Stable bases of Hilbert schemes

Andrei Negut

Columbia University, RIMS (Kyoto)

18 / 06 / 2014
We will study the Hilbert scheme:

\[\text{Hilb}_d = \{ \text{ideals } I \subset \mathbb{C}[x, y] \text{ of colength } d \} \]

which is a smooth variety of dimension \(2d\).
We will study the Hilbert scheme:

$$\text{Hilb}_d = \{ \text{ideals } I \subset \mathbb{C}[x,y] \text{ of colength } d \}$$

which is a smooth variety of dimension $2d$.

There is an action of the torus $T = \mathbb{C}^*_{q_1} \times \mathbb{C}^*_{q_2}$ on Hilb_d, where the two factors simply scale the coordinate directions.

In fact, the fixed points of this action are just monomial ideals:

$$I_\lambda = (x^{\lambda_0}, x^{\lambda_1}y, x^{\lambda_2}y^2, \ldots) \in \text{Hilb}_d$$

for any partition $\lambda = (\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \ldots)$ of d.

The classes of the fixed points form a basis in the (localized) K-theory groups:

$$K^* = \bigoplus_{d=0}^{\infty} K^*_{ Tart } (\text{Hilb}_d)$$

Andrei Negut

Stable bases of Hilbert schemes
The Hilbert scheme

- We will study the Hilbert scheme:

\[\text{Hilb}_d = \{ \text{ideals } I \subset \mathbb{C}[x, y] \text{ of colength } d \} \]

which is a smooth variety of dimension \(2d\).

- There is an action of the torus \(T = \mathbb{C}^*_{q_1} \times \mathbb{C}^*_{q_2} \) on \(\text{Hilb}_d \), where the two factors simply scale the coordinate directions.

- In fact, the fixed points of this action are just monomial ideals:

\[I_\lambda = (x^{\lambda_0}, x^{\lambda_1} y, x^{\lambda_2} y^2, \ldots) \in \text{Hilb}_d \]

for any partition \(\lambda = (\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \ldots) \) of \(d \).
The Hilbert scheme

- We will study the Hilbert scheme:

\[\text{Hilb}_d = \{ \text{ideals } I \subset \mathbb{C}[x, y] \text{ of colength } d \} \]

which is a smooth variety of dimension \(2d \).

- There is an action of the torus \(T = \mathbb{C}^*_{q_1} \times \mathbb{C}^*_{q_2} \) on \(\text{Hilb}_d \), where the two factors simply scale the coordinate directions.

- In fact, the fixed points of this action are just monomial ideals:

\[I_\lambda = (x^{\lambda_0}, x^{\lambda_1}y, x^{\lambda_2}y^2, \ldots) \in \text{Hilb}_d \]

for any partition \(\lambda = (\lambda_0 \geq \lambda_1 \geq \lambda_2 \geq \ldots) \) of \(d \).

- The classes of the fixed points form a basis in the (localized) \(K \)-theory groups:

\[K = \bigoplus_{d=0}^{\infty} K_T^*(\text{Hilb}_d) \]
The K–theory

- In fact, the Bridgeland-King-Reid-Haiman equivalence:

$$D^b_T \text{Coh}(\text{Hilb}_d) \cong D^b_T \text{Coh}(\mathbb{C}^{2d})^{S(d)}$$

gives rise to an isomorphism of vector spaces:

$$K \cong \Lambda$$
The K–theory

In fact, the Bridgeland-King-Reid-Haiman equivalence:

$$D^b_T \text{Coh}(\text{Hilb}_d) \cong D^b_T \text{Coh}(\mathbb{C}^{2d})^{S(d)}$$

gives rise to an isomorphism of vector spaces:

$$K \cong \Lambda$$

where $\Lambda = \mathbb{C}(q_1, q_2)[x_1, x_2, ...]^{\text{Sym}}$ denotes the ring of symmetric functions in infinitely many variables.
In fact, the Bridgeland-King-Reid-Haiman equivalence:

\[D^b_T \text{Coh}(\text{Hilb}_d) \cong D^b_T \text{Coh}(\mathbb{C}^{2d})^{S(d)} \]

gives rise to an isomorphism of vector spaces:

\[K \cong \Lambda \]

where \(\Lambda = \mathbb{C}(q_1, q_2)[x_1, x_2, \ldots]^{\text{Sym}} \) denotes the ring of symmetric functions in infinitely many variables.

