Quantum toroidal \mathfrak{gl}_1 and its applications

Andrei Negut

Columbia University

11 / 04 / 2014
Quantum toroidal \mathfrak{gl}_1

Quantum toroidal \mathfrak{gl}_1 is the $\mathbb{C}(q_1, q_2)$–algebra generated by:

$$e_k^+, e_k^-, p_{k'}, \quad \forall k \in \mathbb{Z}, \; k' \in \mathbb{Z}\setminus 0$$

along with two central elements c, d. We denote it by \mathcal{U}.

Andrei Negut
Quantum toroidal \mathfrak{gl}_1 and its applications
Quantum toroidal \mathfrak{gl}_1

- Quantum toroidal \mathfrak{gl}_1 is the $\mathbb{C}(q_1, q_2)$–algebra generated by:
 \[e_k^+, e_k^-, p_{k'} \quad \forall k \in \mathbb{Z}, \; k' \in \mathbb{Z}\setminus 0 \]
 along with two central elements c, d. We denote it by \mathcal{U}.

- In order to present the relations, we introduce the series:
 \[
 e^\pm(z) = \sum_{k \in \mathbb{Z}} e_k^\pm z^{-k}, \quad p^\pm(z) = \sum_{k \geq 1} p_{\pm k} z^{\mp k}
 \]
Quantum toroidal \mathfrak{gl}_1

- Quantum toroidal \mathfrak{gl}_1 is the $\mathbb{C}(q_1, q_2)$–algebra generated by:

$$e^+_k, e^-_k, p_k', \quad \forall k \in \mathbb{Z}, \; k' \in \mathbb{Z} \setminus \{0\}$$

along with two central elements c, d. We denote it by \mathcal{U}.

- In order to present the relations, we introduce the series:

$$e^{\pm}(z) = \sum_{k \in \mathbb{Z}} e^{\pm}_k z^{-k}, \quad p^{\pm}(z) = \sum_{k \geq 1} p_{\pm k} z^{\mp k}$$

- One imposes the following relations on the generators of \mathcal{U}:

$$e^{\pm}(z)e^{\pm}(w) = e^{\pm}(w)e^{\pm}(z) \left[\frac{(qw - z)(w - q_1 z)(w - q_2 z)}{(w - qz)(q_1 w - z)(q_2 w - z)} \right]^{\pm 1}$$

$$[p_{\pm k}, e^{\pm}(z)] = z^{\pm k} e^{\pm}(z), \quad [p_{\mp k}, e^{\pm}(z)] = -(zc)^{\mp k} e^{\pm}(z)$$
Quantum toroidal \mathfrak{gl}_1

- We also have the relations $[p_k, p_l] = \frac{\delta_{k+l}^0}{\alpha_k} \left(c^{-k} - c^k \right)$ and:

\[
[e^+(z), e^-(w)] = \frac{1}{\alpha_1} \left[d^{-1} \delta \left(\frac{cz}{w} \right) h^-(w) - d \delta \left(\frac{cw}{z} \right) h^+(z) \right]
\]
We also have the relations $[p_k, p_l] = \frac{\delta_{k+l}^0}{\alpha_k} (c^{-k} - c^k)$ and:

$$[e^+(z), e^-(w)] = \frac{1}{\alpha_1} \left[d^{-1} \delta \left(\frac{cz}{w} \right) h^-(w) - d \delta \left(\frac{cw}{z} \right) h^+(z) \right]$$

These latter two relations partially explain the name of \mathcal{U}, since it is an affinization of the quantum Heisenberg algebra.
Quantum toroidal gl_1

- We also have the relations $[p_k, p_l] = \frac{\delta_{k+l}^0}{\alpha_k} (c^{-k} - c^k)$ and:

 $$[e^+(z), e^-(w)] = \frac{1}{\alpha_1} \left[d^{-1} \delta \left(\frac{cz}{w} \right) h^-(w) - d\delta \left(\frac{cw}{z} \right) h^+(z) \right]$$

- These latter two relations partially explain the name of \mathcal{U}, since it is an affinization of the quantum Heisenberg algebra.

