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Abstract

We rigorously derive two simple cases of the higher equations of motion for Liouville
conformal field theory. These equations were predicted in physics by Zamolodchikov by
identifying the scaling dimension of certain primary operators of the CFT. We work in the
probabilistic framework of Liouville theory first introduced by David-Kupiainen-Rhodes-
Vargas on the Riemann sphere which allows to perform rigorous computations. In a
future work we plan to use these equations to compute the so-called correlation numbers
of minimal Liouville gravity.

1 Introduction and main results

Liouville CFT is a fundamental ingredient of the quantization of 2d gravity introduced
by Alexander Polyakov [15] where in the formal summation over Riemannian metric ten-
sors it governs the behavior of the conformal factor of the metric.

Let (Σ, g) be a Riemann surface equipped with a Riemannian metric tensor g. Locally
the metric g can be written in conformal coordinates as

g = eσdzdz (1)

where σ is known as the conformal factor. If g is of constant curvature K, then σ satisfies
the Liouville equation:

∂∂σ = −K
2
eσ. (2)

This equation leads to an infinite series of differential equations for σ with remark-
able relations to the representation theory of the Virasoro algebra. The structure of the
equations is as follows. For an integer n ≥ 1, consider the quantity e(1−n)σ/2. Let also

T = −1

4
(∂σ)2 +

1

2
∂2σ (3)
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be the classical energy-momentum tensor for the equation (2). It is believed [17] that
there exist a “classical BPZ operator”

Dn = Dn(∂, T, ∂T, . . . , ∂
nT ), (4)

whereDn is a degree n homogeneous polynomial in its arguments, and where by convention
∂kT is defined to have degree k+2 and ∂ degree 1. This operator, in partiular, annihilates
e(1−n)σ/2:

Dne
(1−n)σ/2 = 0. (5)

For example, D1 = ∂ and D2 = ∂2 − eσ/2(∂2e−σ/2) = ∂2 + T .
Now define Dn = Dn(∂, ∂T, . . . , ∂

n
T ), the same operator as Dn but with anti-

holomorphic derivatives. Then the classical higher equations of motion are conjectured to
be

DnDnσe
(1−n)σ/2 = Bne

(1+n)σ/2, (6)

where Bn = 2(−1)n+1n!(n − 1)!(1/2)n. In particular, for n = 1 the equation (6) is just
the usual Liouille equation (2).

Alexei Zamolodchikov [17] generalized these equations of motion to the Liouville CFT
that can be thought of as a quantization of the theory of the conformal factor σ. This
quantization depends on a parameter γ (or b = γ/2 in a different convention [16]) that
is related to the central charge of the theory. Observables in the LCFT are denoted as
Vα(z) =: eαϕ(z) :, where the Liouville field ϕ is a quantization of σ. Correlation functions
of LCFT then correspond to the expectation of the product of such observables denoted
by:

⟨Vα1(z1), . . . , Vαn(zn)⟩Σ. (7)

Mathematically these correlation functions have been defined for certain range of param-
eters [11] using probability theory, see below in the section 3.

Each correlator is acted upon by the Virasoro algebra with generators {Ln}n∈Z by the
formulas which on the Riemann sphere take the form:

L−1 = ∂z, L−n =
∑
i ̸=1

[
(n− 1)∆i

(z − zi)n
− ∂i

(z − zi)n−1

]
, n > 1. (8)

Here one has ∆i =
αi
2 (Q− αi

2 ). The Virasoro algebra is a quantization (central extension
to be more precise) of the Witt algebra {ln}n∈Z, ln = −zn+1∂z of holomorphic vector
fields on C∗. Its commutation relations are given by:

[Ln, Lm] = (n−m)Ln+m +
c

24
n(n2 − 1)δn,−m, (9)

where the central charge is related to the parameter γ of the Liouville theory c = 1 +
6Q2, Q = γ/2 + 2/γ.

One can use the Virasoro algebra to construct differential operators acting on all
the correlation functions. Recall that the universal enveloping algebra of a Lie algebra
is an algebra generated by tensor products of the elements of the Lie algebra with the
relation that the commutator is equal to the Lie bracket. Equations we are interested in
such as the BPZ equations [5] or the higher equations of motion are written in terms of
the universal enveloping of the Virasoro algebra. Recall that Virasoro algebra acts on all
correlation functions by the formulas (8). When we say an observable satisfies an equation
written in terms of Virasoro algebra it actually means that all correlation functions with
this observable satisfy a differential equation produced by the Virasoro action (8) on the
correlators.

There exist special observables Vm,n(z) := Vαm,n(z) indexed by a pair of natural num-
bers that are called degenerate fields. Here

αm,n = Q−m
2

γ
+ n

γ

2
. (10)
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These degenerate fields satisfy BPZ equations [5, 16],

Dm,nVm,n(z) = 0. (11)

These fields correspond to reducible Verma modules of the Virasoro algebra [5]. The BPZ
equations were proved for m = 1 or n = 1 infinite series in the probabilistic setup by
Tunan Zhu [19]. Classical BPZ equations can be obtained as a limit of the quantum ones
for Dn,1. Other equations do not have a good classical limit and are due to the well-known
duality γ/2 → 2/γ in the Liouville CFT.

The classical equations of motion (6) also have an analogue in the quantum side known
as the higher equations of motion of Liouville CFT. They were derived in the physics
framework by Alexei Zamolodchikov and take the form:

Dm,nDm,nϕ(z)Vm,n(z) = Bm,n Vαm,n+2mn(z). (12)

These equations have a similar form to (6) and the latter ones are believed to be obtained
by taking the classical limit of the (n, 1)-series of (12).