Under this isomorphism, the classes of the fixed points \([l_\lambda]\) go to the modified Macdonald polynomials \(P_\lambda \), defined as:

\[P_\lambda = \sum_{\mu \leq \lambda} m_\mu \cdot \text{constant} \]

and the \(P_\lambda \) are orthogonal with respect to a certain inner product, where \(\leq \) is the dominance ordering on partitions.
Maulik-Okounkov introduced a certain basis of K for any rational number $\frac{m}{n}$, called the **stable basis**:

$$s_{\lambda}^{m/n} = \sum_{\mu \leq \lambda} P_{\mu} \cdot c_{\lambda}^{\mu}$$
Maulik-Okounkov introduced a certain basis of K for any rational number $\frac{m}{n}$, called the **stable basis**:

$$s_{\lambda}^{m/n} = \sum_{\mu \leq \lambda} P_{\mu} \cdot c_{\lambda}^{\mu}$$

where the constants $c_{\lambda}^{\mu} \in \mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]$ satisfy:

$$c_{\lambda}^{\mu} = \prod_{\square \in \lambda} \left(q_1^{-a(\square)-1} - q_2^{-l(\square)} \right)$$
The stable basis

Maulik-Okounkov introduced a certain basis of K for any rational number $\frac{m}{n}$, called the stable basis:

$$s_{\lambda}^{m/n} = \sum_{\mu \leq \lambda} P_{\mu} \cdot c_{\lambda}^{\mu}$$

where the constants $c_{\lambda}^{\mu} \in \mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]$ satisfy:

$$c_{\lambda}^{\mu} = \prod_{\square \in \lambda} \left(q_1^{-a(\square)-1} - q_2^{-l(\square)} \right)$$

and if $c_{\lambda}^{\mu} = \sum \pm q_1^x q_2^y$, then the only $x - y$ which appear lie in:

$$\frac{m}{n} (o_{\mu} - o_{\lambda}) + [\min_{\mu}, \max_{\mu}) \quad \forall \mu < \lambda$$
Maulik-Okounkov introduced a certain basis of K for any rational number $\frac{m}{n}$, called the **stable basis**:

$$s^{m/n}_\lambda = \sum_{\mu \leq \lambda} P_\mu \cdot c^\mu_\lambda$$

where the constants $c^\mu_\lambda \in \mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]$ satisfy:

$$c^\lambda_\lambda = \prod_{\Box \in \lambda} \left(q_1^{-a(\Box) - 1} - q_2^{-l(\Box)} \right)$$

and if $c^\mu_\lambda = \sum \pm q_1^x q_2^y$, then the only $x - y$ which appear lie in:

$$\frac{m}{n} (o_\mu - o_\lambda) + [\min_\mu, \max_\mu] \quad \forall \mu < \lambda$$

where $o_\mu = O(1)|_{l_\mu} = \sum_{\Box \in \mu} a(\Box) - l(\Box)$ and:

$$\min_\mu = -|\mu| - \sum_{\Box \in \mu} a(\Box), \quad \max_\mu = \sum_{\Box \in \mu} l(\Box)$$
It is easy to see that:

\[s^\infty_\lambda = P_\lambda \]
Bases of symmetric functions

- It is easy to see that:
 \[s_{\lambda}^{\infty} = P_{\lambda} \]

- and it will follow from our result that:
 \[s_{\lambda}^{0} = s_{\lambda} \]

are the usual Schur functions.
Bases of symmetric functions

- It is easy to see that:
 \[s_\lambda^\infty = P_\lambda \]

- and it will follow from our result that:
 \[s_\lambda^0 = s_\lambda \]

are the usual Schur functions.

- So in general, the basis \(\{ s_\lambda^{m/n} \} \) interpolates between the bases of Schur functions and Macdonald polynomials.
Bases of symmetric functions

- It is easy to see that:
 \[s_\lambda^\infty = P_\lambda \]

- and it will follow from our result that:
 \[s_\lambda^0 = s_\lambda \]

are the usual Schur functions.

- So in general, the basis \(\{s_\lambda^{m/n}\} \) interpolates between the bases of Schur functions and Macdonald polynomials.

