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Introduction to Quadratic Forms I

Ex An example of an equivalence relation is A ∼ B ⇐⇒ a − b ≡ 0
(mod 2).

Say that two matrices A, B ∈ Mn(Z) are equivalent

A ∼ B ⇐⇒ B = A · U = UT AU

for some U ∈ SLn(Z).

This equivalence relation preserves determinants, so A ∼ B =⇒
det(A) =det(B)

=⇒ det(A · U) =det(UT AU) =det(UT )det(A)det(U) =det(A)
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Introduction to Quadratic Forms II

The equivalence classes constructed by the equivalence relation partition
the set of symmetric matrices in Mn(Z) into equivalence classes based on
their determinant.

Ex Let U =
(

1 2
2 5

)
and A =

(
1 1
1 2

)
.

B = UT AU =
(

1 2
2 5

)
·
(

1 1
1 2

)
·
(

1 2
2 5

)
=
(

13 31
31 74

)
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Introduction to Quadratic Forms III

Def Each n × n symmetric matrix A (where the entry in the ith row and
jth column is ai,j) has an associated Quadratic Form FA:

FA(x1, ..., xn) =
∑n

i=1
∑n

j=1 ai,jxixj .

We can think of the xi’s as entries in a column vector, x. This allows us
to write the quadratic form as FA(x1, ..., xn) = xT Ax.

We say that two forms are equivalent if their associated matrices are
equivalent and so

A ∼ B ⇐⇒ FA ∼ FB.
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Introduction to Quadratic Forms IV

Ex The identity matrix I2 has an associated Quadratic Form x2
1 + x2

2.

FA(x1, x2) =
(
x1 x2

)
·
(

1 0
0 1

)
·
(

x1
x2

)

=
(
x1 x2

)
·
(

x1
x2

)
= x2

1 + x2
2
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Introduction to Quadratic Forms V

We say that FA represents N if ∃x1, ..., xn such that
FA(x1, ..., xn) = xT Ax = N, where N, x1, ..., xn ∈ Z.

Ex The quadratic form x2
1 + x2

2 represents 13 = 22 + 32 but not 7.

Any two quadratic forms in the same equivalence class represent the same
integers.

=⇒ FA(x) = xT Ax = xT UT BUx = (Ux)T B(Ux) = FB(Ux)
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Introduction to Quadratic Forms VI

Def The quadratic form FA is called Positive-Definite if
FA(x1, ..., xn) ≥ 1 for all (x1, ..., xn) ̸= (0, ..., 0). Every form
equivalent to a positive-definite quadratic form is positive-definite.

Def A Binary quadratic form is over two variables (x1, x2) and a Ternary
quadratic form is over three.
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Binary Quadratic Forms I

Def The discriminant of the quadratic form FA is the determinant of the
matrix A.

In this section we will be classifying binary quadratic forms, in particular,
by proving that every positive-definite binary quadratic form of
discriminant 1 is equivalent to the form x2

1 + x2
2.

This is mainly useful in helping us understand ternary quadratic forms,
which we will ultimately use in our proof about the sums of three squares.
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Binary Quadratic Forms II

Lemma 1
Let

A =
(

a1,1 a1,2
a1,2 a2,2

)
be a 2 × 2 symmetric matrix and let

FA(x1, x2) = a1,1x2
1 + 2a1,2x1x2 + a2,2x2

2
be the quadratic form. FA is positive definite if and only if a1,1 ≥ 1
and the discriminant d satisfies

d = det(A) = a1,1a2,2 − a2
1,2 ≥ 1.

To prove an if and only if, we prove the forward and converse direction.
First, we assume FA is positive-definite then show that the conditions are
satisfied. Second, we assume the conditions are satisfied and show that FA

is positive-definite.
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Binary Quadratic Forms III
Lemma 1
Let

A =
(

a1,1 a1,2
a1,2 a2,2

)
be a 2 × 2 symmetric matrix and let

FA(x1, x2) = a1,1x2
1 + 2a1,2x1x2 + a2,2x2

2
be the quadratic form. FA is positive definite if and only if a1,1 ≥ 1
and the discriminant d satisfies

d = det(A) = a1,1a2,2 − a2
1,2 ≥ 1.