- It contains infinitely many quantum Heisenberg subalgebras, though only one is visible in the above picture (namely $\langle p_k \rangle$).
Quantum toroidal gl_1

- We also have the relations $[p_k, p_l] = \frac{\delta_{k+l}^0}{\alpha_k} (c^{-k} - c^k)$ and:

\[
[e^+(z), e^-(w)] = \frac{1}{\alpha_1} \left[d^{-1} \delta \left(\frac{cz}{w} \right) h^-(w) - d \delta \left(\frac{cw}{z} \right) h^+(z) \right]
\]

- These latter two relations partially explain the name of \mathcal{U}, since it is an affinization of the quantum Heisenberg algebra.

- It contains infinitely many quantum Heisenberg subalgebras, though only one is visible in the above picture (namely $\langle p_k \rangle$).

- A shadow of another quantum Heisenberg subalgebra is the relation:

\[
[e_0^+, e_0^-] = \frac{d^{-1} - d}{\alpha_1}
\]

with e_0^+ and e_0^- playing the role of the first creation and annihilation operators, respectively.
The elliptic Hall algebra

The elliptic Hall algebra \mathcal{A} has generators $p_{m,n}$ and $\kappa_{m,n}$ for every lattice vector $(m, n) \in \mathbb{Z}^2 \setminus \{0,0\}$, modulo relations:

$$\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'}, \quad \kappa_{m,n} \text{ central}$$

$$[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \cdot \frac{\kappa_{m,n}^{-1} - \kappa_{m,n}}{\alpha g}$$

if (m, n) and (m', n') are collinear, where $g = \gcd(m, n)$, and:

$$\sum_{k=0}^{\infty} h_{km,n} z^{-k} = \exp \left(\sum_{k=1}^{\infty} \alpha_k p_{km,n} z^{-k} \right)$$
The elliptic Hall algebra \mathcal{A} has generators $p_{m,n}$ and $\kappa_{m,n}$ for every lattice vector $(m,n) \in \mathbb{Z}^2 \setminus \{0,0\}$, modulo relations:

$$\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'}, \quad \kappa_{m,n} \text{ central}$$

$$[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \cdot \frac{\kappa_{m,n}^{-1} - \kappa_{m,n}}{\alpha_g}$$

if (m,n) and (m',n') are collinear, where $g = \gcd(m,n)$, and:

$$[p_{m,n}, p_{m',n'}] = \kappa^* \cdot \frac{h_{m+m',n+n'}}{\alpha_1}$$

if the clockwise triangle $(0,0), (m,n), (m+m',n+n')$ contains no inside lattice points, where for $\gcd(m,n) = 1$ we set:

$$\sum_{k=0}^{\infty} h_{km,nz-k} := \exp \left(\sum_{k=1}^{\infty} \alpha_k p_{km,nz-k} \right)$$
The elliptic Hall algebra \mathcal{A} has generators $p_{m,n}$ and $\kappa_{m,n}$ for every lattice vector $(m, n) \in \mathbb{Z}^2 \setminus \{0, 0\}$, modulo relations:

$\kappa_{m,n} \cdot \kappa_{m',n'} = \kappa_{m+m',n+n'}$, \hspace{1cm} $\kappa_{m,n}$ central

$[p_{m,n}, p_{m',n'}] = \delta_{m+m'}^0 \cdot \frac{\kappa_{m,n}^{-1} - \kappa_{m,n}}{\alpha_g}$

if (m, n) and (m', n') are collinear, where $g = \gcd(m, n)$, and:

$[p_{m,n}, p_{m',n'}] = \kappa^* \cdot \frac{h_{m+m',n+n'}}{\alpha_1}$

if the clockwise triangle $(0, 0), (m, n), (m+m', n+n')$ contains no inside lattice points, where for $\gcd(m, n) = 1$ we set:

$\sum_{k=0}^{\infty} h_{km,kn}z^{-k} := \exp \left(\sum_{k=1}^{\infty} \alpha_k p_{km,kn}z^{-k} \right)$
The isomorphism