- The change of basis between:
 \[\{s_\lambda^{m/n-\text{small number}}\} \text{ and } \{s_\lambda^{m/n+\text{small number}}\} \]

is the half monodromy matrix of the quantum difference equation of the Hilbert scheme (Bezrukavnikov-Okounkov)
Toward operators

- The particular bases P_λ and s_λ are nice with respect to two important families of operators:

$$D_k \cdot P_\lambda = P_\lambda e_k \left(\{ q_1^x q_2^y \} \square = (x,y) \in \lambda \right)$$

where D_k are the well-known $q-$difference operators,

- These operators seem to behave differently, but there exists a family of operators e_m/n_k which interpolates between them.

- Moreover, we will show that e_m/n_k act nicely in the basis s_m/n_λ.
The particular bases P_λ and s_λ are **nice** with respect to two important families of operators:

$$D_k \cdot P_\lambda = P_\lambda \ e_k \left(\{ q_1^x q_2^y \} \Box = (x, y) \in \lambda \right)$$

where D_k are the well-known $q-$difference operators,

and the Pieri rules for multiplication by elementary symmetric functions:

$$e_k \cdot s_\lambda = \sum_{\mu=\lambda+k \ added \ boxes \ no \ two \ next \ to \ each \ other} s_\mu$$
The particular bases P_λ and s_λ are **nice** with respect to two important families of operators:

$$D_k \cdot P_\lambda = P_\lambda e_k \left(\{ q_1^x q_2^y \} \square = (x,y) \in \lambda \right)$$

where D_k are the well-known $q-$difference operators,

and the Pieri rules for multiplication by elementary symmetric functions:

$$e_k \cdot s_\lambda = \sum_{\mu = \lambda + k \text{ added boxes}} s_\mu$$

no two next to each other

These operators seem to behave differently, but there exists a family of operators $e_k^{m/n}$ which **interpolates** between them.
Toward operators

The particular bases P_λ and s_λ are nice with respect to two important families of operators:

$$D_k \cdot P_\lambda = P_\lambda \ e_k \left(\{ q_1^x q_2^y \} \square = (x,y) \in \lambda \right)$$

where D_k are the well-known $q-$difference operators,

and the Pieri rules for multiplication by elementary symmetric functions:

$$e_k \cdot s_\lambda = \sum_{\text{no two next to each other}} s_{\mu}$$

These operators seem to behave differently, but there exists a family of operators $e_k^{m/n}$ which interpolates between them

Moreover, we will show that $e_k^{m/n}$ act nicely in the basis $s_\lambda^{m/n}$
The elliptic Hall algebra

The **elliptic Hall algebra** \(\mathcal{A} \) has generators \(p_{m,n} \) and \(\kappa_{m,n} \) for every lattice vector \((m, n) \in \mathbb{Z}^2 \setminus \{0, 0\}\), modulo relations:

\[
\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'} \quad \text{\(\kappa_{m,n} \) central}
\]

\[
[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \frac{g}{[g]_{q_1,q_2}} (\kappa_{m,n} - \kappa_{m,n}^{-1})
\]

if \((m, n)\) and \((m', n')\) are collinear, where \(g = \gcd(m, n) \), and:

\[
\sum_{k=0}^\infty h_{km,n} z^{-k} = \exp \left(\sum_{k=1}^\infty p_{km,n} z^{-k} \right)
\]
The elliptic Hall algebra \mathcal{A} has generators $p_{m,n}$ and $\kappa_{m,n}$ for every lattice vector $(m, n) \in \mathbb{Z}^2 \setminus \{0, 0\}$, modulo relations:

$$\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'}$$

$\kappa_{m,n}$ central

$$[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \frac{g}{[g]_{q_1,q_2}} \left(\kappa_{m,n} - \kappa_{m,n}^{-1} \right)$$

if (m, n) and (m', n') are collinear, where $g = \gcd(m,n)$, and:

$$[p_{m,n}, p_{m',n'}] = \frac{h_{m+m',n+n'}}{[1]_{q_1,q_2}}$$

if the clockwise triangle $(0, 0), (m, n), (m + m', n + n')$ contains no inside lattice points, where for $\gcd(m,n) = 1$ we set:

$$\sum_{k=0}^{\infty} h_{km,n} = \exp\left(\sum_{k=1}^{\infty} p_{km,n} \right)$$