• FA is positive definite =⇒ FA(1, 0) = a1,1 ≥ 1

• FA is positive definite =⇒ FA(−a1,2, a1,1) = a1,1(a1,1a2,2 − a2
1,2)

= a1,1d ≥ 1.
d must be an integer and it can not be 0 or negative, otherwise a1,1d
would be 0 or negative. Thus, d ≥ 1.
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Binary Quadratic Forms IV

Lemma 1
Let

A =
(

a1,1 a1,2
a1,2 a2,2

)
be a 2 × 2 symmetric matrix and let

FA(x1, x2) = a1,1x2
1 + 2a1,2x1x2 + a2,2x2

2
be the quadratic form. FA is positive definite if and only if a1,1 ≥ 1
and the discriminant d satisfies

d = det(A) = a1,1a2,2 − a2
1,2 ≥ 1.

If a1,1 ≥ 1 and d ≥ 1, then

a1,1FA(x1, x2) = (a1,1x1 + a1,2x2)2 + dx2
2 ≥ 0

Thus, if a1,1 ≥ 1 and d ≥ 1, FA is positive definite. (FA = 0?)
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Binary Quadratic Forms V

The conditions we outlined in Lemma 1 then help us prove Lemma 2:

Lemma 2
Every equivalence class of positive definite binary quadratic forms of
discriminant d contains at least one form

FB(x1, x2) = b1,1x2
1 + 2b1,2x1x2 + b2,2x2

2
for which

2|b1,2| ≤ b1,1 ≤ 2√
3

√
d

This proof is quite technical and so for time’s sake I will simply outline it
here. The details of the proof can be found in Nathanson §1.3 (Lemma
1.2) or in my lecture notes.
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Binary Quadratic Forms VI
Lemma 2
Every equivalence class of positive definite binary quadratic forms of
discriminant d contains at least one form

FB(x1, x2) = b1,1x2
1 + 2b1,2x1x2 + b2,2x2

2
for which

2|b1,2| ≤ b1,1 ≤ 2√
3

√
d

• I take arbitrary matrix A and construct a subsequent matrix
U ∈ SL2(Z).

• When I conjugate A by U , I get a matrix B = UT AU which is
positive-definite.

• I am then able to prove the inequality in the lemma, using a
combination of clever algebraic manipulation and the properties
outlined in Lemma 1
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Binary Quadratic Forms VII

Thm Every positive-definite binary quadratic form of discriminant 1 is
equivalent to the form x2

1 + x2
2.

Let F be some arbitrary positive-definite binary quadratic form of
discriminant 1. By Lemma 2, the form F is equivalent to a form
a1,1x2

1 + 2a1,2x1x2 + a2,2x2
2 for which

2|a1,2| ≤ a1,1 ≤ 2√
3

√
d

• Since a1,1 ≥ 1, d = 1, and a1,1 ≤ 2√
3

√
d, we must have a1,1 = 1

• If a1,1 = 1 and 2|a1,2| ≤ a1,1, we have that a1,2 = 0

• Since d = 1, it follows that a2,2 = a1,1a2,2 − a2
1,2 = 1.

Plugging a2,2 = 1, a1,2 = 0, a1,1 = 1 into our quadratic form, we get that
the form F is equivalent to x2

1 + x2
2 and we are done.
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Ternary Quadratic Forms

Details of the classification of Ternary Quadratic Forms can be found in
Nathanson §1.4. However, the general proof structure is similar and we
end up proving a similar result.

Thm Every positive-definite ternary quadratic form of discriminant 1 is
equivalent to the form x2

1 + x2
2 + x2

3.
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Sums of Three Squares I

In this section we will ultimately look to classify integers that can be
written as the sum of three squares:

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

We require three preliminary ’ingredients’ to prove this. We will, of course,
use the theorem we just stated:

Thm Every positive-definite ternary quadratic form of discriminant 1 is
equivalent to the form x2

1 + x2
2 + x2

3.

as well as Gauss’s law of quadratic reciprocity, and Dirichlet’s theorem on
primes in arithmetic progressions. (see next slide)
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Sums of Three Squares II

Def If a is a Quadratic Residue modulo m, it means that there is some
n such that n2 ≡ a (mod m).

Ex 4 is a quadratic residue modulo 8 because 62 ≡ 4 (mod 8). As is 22.
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Sums of Three Squares III

Law of Quadratic Reciprocity
Let p and q be distinct odd prime numbers, and define the Legendre
symbol as: (

q
p

)
=
{

1 if n2 ≡ q mod p for some integer n

−1 otherwise
Using the Legendre symbol, the quadratic reciprocity law can be stated
concisely:

(
p
q

)(
q
p

)
= (−1)

p−1
2 · q−1

2

(p
q ) = ( q

p) if p or q ≡ 1 (mod 4)
(−1

p ) = 1 if and only if p ≡ 1 (mod 4)
Further, the Legendre Symbol is multiplicative:

(
a
b

)(
c
d

)
=
(

ac
bd

)
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Sums of Three Squares IV

Dirichlet’s Theorem on Primes in Arithmetic Progressions
For fixed a, q ∈ N, a, q coprime, there are infinitely many primes of the
form a + qn, i.e. there are infinitely many primes congruent to a mod q.