- **Theorem** (Schiffmann-Vasserot) There exists an isomorphism:

 \[\mathcal{U} \xrightarrow{\cong} \mathcal{A}, \quad e_k^\pm \mapsto p_{\pm 1,k}, \quad p_k \mapsto p_{0,k} \]

 and \(c \mapsto \kappa_{(0,1)}, \quad d \mapsto \kappa_{(1,0)}. \)
The isomorphism

- **Theorem** (Schiffmann-Vasserot) There exists an isomorphism:

\[\mathcal{U} \xrightarrow{\cong} \mathcal{A}, \quad e_{k}^{\pm} \longrightarrow p_{\pm 1,k}, \quad p_{k} \longrightarrow p_{0,k} \]

and \(c \longrightarrow \kappa^{(0,1)}, \quad d \longrightarrow \kappa^{(1,0)}. \)

- This implies that \(\mathcal{U} \) contains a quantum Heisenberg subalgebra corresponding to any rational number \(\frac{m}{n} \in \mathbb{Q} \cup \{\infty\}: \)

\[\{p_{km,kn}\}_{k \in \mathbb{Z}} \subset \mathcal{A} \cong \mathcal{U} \]

It also has an \(SL_{2}(\mathbb{Z}) \) symmetry by algebra automorphisms.
The isomorphism

Theorem (Schiffmann-Vasserot) There exists an isomorphism:

\[
\mathcal{U} \xrightarrow{\sim} \mathcal{A}, \quad e_k^\pm \mapsto p_{\pm 1,k}, \quad p_k \mapsto p_{0,k}
\]

and \(c \mapsto \kappa^{(0,1)} \), \(d \mapsto \kappa^{(1,0)} \).

This implies that \(\mathcal{U} \) contains a quantum Heisenberg subalgebra corresponding to any rational number \(\frac{m}{n} \in \mathbb{Q} \cup \{ \infty \} \):

\[
\{ p_{km,kn} \}_{k \in \mathbb{Z}} \subset \mathcal{A} \cong \mathcal{U}
\]

It also has an \(SL_2(\mathbb{Z}) \) symmetry by algebra automorphisms.

Using this picture, we can write a formula for the universal \(R \)-matrix of the quantum toroidal algebra \(\mathcal{R} \in \mathcal{U} \hat{\otimes} \mathcal{U} \):

\[
\mathcal{R} = \prod_{\frac{m}{n} \in \mathbb{Q} \cup \{ \infty \}} \exp \left(\sum_{k=1}^{\infty} p_{km,kn} \otimes p_{-km,-kn} \alpha_k \right)
\]
Another incarnation of the algebra $\mathcal{U} \cong \mathcal{A}$ is a deformation of the $\mathcal{W}_{1+\infty}$ algebra. It acts on the bosonic Fock space:

$$F = \mathbb{C}(q_1, q_2)[p_1, p_2, \ldots]$$
Another incarnation of the algebra $\mathcal{U} \cong \mathcal{A}$ is a deformation of the $\mathcal{W}_{1+\infty}$ algebra. It acts on the bosonic Fock space:

$$F = \mathbb{C}(q_1, q_2)[p_1, p_2, ...]$$

by vertex operators:

$$e^+(z) = \exp \left(\sum_{k \geq 1} \frac{p_k z^{-k}}{k} \right) \exp \left(\sum_{k \geq 1} \frac{p_k^* z^k}{k} \right)$$
Another incarnation of the algebra $\mathcal{U} \cong \mathcal{A}$ is a deformation of the $\mathcal{W}_{1+\infty}$ algebra. It acts on the bosonic Fock space:

$$F = \mathbb{C}(q_1, q_2)[p_1, p_2, \ldots]$$

by vertex operators:

$$e^+(z) = \exp \left(\sum_{k \geq 1} \frac{p_k z^{-k}}{k} \right) \exp \left(\sum_{k \geq 1} \frac{p^*_k z^k}{k} \right)$$

The $p_{\pm k}$ act by multiplication with p_k and its adjoint p^*_k, and the central charges are $c = q^{\frac{1}{2}}$ and $d = 1$.
Another incarnation of the algebra $\mathcal{U} \cong \mathcal{A}$ is a deformation of the $\mathcal{W}_{1+\infty}$ algebra. It acts on the bosonic Fock space:

$$F = \mathbb{C}(q_1, q_2)[p_1, p_2, \ldots]$$

by vertex operators:

$$e^+(z) = \exp \left(\sum_{k \geq 1} \frac{p_k z^{-k}}{k} \right) \exp \left(\sum_{k \geq 1} \frac{p_k^* z^k}{k} \right)$$

The $p_{\pm k}$ act by multiplication with p_k and its adjoint p_k^*, and the central charges are $c = q^{1/2}$ and $d = 1$.

