Homework 1 solutions

Additive number theory seminar
Due February 28, 2023 by 11:40 AM

Problem 1. The Fibonacci numbers are defined by the recurrence $a_{0}=a_{1}=1, a_{n}=$ $a_{n-1}+a_{n-2}$ for $n \geq 2$. Consider the "modified Fibonacci numbers" defined by $b_{0}=b_{1}=1$ but $b_{n}=b_{n-1}+2 b_{n-2}$ for $n \geq 2$ (so the first few terms are $1,1,3,5,11,21,43, \ldots$). Using generating functions, find an exact formula for b_{n}.

Solution. Let

$$
F(x)=\sum_{n=0}^{\infty} b_{n} x^{n} .
$$

We have $b_{n}=b_{n-1}+2 b_{n-2}$ for $n \geq 2$ and $b_{0}=b_{1}=1$, so

$$
\begin{aligned}
F(x) & =\sum_{n=0}^{\infty} b_{n} x^{n} \\
& =1+x+\sum_{n=2}^{\infty}\left(b_{n-1}+2 b_{n-2}\right) x^{n} \\
& =1+x+\sum_{n=2}^{\infty} b_{n-1} x^{n}+2 \sum_{n=2}^{\infty} b_{n-2} x^{n} \\
& =1+x+\sum_{n=1}^{\infty} b_{n} x^{n+1}+2 \sum_{n=0}^{\infty} b_{n} x^{n+2} \\
& =1+x+x(F(x)-1)+2 x^{2} F(x) \\
& =1+x F(x)+2 x^{2} F(x) .
\end{aligned}
$$

Collecting terms of $F(x)$ gives

$$
F(x)\left(1-x-2 x^{2}\right)=1,
$$

i.e.

$$
F(x)=\frac{1}{1-x-2 x^{2}}
$$

The polynomial $1-x-2 x^{2}=(1-2 x)(1+x)$ has zeros at $x=\frac{1}{2}$ and $x=1$, and by partial fractions we can write

$$
F(x)=\frac{1}{1-x-2 x^{2}}=\frac{A}{1-2 x}+\frac{B}{1+x}=\frac{A(1+x)+B(1-2 x)}{(1-2 x)(1+x)}=\frac{A+B+(A-2 B) x}{1-x-2 x^{2}}
$$

so $A+B=1, A-2 B=0$, i.e. $A=\frac{3}{3}, B=\frac{1}{3}$, so

$$
F(x)=\frac{1}{3}\left(\frac{2}{1-2 x}+\frac{1}{1+x}\right) .
$$

From geometric series we know that

$$
\frac{2}{1-2 x}=\sum_{n=0}^{\infty} 2 \cdot 2^{n} \cdot x^{n}, \quad \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} \cdot x^{n}
$$

so

$$
F(x)=\sum_{n=0}^{\infty} \frac{2^{n+1}+(-1)^{n}}{3} x^{n}
$$

By comparing coefficients, we conclude that

$$
b_{n}=\frac{2^{n+1}+(-1)^{n}}{3}
$$

For example, $b_{0}=\frac{2+1}{3}=1, b_{1}=\frac{4-1}{3}=1, b_{2}=\frac{8+1}{2}=3, b_{3}=\frac{16-1}{3}=5$, etc.
Problem 2. For any integer $k \geq 2$, let

$$
q=\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor
$$

Prove that $g(k) \geq 2^{k}+q-2$, i.e. there exists a positive integer which cannot be written as the sum of $2^{k}+q-3$ nonnegative k th powers. (Hint: consider the number $N=q 2^{k}-1$.)

Solution. First, observe that by definition $0 \leq\left(\frac{3}{2}\right)^{k}-q<1$, so if $N=q 2^{k}-1$ then $3^{k}-N-1=2^{k}\left(\left(\frac{3}{2}\right)^{k}-q\right)$ and so $0 \leq 3^{k}-N-1<2^{k}$, i.e. $3^{k}-2^{k}-1<N \leq 3^{k}-1$.