Ex There are infinitely many primes congruent to 1 (mod 4) but finitely
many primes congruent to 2 (mod 4).
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Sums of Three Squares V

Lemma 3
Let n ≥ 2. If there exists a positive integer d′ such that −d′ is a quadratic
residue modulo d′n − 1, then n can be represented as the sum of three
squares.

Recall that −d′ is a quadratic residue modulo d′n − 1 if there is some n
such that x2 = −d′ (mod d′n − 1).

Let m = d′n − 1.

• By definition, ∃x ∈ Z such that x2 ≡ −d′ (mod m). So for some y,
we can also say x2 = my − d′ =⇒ d′ = my − x2.

• We assumed in the lemma that n ≥ 2 and d′ ≥ 1. Thus,
m = d′n − 1 ≥ 2d′ − 1 ≥ 1.
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Sums of Three Squares VI

We can now construct a symmetric matrix A which corresponds to a
ternary form FA which represents n and has discriminant 1. Given this
matrix and using the previously stated theorem,

Thm Every positive-definite ternary quadratic form of discriminant 1 is
equivalent to the form x2

1 + x2
2 + x2

3.

we know that this means n can be written as the sum of three squares.
(See Lemma 1.3 in Nathanson for proof that A is also positive-definite).
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Sums of Three Squares VII

Lemma 3
Let n ≥ 2. If there exists a positive integer d′ such that −d′ is a quadratic
residue modulo d′n − 1, then n can be represented as the sum of three
squares.

A =

y x 1
x m 0
1 0 n


Recall from earlier in the proof that d′ = my − x2.

• det(A) = (my − x2)n − m = d′n − m

• We defined m = d′n − 1 and so det(A) = 1.

This matrix has determinant 1 and thus FA has discriminant 1. If we let x
be (0, 0, 1) then FA(0, 0, 1) = n. We are thus done.
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Sums of Three Squares VIII

Lemma 4
If n is a positive integer and n ≡ 2 (mod 4), then n can be represented as
the sum of three squares.

Since 4n and n − 1 are coprime, we can use Dirichlet’s Theorem to say
that there are infinitely many primes congruent to n − 1 mod 4n.

Choose j ≥ 1 such that p = 4nj + n − 1 = (4j + 1)n − 1 is prime. Let
d′ = 4j + 1 and since n ≡ 2 (mod 4),

p = d′n − 1 ≡ 1 (mod 4)
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Sums of Three Squares IX

By Lemma 3, we just need to show that −d′ is a quadratic residue mod p
in order to show that n can be represented as the sum of three squares. If
we say that qi are the distinct primes dividing d′, then we have

p = d′n − 1 ≡ −1 (mod qi).

This is because p is by definition one less than d′n which is a multiple of
any qi. Thus, p ≡ −1 (mod qi).

Jan 31, 2024 25



Sums of Three Squares X
We can write the prime factorization of d′ as a series of qki

i where qi is the
underlying prime and ki is the exponent:

d′ =
∏
qi|d′

qki
i

By quadratic reciprocity, we have that (−1
p ) = 1 since p ≡ 1 (mod 4).

(−d′

p
) = (−1

p
)(d′

p
) (1)

= (d′

p
) (2)

(1) follows because of multiplicativity
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Sums of Three Squares XI

(d′

p
) =

∏
qi|d′

(qi

p
)ki (3)

=
∏
qi|d′

( p

qi
)ki (4)

=
∏
qi|d′

(−1
qi

)ki (5)

• (3) follows from multiplicativity (each qki
i multiplied together equals

d′).

• (3) to (4) follows since p is 1 (mod 4) =⇒ ( qi
p ) = ( p

qi
).

• (4) to (5) follows since p ≡ −1 (mod qi) so if p is a quadratic residue
so is −1 and vice versa
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Sums of Three Squares XII

∏
qi|d′

(−1
qi

)ki =
∏

qi|d′,qi≡3(mod4)
(−1)ki (6)

Primes congruent to 3 mod 4 are never residues and thus the Legendre
Symbol in that case is always −1.
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Sums of Three Squares XIII

∏
qi|d′,qi≡3(mod4)

(−1)ki = 1 (7)

d′ = 1 mod 4 by definition. Further, each of the qi are 1 or 3 mod 4.