Composing n vertex operators means that any $r \in \mathcal{U}$ acts by:

$$\int R(z_1, \ldots, z_n) \exp \left(\sum_{k \geq 1} \frac{p_k \sum_{i=1}^n z_i^{-k}}{k} \right) \exp \left(\sum_{k \geq 1} \frac{p_k^* \sum_{i=1}^n z_i^k}{k} \right)$$

for some rational function $R(z_1, \ldots, z_n)$.

Andrei Negut
Quantum toroidal \mathfrak{gl}_1 and its applications
Understanding the $p_{m,n}$

- The assignment $r \rightarrow R(z_1, ..., z_n)$ gives rise to the shuffle algebra interpretation of (half) the algebra $\mathcal{U} \cong \mathcal{A}$.

Andrei Negut
Quantum toroidal \mathfrak{gl}_1 and its applications
Understanding the $p_{m,n}$

- The assignment $r \rightarrow R(z_1, \ldots, z_n)$ gives rise to the **shuffle algebra** interpretation of (half) the algebra $\mathcal{U} \cong \mathcal{A}$.

- **Theorem (N)** Assume $\gcd(m, n) = 1$ for simplicity. The rational function that corresponds to $p_{m,n}$ is:

$$P_{m,n} = \frac{\prod_{i=1}^{n} z_i^{\left\lfloor \frac{mi}{n} \right\rfloor - \left\lfloor \frac{m(i-1)}{n} \right\rfloor}}{(1 - \frac{z_2q}{z_1}) \ldots (1 - \frac{z_nq}{z_{n-1}}) \prod_{i<j} \frac{(z_i - z_j)(z_i - zjq)}{(z_i - zjq_1)(z_i - zjq_2)}$$
Understanding the $p_{m,n}$

- The assignment $r \to R(z_1, ..., z_n)$ gives rise to the **shuffle algebra** interpretation of (half) the algebra $\mathcal{U} \cong A$.

- **Theorem (N)** Assume $\gcd(m, n) = 1$ for simplicity. The rational function that corresponds to $p_{m,n}$ is:

$$P_{m,n} = \frac{\prod_{i=1}^{n} z_i^{\left\lfloor\frac{mi}{n}\right\rfloor - \left\lfloor\frac{m(i-1)}{n}\right\rfloor}}{(1 - \frac{z_2 q}{z_1}) \cdots (1 - \frac{z_n q}{z_{n-1}}) \prod_{i<j} (z_i - z_j)(z_i - z_j q)(z_i - z_j q_1)(z_i - z_j q_2)} \prod_{i<j} (z_i - z_j)(z_i - z_j q)(z_i - z_j q_1)(z_i - z_j q_2)$$

- Similar formulas exist in the non co-prime case, e.g. we have:

$$P_{0,n} = \frac{1 + \frac{z_n q}{z_{n-1}} + \cdots + \frac{z_n q^{n-1}}{z_1}}{(1 - \frac{z_2 q}{z_1}) \cdots (1 - \frac{z_n q}{z_{n-1}}) \prod_{i<j} (z_i - z_j)(z_i - z_j q)(z_i - z_j q_1)(z_i - z_j q_2)} \prod_{i<j} (z_i - z_j)(z_i - z_j q)(z_i - z_j q_1)(z_i - z_j q_2)$$
Knot invariants

- The algebra $\mathcal{U} \cong \mathcal{A}$ is isomorphic to (a stabilization) of the spherical Cherednik DAHA of type A.

