
Homework 3 solutions

Additive number theory seminar

Problem 1. Let h ≥ 3 be an integer, and N ≥ 2 an integer such that N ≡ h (mod 2), i.e.
N and h are either both odd or both even. Using similar methods and lemmas to the proof
of Vinogradov’s theorem in Nathanson, find an asymptotic formula for the number of ways
rh(N) that N can be written as a sum of h primes.

Solution. There are three major components to Vinogradov’s formula: the major arc
decomposes into the product of the singular series (which we need to bound) and the singular
integral (which we need to estimate), and the minor arc gives an error term we need to bound.

Following Nathanson, we first worry about the singular series. Let

G(N,Q) =
∑
q≤Q

µ(q)hcq(N)

φ(q)h

where φ is Euler’s totient function and

cq(N) =

q∑
a=1

(a,q)=1

e(aN/q),

and write G(N) = limQ→∞ G(N,Q). (Notice that µ(q)h is µ(q) if h is odd and µ(q)2 if h is
even, i.e. just detecting squarefreeness.)

Proposition 1. The singular series G(N) converges absolutely and uniformly in N , and
has the Euler product

G(N) =
∏
p∤N

(
1− 1

(1− p)h

)∏
p|N

(
1− 1

(1− p)h−1

)
,

and there exist positive constants c1, c2 such that c1 < G(N) < c2 for all positive N . For any
ϵ > 0,

G(N,Q) = G(N) +O(Q−h+2+ϵ).

The proof is very similar to that of Theorem 8.2 in Nathanson, but we sketch it for
clarity:

Proof. Since cq(N) ≪ φ(q) (since it is a sum with φ(q) terms each of absolute value 1), the
absolute value of each summand is bounded by 1

φ(q)h−1 . We have φ(q) ≫ q1−ϵ for all ϵ > 0
and q sufficiently large, so

∞∑
q=1

∣∣∣∣µ(q)cq(N)

φ(q)h

∣∣∣∣ ≪ ∞∑
q=1

1

q(h−1)(1−ϵ)
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which converges since h ≥ 3, so G(N) converges absolutely (and uniformly in N , since these
bounds are uniform in N). By taking only the terms with q > Q we get

G(N)−G(N,Q) ≪
∑
q>Q

1

q(h−1)(1−ϵ)
≪

∫ ∞

Q

1

q(h−1)(1−ϵ)
dq ≪ Q−h+2+(h−1)ϵ,

which recovers the claimed bound by replacing ϵ by ϵ/(h− 1).
The Euler product factors follows from the description of cq(N) in Nathanson and the

theory of Dirichlet series for multiplicative functions, exactly as there (replacing 3 by h and
2 by h − 1); we won’t use this description and so don’t dwell on it. However, it does mean
that if N and h are both odd, we can write

G(N) =
∏
p

(
1 +

1

(p− 1)h

)
·
∏
p|N

1− (p− 1)−h+1

1 + (p− 1)−h
,

so the first factor is independent of N and the second factor satisfies∏
p≥3

1− (p− 1)−h+1

1 + (p− 1)−h
<

∏
p|N

1− (p− 1)−h+1

1 + (p− 1)−h
< 1

(since 2 ∤ N , so we can exclude it), and then it is straightforward to check that the left-hand
side converges and so is positive so we get the desired constants c1 and c2 since neither bound
depends on N . If h and N are both even, we work similarly except handling the prime 2
separately:

G(N) =
∏
p≥3

(
1− 1

(p− 1)h

)
· 2 ·

∏
p|N
p≥3

1 + (p− 1)−h+1

1− (p− 1)−h

and so again the first term is independent of N and the last is bounded by

1 <
∏
p|n
p≥3

1 + (p− 1)−h+1

1− (p− 1)−h
<

∏
p≥3

1 + (p− 1)−h+1

1− (p− 1)−h

which again converges and so we get the desired bounds.

We’ll take the same major arc/minor arc decomposition as Nathanson, so for fixed Q,N
as above the major arc M is given by the union over 1 ≤ q ≤ Q, 1 ≤ a ≤ q with (a, q) = 1
of α ∈ [0, 1] such that |α− a/q| ≤ Q

N
. Let

Rh(N) =
∑

p1+···+ph=N

log p1 · log p2 · · · log ph,

and
F (α) =

∑
p≤N

e(pα) log p.
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By the usual circle method argument

Rh(N) =

∫ 1

0

F (α)he(−Nα) dα =

∫
M

F (α)he(−Nα) dα +

∫
m

F (α)he(−Nα) dα.

We now turn towards estimating the major arc term.
Let

u(β) =
N∑

m=1

e(mβ)

and

J(N) =

∫ 1/2

−1/2

u(β)he(−Nβ) dβ.

Exactly as in the proof of Lemma 8.1 in Nathanson, we see (essentially this is a formulation
of the circle method for sums of integers) that this is the number of ways of writing N as
the sum of h integers, which we know from Theorem 5.1 is(

N − 1

h− 1

)
=

Nh−1

(h− 1)!
+O(Nh−2).

We can now prove our next result:

Proposition 2. For any B,C, ϵ > 0 with C > 2B, Q = (logN)B, the major arc contribution
is ∫

M

F (α)he(−Nα) dα = G(N)
Nh−1

(h− 1)!
+O

(
Nh−1

(logN)(1−ϵ)B

)
+O

(
Nh−1

(logN)C−5B

)
.

The proof is almost identical to that of Theorem 8.4 in Nathanson. The key point is that
we have unchanged the result of Lemma 8.3: if α is in the (a, q) component of the major arc
and β = α− a/q, then

F (α) =
µ(q)

φ(q)
u(β) +O

(
Q2N

(logN)C

)
so

F (α)h =
µ(q)h

φ(q)h
u(β)h +O

(
Q2Nh

(logN)C

)
.

