Homework 1

Additive number theory seminar
Due February 28, 2023 by 11:40 AM

Choose one of the following problems and write a clear and readable solution.
Problem 1. The Fibonacci numbers are defined by the recurrence $a_{0}=a_{1}=1, a_{n}=$ $a_{n-1}+a_{n-2}$ for $n \geq 2$. Consider the "modified Fibonacci numbers" defined by $b_{0}=b_{1}=1$ but $b_{n}=b_{n-1}+2 b_{n-2}$ for $n \geq 2$ (so the first few terms are $1,1,3,5,11,21,43, \ldots$). Using generating functions, find an exact formula for b_{n}.

Problem 2. For any integer $k \geq 2$, let

$$
q=\left\lfloor\left(\frac{3}{2}\right)^{k}\right\rfloor .
$$

Prove that $g(k) \geq 2^{k}+q-2$, i.e. there exists a positive integer which cannot be written as the sum of $2^{k}+q-3$ nonnegative k th powers. (Hint: consider the number $N=q 2^{k}-1$.)

Problem 3. For any integer $k \geq 2$, show that the number of integers less than or equal to x that can be written as the sum of k nonnegative k th powers is at most $\frac{x}{k!}+O\left(x^{1-\frac{1}{k}}\right)$. (Hint: if $n \leq x$ is the sum of k nonnegative k th powers $n=a_{1}^{k}+\cdots+a_{k}^{k}$, then (ordering the a_{i} increasing) we can associate to this representation a tuple of integers $0 \leq a_{1} \leq \cdots \leq$ $a_{k} \leq n^{1 / k} \leq x^{1 / k}$, and the number of such tuples is given by a binomial coefficient.)

Using this bound, conclude that $G(k) \geq k+1$ for all $k \geq 2$, i.e. there are infinitely many positive integers which cannot be written as a sum of k nonnegative k th powers.