- In a joint work with Eugene Gorsky, this allowed us to identify:

\[\langle v(a) | p_m, n | 0 \rangle \]

with the superpolynomial $P_{m, n}(a, q_1, q_2)$.

- This is a three variable invariant of the (m, n) torus knot, studied by many authors, notably Aganagic-Shakirov (refined Chern-Simons theory) and Cherednik (DAHA knot invariants).

- This allows us to obtain the following formula:

\[P_{m, n} = \int \prod_{n i = 1} z^{\lfloor m_i n \rfloor - \lfloor m(i-1) n \rfloor} \prod_{i < j} (z_i - z_j)(z_i - z_j q_1)(z_i - z_j q_2) \]

Andrei Negut

Quantum toroidal gl_1 and its applications
Knot invariants

- The algebra $\mathcal{U} \cong \mathcal{A}$ is isomorphic to (a stabilization) of the spherical Cherednik DAHA of type A.

- In a joint work with Eugene Gorsky, this allowed us to identify:

$$\langle \nu(a) | \rho_{m,n} | 0 \rangle$$

with the superpolynomial $\mathcal{P}_{m,n}(a, q_1, q_2)$.

Andrei Negut
Quantum toroidal \mathfrak{gl}_1 and its applications
Knot invariants

- The algebra $\mathcal{U} \cong \mathcal{A}$ is isomorphic to (a stabilization) of the spherical Cherednik DAHA of type A.

- In a joint work with Eugene Gorsky, this allowed us to identify:

$$\langle \nu(a) | p_{m,n} | 0 \rangle$$

with the superpolynomial $P_{m,n}(a, q_1, q_2)$.

- This is a three variable invariant of the (m, n) torus knot, studied by many authors, notably Aganagic-Shakirov (refined Chern-Simons theory) and Cherednik (DAHA knot invariants).
Knot invariants

- The algebra $\mathcal{U} \cong \mathcal{A}$ is isomorphic to (a stabilization) of the spherical Cherednik DAHA of type A.

- In a joint work with Eugene Gorsky, this allowed us to identify:

$$\langle v(a) | p_{m,n} | 0 \rangle$$

with the **superpolynomial** $\mathcal{P}_{m,n}(a, q_1, q_2)$.

- This is a three variable invariant of the (m, n) torus knot, studied by many authors, notably Aganagic-Shakirov (refined Chern-Simons theory) and Cherednik (DAHA knot invariants).

- This allows us to obtain the following formula:

$$\mathcal{P}_{m,n} = \int \frac{\prod_{i=1}^{n} z_i^{\left\lfloor \frac{mi}{n} \right\rfloor - \left\lfloor \frac{(i-1)m}{n} \right\rfloor} \left(1 - a z_i\right)}{\left(1 - \frac{z_2 q}{z_1}\right) \cdots \left(1 - \frac{z_n q}{z_{n-1}}\right)} \prod_{i<j} \frac{(z_i - z_j)(z_i - z_j q)}{(z_i - z_j q_1)(z_i - z_j q_2)}$$
Macdonald q–difference (symmetric Dunkl) operators

- Fock space coincides with the space of symmetric functions:

\[F = \mathbb{C}(q_1, q_2)[x_1, x_2, ...]^{\text{Sym}} \]
Macdonald $q-$difference (symmetric Dunkl) operators

- Fock space coincides with the space of symmetric functions:

$$F = \mathbb{C}(q_1, q_2)[x_1, x_2, ...]^{\text{Sym}}$$

- Macdonald introduced certain operators $\Delta_1, \Delta_2, ...$ on F, whose eigenvectors are the famous Macdonald polynomials:

$$\Delta_n \cdot M_\lambda = \left(\sum_{\square=(i,j) \in \lambda} q_1^{ni} q_2^{nj} \right) \cdot M_\lambda, \quad \forall \lambda \text{ partition}$$
Macdonald q–difference (symmetric Dunkl) operators

- Fock space coincides with the space of symmetric functions:
 \[F = \mathbb{C}(q_1, q_2)[x_1, x_2, \ldots]^\text{Sym} \]