Integrating over the major arc, one gets a bound on

q∑
q≤Q
a≤q

(a,q)=1

∫
M(a,q)

F (α)he(−Nα)− µ(q)h

φ(q)h
u

(
α− a

q

)h

dα =

∫
M

F (α)he(−Nα) dα−G(N,Q)J(N).

Since we can estimate J(N) well, the result follows.
The last thing we need to do is bound the minor arc contribution. Since this mostly

comes down to bounding F (α), which is already done for us (Theorem 8.5 in Nathanson),
this is not too bad:
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Proposition 3. For any B > 0, we have∫
m

F (α)he(−Nα) dα ≪ Nh−1

(logN)(B/2−4)(h−2)−1
.

Again, the proof is very similar to Nathanson’s Theorem 8.6. Exactly as there, we have∫
m

|F (α)|2 dα ≪ N logN,

and so the minor arc integral is bounded by

sup
α∈m

|F (α)|h−2 ·N logN.

By Nathanson’s Theorem 8.5, F (α) ≪ N
(logN)B/2−4 and so |F (α)|h−2 ≪ Nh−2

(logN)(B/2−4)(h−2) , so in

all we get the claimed bound.
In particular, taking B sufficiently large in Proposition 3 and using the fact that G(N)

is bounded between two positive constants, we see that the major arc term is much larger
than the minor arc term as N → ∞, and so (relabeling our constants) combining all three
propositions we find that

Rh(N) = G(N)
Nh−1

(h− 1)!
+O

(
Nh−1

(logN)A

)
for every A > 0.

To conclude, we want to get a formula for rh(N) rather than Rh(N). We relate them via
one final proposition:

Proposition 4. We have

Rh(N) = rh(N)(logN)h +O

(
Nh−1 log logN

logN

)
.

Proof. Recall

Rh(N) =
∑

p1+···+ph=N

log p1 · · · log ph, rh(N) =
∑

p1+···+ph=N

1,

so since each pi ≤ N we have Rh(N) ≤ (logN)hrh(N). For 0 ≤ δ < 1, let rh,δ(n) denote the
number of ways we can write N as a sum of h primes p1 + · · · + ph = N such that at least
one pi is bounded by N1−δ. There are h options for which pi will be bounded; let’s say it’s
p1. Then this is really the number of ways of choosing p1 ≤ N1−δ, p2, . . . , ph−1 ≤ N prime
such that N − p1 − · · · − ph−1 is also prime. This is bounded by the number of such primes,
dropping the last condition, i.e. π(N1−δ) · π(N)h−2; allowing any pi to be the bounded one
instead of just p1, we get

rh,δ(N) ≤ hπ(N1−δ)π(N)h−2 ≪ Nh−1−δ

(logN)h−1
.
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Imposing any conditions on the primes pi reduces the total, so we have

Rh(N) ≥
∑

p1+···+ph=N
pi>N1−δ ∀i

log p1 · · · log pi

>
∑

p1+···+ph=N
pi>N1−δ ∀i

(logN1−δ)h

= (1− δ)h(logN)h(rh(N)− rh,δ(N))

and so

rh(N)(logN)h −Rh(N) < ((1− δ)−1 − 1)Rh(N) + rh,δ(N)(logN)h

≪ δNh−1 +Nh−1−δ logN

= Nh−1

(
δ +

logN

N δ

)
since as we’ve seen Rh(N) ≪ Nh−1. Choosing δ = 2 log logN

logN
, we have (identical to Nathanson)

δ +
logN

N δ
≪ log logN

logN

and so, recalling from the start that rh(N)(logN)h ≥ Rh(N), we have

0 ≤ rh(N)(logN)h −Rh(N) ≪ Nh−1 log logN

logN

and so the claim follows.

Combining Proposition 4 with our estimate of Rh(N) yields our final formula:

Theorem 5. For any h ≥ 3 and N ≡ h (mod 2),

rh(N) =
G(N)

(h− 1)!
· Nh−1

(logN)h

(
1 +O

(
log logN

logN

))
.

The case h = 3 recovers Vinogradov’s formula.

Problem 2. Explain where your solution to Problem 1 fails for h = 2, if you did it, or
equivalently where Vinogradov’s method fails to prove the strong Goldbach conjecture.

Solution. The method used to show the convergence of the singular series for Proposition
1 fails, but a slightly more careful analysis (using the Euler product expansion) shows that
it does converge. The real issue is in the proof of Proposition 3: the h − 2 factors of F (α)
become trivial and so the bound on the minor arc is just N logN , which is larger than the
major arc estimate G(N)N .
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Nevertheless, the final statement of the result still makes sense, and one can computa-
tionally verify that it seems to hold. In this case, we can rewrite G(N) slightly as

G(N) =
∏
p≥3

(
1− 1

(p− 1)2

)
· 2 ·

∏
p|N
p≥3

p− 1

p− 2
;

the first product, which is independent of N , is the twin prime constant Π2, which one can
obtain via similar methods to problem 2 from homework 2: the heuristic for the number of
twin primes up to x is π2(x) ≃ 2Π2 · x

(log x)2
. It is a sign of how closely related Goldbach and

twin primes are that it shows up here as well. If we call the final product G2(N), which is
the only factor that depends on N , then we expect that

r2(N) · (logN)2

G2(N)N

approaches a constant, with slowly decreasing error bounded by log logN
logN

. Below is a graph
of the values of this ratio for even N up to 200000, so that you can convince yourself this
claim is plausible:
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