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Quadratic Forms, Sums of Three Squares

1 Introduction to Quadratic Forms
In Section 2 we will be working towards a classification of binary quadratic forms. In
order to do this we will need to define quadratic forms and understand some of their basic
properties.

Consider the ring of n × n matrices, Mn(Z) and the group of n × n matrices of de-
terminant 1, SLn(Z), both of which we saw in Talk 0. We will say that two matrices A
and B in Mn(Z) are equivalent (A ∼ B) if B = A · U = UTAU for some U ∈ SLn(Z).

It is easy to see that this relation is symmetric, transitive, and reflexive. Thus, this is an
equivalence relation. The equivalence relation preserves determinants since

det(A · U) =det(UTAU) =det(UT )det(A)det(U) =det(A)

so A ∼ B =⇒ det(A) = det(B). It also preserves symmetry of a matrix. One can also
think of this as a group action of the special linear group on the set of n× n matrices.

The important takeaway from this construction is that both the equivalence classes con-
structed by the equivalence relation and the orbits constructed by the group action par-
tition the set of symmetric matrices in Mn(Z) into equivalence classes based on their
determinant. So if you take any equivalence class and any two matrices A,B in that
equivalence class, they will have the same determinant.

Definition 1. Each n × n symmetric matrix A (where the entry in the ith row and jth
column is ai,j) has an associated Quadratic Form FA:

FA(x1, ..., xn) =
∑n

i=1

∑n
j=1 ai,jxixj.

We can think of the xi’s as entries in a column vector, x. This allows us to write the
quadratic form as FA(x1, ..., xn) = xTAx.

We say that two forms are equivalent if their associated matrices are equivalent and so
A ∼ B ⇐⇒ FA ∼ FB. This is again an equivalence relation between two forms.

We say that FA represents N if ∃x1, ..., xn such that FA(x1, ..., xn) = xTAx = N, where
N, x1, ..., xn ∈ Z. If FA ∼ FB, then A ∼ B and ∃U ∈ SLn(Z) such that A = B · U =
UTBU . Recall the column vector x defined above.

FA(x) = xTAx = xTUTBUx = (Ux)TB(Ux) = FB(Ux)
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So any two quadratic forms in the same equivalence class represent the same integers.

Definition 2. The quadratic form FA is called Positive-Definite if FA(x1, ..., xn) ≥ 1
for all (x1, ..., xn) ̸= (0, ..., 0). Every form equivalent to a positive-definite quadratic form
is positive-definite.

Definition 3. A Binary quadratic form is over two variables (x1, x2) and a Ternary
quadratic form is over three.

2 Binary Quadratic Forms
In this section we will be classifying binary quadratic forms, in particular, by proving that
every positive-definite binary quadratic form of discriminant 1 is equivalent to each other.

Definition 4. The discriminant of the quadratic form FA is the determinant of the
matrix A.

As a general sketch of the proof, we will first be defining a set of necessary and sufficient
conditions on the matrix A in order for FA to be positive-definite (Lemma 1). We will
then show that every equivalence class of positive-definite binary quadratic forms of a
fixed discriminant contains at least one form whose associated matrix A satisfies another
set of conditions (Lemma 2). Finally we will show that for some arbitrary form of
discriminant 1, since it is equivalent to a form of discriminant whose associated matrix
satisfies the conditions outlined in Lemma 2, it must be equivalent to the form x2

1 + x2
2.

That is Theorem 1.

Lemma 1. Let

A =

(
a1,1 a1,2
a1,2 a2,2

)
be a 2×2 symmetric matrix and let FA(x1, x2) = a1,1x

2
1+2a1,2x1x2+a2,2x

2
2 be the quadratic

form. FA is positive definite if and only if a1,1 ≥ 1 and the discrimnant d satisfies

d = det(A) = a1,1a2,2 − a21,2 ≥ 1.

• Pf. If FA is positive-definite, when we evaluate FA(1, 0) = a1,1, it must be ≥ 1.

Further, we can evaluate FA(−a1,2, a1,1) = a1,1(a1,1a2,2 − a21,2) = a1,1d ≥ 1. Thus, d ≥ 1
since it must be an integer and if it was 0 or negative, then FA(−a1,2, a1,1) would be 0 or
negative.