- Macdonald introduced certain operators $\Delta_1, \Delta_2, \ldots$ on F, whose eigenvectors are the famous Macdonald polynomials:
 \[\Delta_n \cdot M_\lambda = \left(\sum_{\square=(i,j)\in\lambda} q_1^{n_i} q_2^{n_j} \right) \cdot M_\lambda, \quad \forall \lambda \text{ partition} \]

- It turns out that $\Delta_n = p_{0,n} \in \mathcal{A}$, and since $\mathcal{A} \cong \mathcal{U}$ acts on the space F, we obtain:
 \[\Delta_n = \int \frac{1 + \frac{z_n q}{z_{n-1}} + \ldots + \frac{z_n q^{n-1}}{z_1}}{(1 - \frac{z_2 q}{z_1}) \ldots (1 - \frac{z_n q}{z_{n-1}})} \prod_{i<j} \frac{(z_i - z_j)(z_i - z_j q)}{(z_i - z_j q_1)(z_i - z_j q_2)} \]
 \[\exp \left(\sum_{k \geq 1} \frac{p_k}{k} (z_1^{-k} + \ldots + z_n^{-k}) \right) \exp \left(\sum_{k \geq 1} \frac{p_k^*}{k} (z_1^{k} + \ldots + z_n^{k}) \right) \]
The second module we will study for the algebra \mathcal{A} comes about geometrically, via the **Hilbert scheme** of points on \mathbb{C}^2. This is the variety Hilb_d which parametrizes colength d ideals: $I \subset \mathbb{C}[x, y]$. It is smooth and quasi-projective of dimension $2d$. It is acted on by the torus $T = \mathbb{C}^* \times \mathbb{C}^*$, which scales the two coordinate directions of \mathbb{C}^2. Hence we may study the T-equivariant K-theory groups: $K = \bigoplus_{d=0}^{\infty} K_T(\text{Hilb}_d)$. The idea of studying these groups together for all d goes back to the work of Nakajima and Grojnowski in cohomology.
The Hilbert Scheme

- The second module we will study for the algebra \mathcal{A} comes about geometrically, via the **Hilbert scheme** of points on \mathbb{C}^2
- This is the variety Hilb_d which parametrizes colength d ideals:

$$I \subset \mathbb{C}[x, y]$$
The Hilbert Scheme

- The second module we will study for the algebra \(\mathcal{A} \) comes about geometrically, via the **Hilbert scheme** of points on \(\mathbb{C}^2 \)
- This is the variety \(\text{Hilb}_d \) which parametrizes colength \(d \) ideals:
 \[
 I \subset \mathbb{C}[x, y]
 \]
- It is smooth and quasi-projective of dimension \(2d \)
The second module we will study for the algebra \mathcal{A} comes about geometrically, via the **Hilbert scheme** of points on \mathbb{C}^2

This is the variety Hilb_d which parametrizes colength d ideals:

$$I \subset \mathbb{C}[x, y]$$

It is smooth and quasi-projective of dimension $2d$

It is acted on by the torus $T = \mathbb{C}^* \times \mathbb{C}^*$, which scales the two coordinate directions of \mathbb{C}^2
The second module we will study for the algebra \mathcal{A} comes about geometrically, via the **Hilbert scheme** of points on \mathbb{C}^2

This is the variety Hilb_d which parametrizes colength d ideals:

$$I \subset \mathbb{C}[x, y]$$

It is smooth and quasi-projective of dimension $2d$

It is acted on by the torus $T = \mathbb{C}^* \times \mathbb{C}^*$, which scales the two coordinate directions of \mathbb{C}^2

Hence we may study the T–equivariant K–theory groups:

$$K = \bigoplus_{d=0}^{\infty} K_T(\text{Hilb}_d)$$
The second module we will study for the algebra A comes about geometrically, via the Hilbert scheme of points on \mathbb{C}^2.

This is the variety Hilb_d which parametrizes colength d ideals:

$$I \subset \mathbb{C}[x, y]$$

It is smooth and quasi-projective of dimension $2d$.

It is acted on by the torus $T = \mathbb{C}^* \times \mathbb{C}^*$, which scales the two coordinate directions of \mathbb{C}^2.