Andrei Negut

Stable bases of Hilbert schemes
The elliptic Hall algebra \mathcal{A} has generators $p_{m,n}$ and $\kappa_{m,n}$ for every lattice vector $(m, n) \in \mathbb{Z}^2 \setminus \{0, 0\}$, modulo relations:

\[\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'} \quad \kappa_{m,n} \text{ central} \]

\[[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \frac{g}{[g]_{q_1,q_2}} (\kappa_{m,n} - \kappa_{m,n}^{-1}) \]

if (m, n) and (m', n') are collinear, where $g = \gcd(m, n)$, and:

\[[p_{m,n}, p_{m',n'}] = \frac{h_{m+m',n+n'}}{[1]_{q_1,q_2}} \]

if the clockwise triangle $(0, 0), (m, n), (m + m', n + n')$ contains no inside lattice points, where for $\gcd(m, n) = 1$ we set:

\[\sum_{k=0}^{\infty} h_{km,kn} z^{-k} := \exp \left(\sum_{k=1}^{\infty} \frac{p_{km,kn} z^{-k}}{k} [k]_{q_1,q_2} \right) \]
For any \(\gcd(m, n) = 1 \), we set:

\[
p^m/n_k = p_{km, kn} \cdot (1 - q_1^{-k})
\]

and write \(e^m/n_k \) for the elementary symmetric functions corresponding to the power-sum functions \(p^m/n_k \).
For any $\gcd(m, n) = 1$, we set:

$$p_k^{m/n} = p_{km,kn} \cdot (1 - q_1^{-k})$$

and write $e_k^{m/n}$ for the elementary symmetric functions corresponding to the power-sum functions $p_k^{m/n}$.

It was proved that the algebra A acts on the vector space $K \cong \Lambda$ (Schiffmann-Vasserot, Feigin-Tsymbaliuk).
For any \(\gcd(m, n) = 1 \), we set:

\[
p_k^{m/n} = p_{km,kn} \cdot (1 - q_1^{-k})
\]

and write \(e_k^{m/n} \) for the elementary symmetric functions corresponding to the power-sum functions \(p_k^{m/n} \).

It was proved that the algebra \(\mathcal{A} \) acts on the vector space \(K \cong \Lambda \) (Schiffmann-Vasserot, Feigin-Tsymbaliuk)

The generators \(e_k^0 \) of \(\mathcal{A} \) act on \(K \cong \Lambda \) as multiplication by usual elementary symmetric functions,
For any \(\gcd(m, n) = 1 \), we set:

\[
p_k^{m/n} = p_{km, kn} \cdot (1 - q_1^{-k})
\]

and write \(e_k^{m/n} \) for the elementary symmetric functions corresponding to the power-sum functions \(p_k^{m/n} \).

It was proved that the algebra \(\mathcal{A} \) acts on the vector space \(K \cong \Lambda \) (Schiffmann-Vasserot, Feigin-Tsymbaliuk).

The generators \(e_0^k \) of \(\mathcal{A} \) act on \(K \cong \Lambda \) as multiplication by usual elementary symmetric functions,

while the generators \(e_\infty^k \) act as the \(q \)-difference operators \(D_k \).
Action on K

- For any $\gcd(m, n) = 1$, we set:

 $$p_k^{m/n} = p_{km, kn} \cdot (1 - q_1^{-k})$$

 and write $e_k^{m/n}$ for the elementary symmetric functions corresponding to the power-sum functions $p_k^{m/n}$.

- It was proved that the algebra \mathcal{A} acts on the vector space $K \cong \Lambda$ (Schiffmann-Vasserot, Feigin-Tsymbaliuk).

- The generators e_k^0 of \mathcal{A} act on $K \cong \Lambda$ as multiplication by usual elementary symmetric functions,

- while the generators e_k^∞ act as the q–difference operators D_k.

- In general, the family of operators $e_k^{m/n} \in \text{End}(K)$
 interpolates between these two extremes.
Theorem (N) the $\frac{m}{n}$ Pieri rule: for any rational number m/n, any $k \in \mathbb{N}$ and any partition λ, we have:

$$e_k^{m/n} \cdot s^{m/n}_\lambda = \sum_{\text{no two next to each other}} s^{m/n}_\mu \prod_{i=1}^k (-1)^{\text{ht } R_i} \chi_{m}(R_i)$$

where for a n-ribbon R with boxes $(x_1, y_1), \ldots, (x_n, y_n)$ ordered from northwest to southeast we write:

$$\chi_{m}(R) = \prod_{j=1}^n (q^{x_j y_j} - 1)^{\lfloor \frac{mj}{n} \rfloor - \lfloor \frac{m(j-1)}{n} \rfloor}$$
Theorem (N) the $\frac{m}{n}$ Pieri rule: for any rational number m/n, any $k \in \mathbb{N}$ and any partition λ, we have:

$$e_k^{m/n} \cdot s_{\lambda}^{m/n} = \sum_{\text{no two next to each other}} s_{\mu}^{m/n} \prod_{i=1}^{k} (-1)^{ht R_i} \chi_{m}(R_i)$$

where for a $n-$ribbon R with boxes $(x_1, y_1), \ldots, (x_n, y_n)$ ordered from northwest to southeast we write:

$$\chi_{m}(R) = \prod_{j=1}^{n} (q^{x_j} - q^{y_j})^{\lfloor \frac{mj}{n} \rfloor - \lfloor \frac{m(j-1)}{n} \rfloor}$$

$n = 5$, $k = 2$

$\lambda = (1)$

$\mu = (4, 4, 3)$
Theorem (N) the $\frac{m}{n}$ Pieri rule: for any rational number m/n, any $k \in \mathbb{N}$ and any partition λ, we have:

$$e^m_{\frac{m}{n}} \cdot s^m_n = \sum_{\text{no two next to each other}} \mu=\lambda+k \text{ added } n-\text{ribbons} \quad s^m_{\mu} \prod_{i=1}^{k} (-1)^{\text{ht } R_i} \chi_m(R_i)$$

where for a $n-$ribbon R with boxes $(x_1, y_1), \ldots, (x_n, y_n)$ ordered from northwest to southeast we write:

$$\chi_m(R) = \prod_{j=1}^{n} (q_1^{x_j} q_2^{y_j}) \left[\left\lfloor \frac{mj}{n} \right\rfloor - \left\lfloor \frac{m(j-1)}{n} \right\rfloor \right]$$

Example:

$n = 5, \ k = 2$

$\lambda = (1)$

$\mu = (4, 4, 3)$
In particular, the vector $e_{1}^{m/n} \cdot 1 \in K \cong \Lambda$ is important in geometry and representation theory.
Application

- In particular, the vector \(e_1^{m/n} \cdot 1 \in K \cong \Lambda \) is important in geometry and representation theory.
- It is conjectured to correspond to the unique finite dimensional irreducible module of the rational Cherednik algebra, under the Gordon-Stafford functor.
- According to the Pieri rule on the previous slide, this vector equals:

\[
\sum_{i=1}^{n} s_{m/n}(i, 1, \ldots, 1) \cdot q^{i-1+r_{m/n}(i-1)} (-q^2)^{r_{m/n}(n-i)}
\]

where \(r_{m/n}(k) = \lfloor \frac{m}{n} \rfloor + \cdots + \lfloor \frac{mk}{n} \rfloor \).
- This also gives another interpretation of the rational shuffle conjecture for symmetric functions.
In particular, the vector $e_1^{m/n} \cdot 1 \in K \cong \Lambda$ is important in geometry and representation theory.

It is conjectured to correspond to the unique finite dimensional irreducible module of the rational Cherednik algebra, under the Gordon-Stafford functor.

According to the $\frac{m}{n}$ Pieri rule on the previous slide, this vector equals:

$$\sum_{i=1}^{n} s_{(i,1,\ldots,1)}^{\frac{m}{n}} \cdot q_1^{i-1+r_{m/n}(i-1)} (-q_2)^{r_{m/n}(n-i)}$$

where $r_{m/n}(k) = \left\lfloor \frac{m}{n} \right\rfloor + \ldots + \left\lfloor \frac{mk}{n} \right\rfloor$.
In particular, the vector $e_1^{m/n} \cdot 1 \in K \cong \Lambda$ is important in geometry and representation theory.

It is conjectured to correspond to the unique finite dimensional irreducible module of the rational Cherednik algebra, under the Gordon-Stafford functor.

According to the m/n Pieri rule on the previous slide, this vector equals:

$$\sum_{i=1}^{n} s_{(i,1,\ldots,1)}^{m/n} \cdot q_1^{i-1+r_{m/n}(i-1)} (-q_2)^{r_{m/n}(n-i)}$$

where $r_{m/n}(k) = \left\lfloor \frac{m}{n} \right\rfloor + \ldots + \left\lfloor \frac{mk}{n} \right\rfloor$.

This also gives another interpretation of the rational shuffle conjecture for symmetric functions.