Doing the other direction, if a1,1 ≥ 1 and d ≥ 1, then

a1,1FA(x1, x2) = (a1,1x1 + a1,2x2)
2 + dx2

2 ≥ 0

and FA(x1, x2) = 0 if and only if (x1, x2) = (0, 0). Thus, if a1,1 ≥ 1 and d ≥ 1, FA is
positive definite.

Lemma 2. Every equivalence class of positive definite binary quadratic forms of discrim-
inant d contains at least one form

FB(x1, x2) = b1,1x
2
1 + 2b1,2x1x2 + b2,2x

2
2

2
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for which

2|b1,2| ≤ b1,1 ≤ 2√
3

√
d

• Pf. Let’s use the same FA and matrix A as in Lemma 1.

Let b1,1 be the smallest positive integer represented by FA. Then there exists r1, r2
such that FA(r1, r2) = b1,1. If a positive integer h divides both r1 and r2 then b1,1 ≤
FA(r1/h, r2/h) =

FA(r1,r2)
h2 = b1,1

h2 ≤ b1,1. Thus, h = 1 (because b1,1 is minimal) and (r1, r2)
are coprime. We can then use Bezout’s identity to write

1 = r1s2 − r2s1 = r1(s2 + r2t)− r2(s1 + r1t)

for all integers t and for some integers s1, s2. This allows us to construct the following
matrix:

U =

(
r1 s1 + r1t
r2 s2 + r2t

)
∈ SL2(Z)

Let B = UTAU so that

B =

(
FA(r1, r2) b′1,2 + FA(r1, r2)t

b′1,2 + FA(r1, r2)t FA(s1 + r1t, s2 + r2t)

)
=

(
b1,1 b1,2
b1,2 b2,2

)
We can define

b′1,2 = b1,1r1s1 + b1,2(r1s2 + r2s1) + b2,2r2s2
b1,2 = b′1,2 + b1,1t

b2,2 = FA(s1 + r1t, s2 + r2t) ≥ b1,1

This last fact follows from the fact that b1, 1 is the smallest positive number represented
by FA. Now, we can try and formulate the inequality that we are trying to prove.

We know that |b1,2| = |b′1,2 + b1,1t|. There must exist t such that |b′1,2 + b1,1t| ≤ b1,1
2

be-
cause b1,1 is positive and thus the t variable can be adjusted as needed in order to ensure
b′1,2 + b1,1t is in (− b1,1

2
, b1,1

2
). So we have |b1,2| ≤ b1,1

2
. We further have that 2|b1,2| ≤ b1,1

(so this completes one half of the inequality we need to prove) and we already know that
b1,1 ≤ b2,2.

We already declared B = UTAU so A ∼ B and thus FA is equivalent to FB as defined in
the lemma and it is true for FB that 2|b1,2| ≤ b1,1 ≤ b2,2.

Let d = det(B) or the discriminant of FB. It is then true that

b21,1 ≤ b1,1b2,2 = d+ b21,2 ≤ d+
b21,1
4

because b1,1 ≤ b2,2 and 2|b1,2| ≤ b1,1 =⇒ 4|b1,2|2 ≤ b21,1 =⇒ b21,2 ≤
b21,1
4

.

This then implies that 3a21,1
4

≤ d =⇒ a1,1 ≤ 2√
3

√
d

Theorem 1. Every positive-definite binary quadratic form of discriminant 1 is equivalent
to the form x2

1 + x2
2

3
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• Pf. Let F be a positive-definite binary quadratic form of discriminant 1. By Lemma
2, the form F is equivalent to a form a1,1x

2
1 + 2a1,2x1x2 + a2,2x

2
2 for which

2|a1,2| ≤ a1,1 ≤ 2√
3

√
d

Since a1,1 ≥ 1, we must have a1,1 = 1. This implies that a1,2 = 0. Since the discriminant
is 1, it follows that a2,2 = a1,1a2,2 − a21,2 = 1.

Thus, the form F is equivalent to x2
1 + x2

2 and we are done.

3 Ternary Quadratic Forms
We will now give an analogous classification of ternary quadratic forms. Having already
gone through the full proof of the classification of Binary Quadratic Forms, I will omit
most of the details of this classification (these can be found in Nathanson §1.4).