Hence we may study the T–equivariant K–theory groups:

$$K = \bigoplus_{d=0}^{\infty} K_T(\text{Hilb}_d)$$

The idea of studying these groups together for all d goes back to the work of Nakajima and Grojnowski in cohomology.
Geometry of the Hilbert Scheme

- We may consider the tautological rank d bundle Taut_d on Hilb_d, whose fibers are given by:

\[
\text{Taut}_d|_I = \mathbb{C}[x, y]/I
\]
We may consider the tautological rank d bundle Taut_d on Hilb_d, whose fibers are given by:

$$\text{Taut}_d|_I = \mathbb{C}[x, y]/I$$

We also have the simple Nakajima correspondences:

$$\text{Hilb}_d \xleftarrow{\pi^-} \text{Hilb}_{d,d+1} = \{(I \supset I')\} \xrightarrow{\pi^+} \text{Hilb}_{d+1}$$
We may consider the tautological rank d bundle Taut_d on Hilb_d, whose fibers are given by:

$$\text{Taut}_d|_I = \mathbb{C}[x, y]/I$$

We also have the simple Nakajima correspondences:

$$\text{Hilb}_d \overset{\pi^-}{\leftarrow} \text{Hilb}_{d,d+1} = \{(I \supset I')\} \overset{\pi^+}{\rightarrow} \text{Hilb}_{d+1}$$

and the line bundle \mathcal{L} on $\text{Hilb}_{d,d+1}$ whose fiber over a pair $(I \supset I')$ is the one-dimensional quotient I/I'
We may consider the tautological rank d bundle Taut_d on Hilb_d, whose fibers are given by:

$$\text{Taut}_d|_I = \mathbb{C}[x, y]/I$$

We also have the simple Nakajima correspondences:

$$\text{Hilb}_d \xleftarrow{\pi^-} \text{Hilb}_{d,d+1} = \{(I \supset I')\} \xrightarrow{\pi^+} \text{Hilb}_{d+1}$$

and the line bundle \mathcal{L} on $\text{Hilb}_{d,d+1}$ whose fiber over a pair $(I \supset I')$ is the one-dimensional quotient I/I'

These constructions give rise to operators on K–theory:

$$e_n^\pm : K \to K, \quad e_n^\pm(\alpha) = \pi_\pm^* ([\mathcal{L}]^n \cdot \pi_{\mp*}(\alpha))$$

which shift the degree d by ± 1
We are now ready to give the second module structure for \mathcal{U}.
The action on K-theory

- We are now ready to give the second module structure for \mathcal{U}

- **Theorem** (Feigin-Tsymbaliuk, Schiffmann-Vasserot) There is an action of \mathcal{U} on K, given by the above operators e_n^\pm and:

 \[p_n(\alpha) = \alpha \cdot [\text{Taut}]^n, \quad p_{-n}(\alpha) = \alpha \cdot [\text{Taut}^\vee]^n \]

- One may then ask about the action of the generators p_m^0 on K, for example the particular case of p_m^0.

- In cohomology, Nakajima realized p_m^0 via the correspondence:

 \[\text{Hilb}_d \leftarrow \text{Hilb}_{d + m} \rightarrow \text{Hilb}_{d + m} \]

- This locus doesn't work in K-theory, because it is badly behaved (it's not even lci) and has too little structure.
The action on K–theory

- We are now ready to give the second module structure for \mathcal{U}

- **Theorem** (Feigin-Tsymbaliuk, Schiffmann-Vasserot) There is an action of \mathcal{U} on K, given by the above operators e_n^\pm and:

 $$p_n(\alpha) = \alpha \cdot [\text{Taut}]^n, \quad p_{-n}(\alpha) = \alpha \cdot [\text{Taut}^\vee]^n$$

- One may then ask about the action of the generators $p_{m,n}$ on K, for example the particular case of $p_{m,0}$
The action on K–theory

- We are now ready to give the second module structure for U

- **Theorem** (Feigin-Tsymbaliuk, Schiffmann-Vasserot) There is an action of U on K, given by the above operators e_n^\pm and:

 $$p_n(\alpha) = \alpha \cdot [\text{Taut}]^n, \quad p_{-n}(\alpha) = \alpha \cdot [\text{Taut}^\vee]^n$$