• When qi = 3 (mod 4), (−1)ki = 3ki = qki
i (mod 4)

• When qi = 1 (mod 4), qki
i = 1ki = 1 (mod 4)

• So d′ = qki
i · 1 = qki

i which is equivalent to (−1)ki for each of the
qi = 3 mod 4.

Given this, the product (−1)ki for each of the qi = 3 mod 4 is congruent
to d′ which is 1 mod 4. Since (−1)ki must be 1 or −1 and congruent to 1
mod 4, we see that it must be equal to 1. So (−d′

p ) = 1 and we are done.
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Sums of Three Squares XIV

Lemma 5
If n is a positive integer such that n ≡ 1, 3, 5 (mod 8) then n can be
represented as the sum of three squares

The proof of this is structurally quite similar to Lemma 4. The full proof
can be found in Nathanson §1.5 but I will not mention it here for time’s
sake.
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Sums of Three Squares XV

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

We first prove ( =⇒ ), that a sum of three squares can not have the form
N = 4a(8k + 7).

We can confirm by hand that only 0, 1, 4 are quadratic residues modulo 8.
(02 = 0, 12 = 1, 22 = 4 etc.). Now, consider N = x2 + y2 + z2 (mod 8).
We can again manually check that N can only be 0, 1, 2, 3, 4, 5, or 6
modulo 8.
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Sums of Three Squares XVI

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

Let us assume for the sake of contradiction that there does exist a sum of
three squares that has form 4a(8k + 7). So we assume that we can write
N as such: N = 4a(8k + 7) = x2

1 + x2
2 + x2

3.

Note that 8k + 7 ≡ 7 (mod 8). So if N = 8k + 7, i.e. a = 0, then it
cannot be the sum of three squares.
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Sums of Three Squares XVII

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

Now, let’s consider what happens when we multiply 8k + 7 by powers of 4.
If N could be written as a sum of three squares x2

1 + x2
2 + x2

3 and is
divisible by 4, then x1, x2, x3 must all be even. This can again be
manually verified since we know only 0, 1, 4 are quadratic residues modulo
8. If any of x2

1, x2
2, x2

3 are not even, i.e. congruent to 1 modulo 8, then it is
impossible for their sum to be divisible by 4.
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Sums of Three Squares XVIII

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

Since x1, x2, x3 are all even we can divide by 4:
N1 = 4a−1(8k + 7) = (x1

2 )2 + (x2
2 )2 + (x3

2 )2. We can repeat this process,
continually obtaining Ni’s as follows:
Ni = 4a−i(8k + 7) = (x1

2i )2 + (x2
2i )2 + (x3

2i )2
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Sums of Three Squares XIX

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

We continually divide until we have one of two cases (1) one of the three
terms is odd or (2) we cannot divide by 4 any further.

In the case of (1): we have Nj = 4a−j(8k + 7) = (x1
2j )2 + (x2

2j )2 + (x3
2j )2,

where j < a and at least one of x1
2j , x2

2j , x3
2j are odd. This yields a

contradiction since if the left side is divisible by 4 then all of x1
2j , x2

2j , x3
2j

must be even.
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Sums of Three Squares XX

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

In the case of (2), i.e. we cannot divide by 4 any further, our expression
looks as follows: Na = 4a−a(8k + 7) = 8k + 7 = (x1

2a )2 + (x2
2a )2 + (x3

2a )2.
This again is a contradiction, however, since we know that (8k + 7) cannot
be represented as the sum of three squares. Thus it is not possible for a
sum of three squares to be written in the form 4a(8k + 7).
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Sums of Three Squares XXI

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

Let’s now prove the other direction ( ⇐= ), that is, if N is not of the
above form, it can be represented as the sum of three squares.
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Sums of Three Squares XXII

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

Notice that every positive integer can be written in the form 4am, where
m is either 2 (mod 4) or 1, 3, 5, 7 (mod 8) and 4a is the highest possible
power of 4.
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Sums of Three Squares XXIII

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

If m is even, then it is not divisible by 4 so it is 2 mod 4 and if m is odd
then it is necessarily 1,3,5, or 7 mod 8. We know from proving the ( =⇒ )
direction, that if m can be written as a sum of three squares then so can
4am (we just multiply x1, x2, x3 each by 2a).
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Sums of Three Squares XXIV

Thm A positive integer N can be represented as the sum of three squares if
and only if N is not of the form N = 4a(8k + 7)

From Lemma 5 and Lemma 6, we know that if m = 1, 2, 3, 5, 6 mod 8,
then it can be represented as the sum of three squares.

So for any m that is not equivalent to 7 mod 8, it can be represented as
the sum of three squares. Thus, if N is not of the form 4a(8k + 7), N can
be represented as the sum of three squares and we are done.
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