Choose a minimal representation of N as a sum of k th powers, i.e. $N=a_{1}^{k}+\cdots+a_{s}^{k}$ with $a_{i} \geq 0$ such that there is no other representation of N as a sum of fewer than s nonnegative k th powers. Since $N<3^{k}$, none of the a_{i} can be greater than or equal to 3 , so all a_{i} are either 1 or 2 (if any were 0 , we could drop them to get a smaller representation). Say that there are α 1's and $\beta 2$'s, so

$$
N=\alpha+\beta 2^{k}
$$

Since this representation is minimal, it follows that $\alpha<2^{k}$, since if there were 2^{k} copies of 1^{k} in the representation we could bundle them all together into a single 2^{k}, thus reducing the number of nonzero summands required. On the other hand since $\alpha \equiv \alpha+\beta 2^{k}=N=$ $q 2^{k}-1 \equiv-1\left(\bmod 2^{k}\right)$, we can write $\alpha=m 2^{k}-1$ for some integer m, so since $\alpha<2^{k}$ we must have $m=1$, i.e. $\alpha=2^{k}-1$, so

$$
N=(\beta+1) 2^{k}-1,
$$

so $\beta=q-1$. This tells us that our representation must consist of $q-1$ copies of 2^{k} and $2^{k}-1$ copies of $1^{k}=1$, for a total of $q-1+2^{k}-1=2^{k}+q-2$ terms, so the smallest possible value of s such that this N can be written as a sum of s nonnegative k th powers is $2^{k}+q-2$. Thus $g(k) \geq 2^{k}+q-2$.

We can compute that for $k=2, q=2$; for $k=3, q=3$; and for $k=4, q=5$. Thus we deduce $g(2) \geq 2^{2}+2-2=4, g(3) \geq 2^{3}+3-2=9$, and $g(4) \geq 2^{4}+5-2=19$. These are all actually equal to the true values, as we've seen in the $k=2$ and $k=3$ cases. One might conjecture that for all k one in fact has

$$
g(k)=2^{k}+q-2=2^{k}+\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor-2,
$$

and this is believed to be true for all k; it is known that there are only finitely many exceptions, and that they must be for $k \geq 471600000$.

Problem 3. For any integer $k \geq 2$, show that the number of integers less than or equal to x that can be written as the sum of k nonnegative k th powers is at most $\frac{x}{k!}+O\left(x^{1-\frac{1}{k}}\right)$. (Hint: if $n \leq x$ is the sum of k nonnegative k th powers $n=a_{1}^{k}+\cdots+a_{k}^{k}$, then (ordering the a_{i} increasing) we can associate to this representation a tuple of integers $0 \leq a_{1} \leq \cdots \leq$ $a_{k} \leq n^{1 / k} \leq x^{1 / k}$, and the number of such tuples is given by a binomial coefficient.)

Using this bound, conclude that $G(k) \geq k+1$ for all $k \geq 2$, i.e. there are infinitely many positive integers which cannot be written as a sum of k nonnegative k th powers.

Solution. By the hint, finding a representation of n as a sum of k nonnegative k th powers gives numbers $0 \leq a_{1} \leq \cdots \leq a_{k} \leq n^{1 / k} \leq x^{1 / k}$. Choosing such numbers is equivalent to choosing k elements out of the first $x^{1 / k}$ integers; there are $\binom{\left.x^{1 / k}\right\rfloor+1}{k}$ ways of making this choice, and so there are at most $\binom{\left\lfloor x^{1 / k}\right\rfloor+1}{k}$ integers less than or equal to x which can be represented in this way. We have

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}=\frac{n^{k}+O\left(n^{k-1}\right)}{k!}=\frac{n^{k}}{k!}+O\left(n^{k-1}\right),
$$

so $\binom{\left\lfloor x^{1 / k}\right\rfloor+1}{k}=\frac{\left(\left\lfloor x^{1 / k}\right\rfloor+1\right)^{k}}{k!}+O\left(\left(\left\lfloor x^{1 / k}\right\rfloor+1\right)^{k-1}\right)=\frac{x}{k!}+O\left(x^{1-\frac{1}{k}}\right)$, since $\left\lfloor x^{1 / k}\right\rfloor+1=x+O(1)$; therefore the first part of the result follows.

To conclude, since $k \geq 2$ we have $k!\geq 2!=2$, so there are at most $\frac{x}{2}+O\left(x^{1-1 / k}\right)$ integers which cannot be written in this form, which means there are $x-\frac{x}{2}+O\left(x^{1-1 / k}\right)=\frac{x}{2}+O\left(x^{1-1 / k}\right)$ integers which cannot be written in this form; since the main term has higher order than the error term, this goes to infinity as $x \rightarrow \infty$, so there are infinitely many such integers, so it cannot be true that $G(k) \leq k$, i.e. $G(k) \geq k+1$. Note that in the case $k=3$, this immediately gives $G(3) \geq 4$, which is already the best known lower bound, recovering a result from Keila's talk.