- One may then ask about the action of the generators $p_{m,n}$ on K, for example the particular case of $p_{m,0}$

- In cohomology, Nakajima realized $p_{m,0}$ via the correspondence:

 $$\text{Hilb}_d \leftarrow \text{Hilb}_{d,d+m} = \{(I \supset I')\} \rightarrow \text{Hilb}_{d+m}$$
The action on K–theory

- We are now ready to give the second module structure for \mathcal{U}

- **Theorem** (Feigin-Tsymbaliuk, Schiffmann-Vasserot) There is an action of \mathcal{U} on K, given by the above operators e_n^{\pm} and:

$$p_n(\alpha) = \alpha \cdot [\text{Taut}]^n, \quad p_{-n}(\alpha) = \alpha \cdot [\text{Taut}^\vee]^n$$

- One may then ask about the action of the generators $p_{m,n}$ on K, for example the particular case of $p_{m,0}$

- In cohomology, Nakajima realized $p_{m,0}$ via the correspondence:

$$\text{Hilb}_d \leftarrow \text{Hilb}_{d,d+m} = \{(I \supset I')\} \rightarrow \text{Hilb}_{d+m}$$

- This locus doesn’t work in K–theory, because it is badly behaved (it’s not even lci) and has too little structure
We resolve the above locus by the flag Hilbert scheme:

\[\text{Hilb}_{d,d+m} = \{(I_d \supset ... \supset I_{d+m})\} \subset \text{Hilb}_d \times \text{Hilb}_{d+1} \times ... \times \text{Hilb}_{d+m} \]

where all the support points are required to coincide.
The flag Hilbert scheme

- We resolve the above locus by the **flag Hilbert scheme**:
 \[\text{Hilb}_{d,d+m} = \{(I_d \supset \ldots \supset I_{d+m})\} \subset \text{Hilb}_d \times \text{Hilb}_{d+1} \times \ldots \times \text{Hilb}_{d+m} \]
 where all the support points are required to coincide

- Note that this locus is dimension \(m - 1 \) greater than the composition of \(m \) simple Nakajima correspondences
We resolve the above locus by the *flag Hilbert scheme*:

\[\text{Hilb}_{d,d+m} = \{(I_d \supset \ldots \supset I_{d+m})\} \subset \text{Hilb}_d \times \text{Hilb}_{d+1} \times \ldots \times \text{Hilb}_{d+m} \]

where all the support points are required to coincide.

Note that this locus is dimension \(m - 1 \) greater than the composition of \(m \) simple Nakajima correspondences.

The flag Hilbert schemes are quite rich in line bundles:

\[\mathcal{L}_1, \ldots, \mathcal{L}_m \quad \text{whose fibers are} \quad \mathcal{L}_i = I_{d+m-i}/I_{d+m-i-1} \]
The flag Hilbert scheme

- We resolve the above locus by the flag Hilbert scheme:

\[\text{Hilb}_{d,d+m} = \{(I_d \supset \ldots \supset I_{d+m})\} \subset \text{Hilb}_d \times \text{Hilb}_{d+1} \times \ldots \times \text{Hilb}_{d+m} \]

where all the support points are required to coincide

- Note that this locus is dimension \(m - 1 \) greater than the composition of \(m \) simple Nakajima correspondences

- The flag Hilbert schemes are quite rich in line bundles:

\[\mathcal{L}_1, \ldots, \mathcal{L}_m \quad \text{whose fibers are} \quad \mathcal{L}_i = I_{d+m-i}/I_{d+m-i-1} \]

- **Theorem** (N) the operator \(p_{m,n} \in \mathcal{A} \cong \mathcal{U} \) acts on \(K \) via:

\[
p_{m,n}(\alpha) = \pi^+_* \left(\prod_{i=1}^{m} [\mathcal{L}_i]^{\left\lfloor \frac{ni}{m} \right\rfloor - \left\lfloor \frac{n(i-1)}{m} \right\rfloor} \cdot \pi^{-*}(\alpha) \right)
\]