A similar pattern is followed as for binary quadratic forms, however. First, a set of
necessary and sufficient conditions for a form to be considered positive definite is defined.
Second, we use this to show that within each equivalence class of positive-definite ternary
forms for a certain discriminant, there is at least one form whose associated matrix satisfies
certain conditions. Finally, we show Thm. 2.

Theorem 2. Every positive-definite ternary quadratic form of discriminant 1 is equivalent
to the form x2

1 + x2
2 + x2

3.

4 Sums of Three Squares
We require three ’ingredients’ to classify integers that can be written as the sum of three
squares. We will, of course, use Thm. 2, as well as Gauss’s law of quadratic reciprocity
(Thm. 3), and Dirichlet’s theorem on primes in arithmetic progressions (Thm. 4).

Definition 5. If a is a Quadratic Residue modulo m, it means that there exist integers
x and y such that x2 − a = ym.

Theorem 3 (Gauss). Let p and q be distinct odd prime numbers, and define the Legendre
symbol as: (

q
p

)
=

{
1 if n2 ≡ q mod p for some integer n

−1 otherwise

Using the Legendre symbol, the quadratic reciprocity law can be stated concisely:
(

p
q

)(
q
p

)
=

(−1)
p−1
2

· q−1
2

Theorem 4 (Dirichlet). For fixed a, q ∈ N, a, q coprime, there are infinitely many primes
of the form a+ qn, i.e. there are infinitely many primes congruent to a mod q.

Lemma 3. Let n ≥ 2. If there exists a positive integer d′ such that −d′ is a quadratic
residue modulo d′n− 1, then n can be represented as the sum of three squares.

4
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• Pf. By definition ∃x, y ∈ Z s.t. x2 + d′ = y(d′n − 1) = ym. We know that
m = d′n− 1 ≥ 2d′ − 1 ≥ 1 since n ≥ 2 and d′ ≥ 1.

We can also see that d′ = ym − x2. We can now construct a symmetric matrix A which
corresponds to a ternary form FA which represents n and has discriminant 1. From The-
orem 2, we know that this means n can be written as the sum of three squares. (See
Lemma 1.3 in Nathanson for proof that A is also positive-definite).

A =

y x 1
x m 0
1 0 n


This matrix has determinant 1 and thus FA has discriminant 1. If we let x be (0, 0, 1)
then FA(0, 0, 1) = n. We are thus done.

Lemma 4. If n is a positive integer and n ≡ 2 (mod 4), then n can be represented as the
sum of three squares.

• Pf. Since 4n and n − 1 are coprime, we can use Theorem 4 to say that there are
infinitely many primes congruent to n − 1 mod 4n. Choose j ≥ 1 such that p = 4nj +
n− 1 = (4j + 1)n− 1 is prime. Let d′ = 4j + 1 and since n ≡ 2 (mod 4),

p = d′n− 1 ≡ 1 (mod 4)

By Lemma 3, we just need to show that −d′ is a quadratic residue mod p in order to
show that n can be represented as the sum of three squares. If we say that qi are the
distinct primes dividing d′, then we have

p = d′n− 1 ≡ −1 (mod qi).

This is because p is by definition one less than d′n which is a multiple of any qi. Thus,
p ≡ −1 (mod qi).

By quadratic reciprocity, we have that (−1
p
) = 1 since p ≡ 1 (mod 4).

(
−d′

p
) = (

−1

p
)(
d′

p
) = (

d′

p
) =

∏
qi|d′

(
qi
p
)ki =

∏
qi|d′

(
p

qi
)ki =

∏
qi|d′

(
−1

qi
)ki =

∏
qi|d′,qi≡3(mod4)

(−1)ki = 1

(1)∏
qi|d′(

−1
qi
)ki =

∏
qi|d′,qi≡3(mod4)(−1)ki results from the fact that primes congruent to 3 mod

4 are never residues and thus the Legendre Symbol in that case is always −1.∏
qi|d′,qi≡3(mod4)(−1)ki = 1 is true because of the following.

d′ = 1 mod 4 by definition. Note that (−1)ki = 3ki = qkii (mod 4) when qi = 3 mod 4.
Now, consider the alternate case where qi = 1 mod 4. Then qkii = 1ki = 1 mod 4. So
d′ = qkii which is equivalent to (−1)ki for each of the qi = 3 mod 4.
Given this, the product (−1)ki for each of the qi = 3 mod 4 is congruent to d′ which is 1
mod 4. Since (−1)ki must be 1 or −1 and congruent to 1 mod 4, we see that it must be
equal to 1.

5
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Lemma 5. If n is a positive integer such that n ≡ 1, 3, 5 (mod 8) then n can be represented
as the sum of three squares

The proof of this is structurally quite similar to Lemma 4. We use Theorem 4 to obtain
an algebraic expression of some prime. We then use Lemma 3 to reduce the problem to
showing that −d′ is a quadratic residue. Showing this is slightly more complicated but still
only involves the Legendre symbol/quadratic reciprocity and properties of factorization.
The full proof can be found in Nathanson §1.5 but I will not mention it here for time’s
sake.

Theorem 5 (Legendre). A positive integer N can be represented as the sum of three
squares if and only if N is not of the form N = 4a(8k + 7).

• Pf. We first prove ( =⇒ ), that a sum of three squares can not have the form
N = 4a(8k + 7).

We can confirm by hand that only 0, 1, 4 are quadratic residues modulo 8. (02 = 0, 12 =
1, 22 = 4 etc.). Now, consider N = x2 + y2 + z2 (mod 8). We can again manually check
that N can only be 0, 1, 2, 3, 4, 5, or 6 modulo 8.

Let us assume for the sake of contradiction that there does exist a sum of three squares
that has form 4a(8k + 7). So we assume that we can write N as such: N = 4a(8k + 7) =
x2
1 + x2

2 + x2
3.

Note that 8k+ 7 ≡ 7 (mod 8). So if N = 8k+ 7, i.e. a = 0, then it cannot be the sum of
three squares.

Now, let’s consider what happens when we multiply 8k+7 by powers of 4. If N could be
written as a sum of three squares x2

1 + x2
2 + x2

3 and is divisible by 4, then x1, x2, x3 must
all be even. This can again be manually verified since we know only 0, 1, 4 are quadratic
residues modulo 8. If any of x2

1, x
2
2, x

2
3 are not even, i.e. congruent to 1 modulo 8, then it

is impossible for their sum to be divisible by 4.

Since x1, x2, x3 are all even we can divide by 4: N1 = 4a−1(8k+7) = (x1

2
)2+(x2

2
)2+(x3

2
)2.

We can repeat this process, continually obtaining Ni’s as follows: Ni = 4a−i(8k + 7) =
(x1

2i
)2 + (x2

2i
)2 + (x3

2i
)2

We continually divide until either at least one of the three terms is odd and/or we cannot
divide by 4 any further. If we cannot divide by 4 any further, our expression looks as
follows: Na = 4a−a(8k+7) = (x1

2a
)2+(x2

2a
)2+(x3

2a
)2. This is a contradiction, however, since

we know that (8k + 7) cannot be represented as the sum of three squares. If one of the
terms is odd, then we have Nj = 4a−j(8k + 7) = (x1

2j
)2 + (x2

2j
)2 + (x3

2j
)2, where j < a and

at least one of x1

2j
, x2

2j
, x3

2j
are odd. This again yields a contradiction since if the left side

is divisible by 4 then all of x1

2j
, x2

2j
, x3

2j
must be even. Thus it is not possible for a sum of

three squares to be written in the form 4a(8k + 7).

To prove the other direction ( ⇐= ), we notice that every positive integer can be written
in the form 4am, where m is either 2 (mod 4) or 1, 3, 5, 7 (mod 8) and 4a is the highest
possible power of 4. If m is even, then it is not divisible by 4 so it is 2 mod 4 and if m is
odd then it is necessarily 1,3,5, or 7 mod 8. We know from proving the ( =⇒ ) direction,

6
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that if m can be written as a sum of three squares then so can 4am (we just multiply
x1, x2, x3 each by 2a).

From Lemma 5 and Lemma 6, we know that if m = 1, 2, 3, 5, 6 mod 8, then it can
be represented as the sum of three squares. Since m cannot be divisible by 4, it is not
possible for m to be 0 or 4 mod 8. So that means for any m that is not equivalent to 7
mod 8, it can be represented as the sum of three squares. Thus, if N is not of the form
4a(8k + 7), N can be represented as the sum of three squares and we are done.
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