In this note we investigate the equations of motion in the two simplest cases (m,n) =
(1, 1) and (m,n) = (2, 1) using the rigorous probabilistic framework of Liouville CFT on
Riemann sphere developed in [11, 14]. In particular, we show that equations (12) are
correct in the case when background metric is flat near the insertion point z: log(ĝ) = 0
and when z is apart from the other insertions in the correlator (7)

The precise statements we get is the following

Theorem 1. Let z = {zi}ni=1 be such that zi ̸= zj ̸= z for all i, j and {αi} satisfy the
condition ∀i αi < Q. Let also |z| < 1 so that the background metric (18) is flat around
z. Then we have the following equalities in the distributional sense: Let γ +

∑
i αi < 2Q,

then
∂z∂z⟨ϕ(z)Vα1(z1) . . . Vαn(zn)⟩ = −πµγ

2
⟨Vγ(z)Vα1(z1) . . . Vαn(zn)⟩. (13)

Let 3γ/2 +
∑

i αi < 2Q and

D2,1 = L2
−1 −

γ2

4
L−2, (14)

then

D2,1D2,1⟨ϕ(z)V−γ/2(z)Vα1(z1) . . . Vαn(zn)⟩ = −µ
2π2γ3

4
⟨V3γ/2(z)Vα1(z1) . . . Vαn(zn)⟩,

(15)
where the correlators and their derivatives are defined as a limit ϵ→ 0, see section 3.

In this note we consider the flat metric, in general additional metric terms will appear.
In particular, such terms inevitably appear in the integration over moduli, see discussion
below. We plan to investigate these terms later.

Liouville Gravity Higher equations of motion are interesting on their own accord as
equations relating logarithmic correlation functions including degenerate Liouville fields
and non-logarithmic correlators with non-degenerate fields. However, one of the main
reasons why they were introduced [17] is their applications to the theory of Liouville
Gravity (LG) or integration over moduli.

Quantum gravity is a theory of integrating over all possible metrics. On a Riemann
surface this can be done by integrating over conformal classes and over the conformal
factor in each conformal class. The latter can be realized by a Liouville CFT which being
a QFT of the conformal factor reproduces integration over all possible conformal factors.
Using LCFT correlation functions we can construct differential forms on the moduli space
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of Riemann surfaces. Then integration over conformal classes is performed by integrating
these differential forms over the moduli space of Riemann surfaces (Deligne-Mumford
spaces Mg,n).

For example, a general Liouville Gravity correlation number on a sphere can be
schematically written as∫

M0,n

⟨Vα1(z1) . . . Vαn(zn)⟩ · ⟨Φα1(z1) . . .Φαn(zn)⟩M , (16)

where

⟨Φα1(z1) . . .Φαn(zn)⟩M (17)

is a matter (+ghosts) correlation function whose transformation properties are deter-
mined by the fact that when multiplied by the LCFT correlation it becomes a differential
form on M0,n. In particular, the following relation between conformal dimensions of
the fields should hold ∆(Φαi) + ∆(Vαi) = 1. Matter correlation function must satisfy
conformal Ward identities and BPZ equations similar to LCFT correlation functions.
For example, one could take the correlation function to be a Minimal Model correlation
function [5]. We remark, that apriory the correlation function at colliding insertions are
not defined, and the integral is taken over a non-compact moduli space M0,n without
the boundary.

The idea of [17, 7] is to use the higher equations of motion to simplify the differential
form in (16). The form of the HEM (12) is suggestive that the integrand can be
represented as a sum of exact terms plus contributions from the metric “curvature terms”
and the boundary points when z → zi. The latter terms are much simpler to compute
and it is expected that their careful computation will allow to reduce the correlation
numbers to purely cohomological or recursive relations.

Another reason that such cohomological/recursive formulas are expected to hold
is due to the conjectured relation between Liouville Gravity and other models of 2d
quantum gravity: topological gravity and Matrix Models (see, e.g. [12]). One of the
most known results in this area is the KPZ exponents [13]. This relation was extensively
studied in the 90s by physicists but remains mostly unsolved due to the fact that
computations in LCFT are very complicated.

It is noteworthy that some important partial progress was made after the HEM were
introduced: [7] managed to compute several 4-point correlation numbers on a sphere which
constitute the first case with nontrivial integration over moduli sinceM0,4 ≃ S2\{0, 1,∞}.
In this case the integral (16) can be also performed numerically [18, 1] using conformal
bootstrap [16, 5] for LCFT and Minimal Models correlation functions. Computations
of [7] were used in [6] to provide the relation between these 4-point correlation numbers
and those in matrix models for the Lee-Yang series of Minimal Models in the matter sector
that correspond to γ = 2

√
2/(2p+ 1). For other Minimal Models progress was made using

Frobenius manifolds: [8] and then in [10], [4]. One of the issues that stops this method
is that even general 4-point correlation numbers on the sphere remain a mystery because
sometimes direct HEM application in the physical framework fails for (probably) analytic
reasons.

It was partly investigated by one of the authors in [1]. There are also some results for
1-point correlation numbers on the torus [9] and on the disk [3, 2].

One of the motivations of the current paper is to set up a framework to compute the
correlation numbers using a mathematically rigorous form of the HEM which we expect
to produce new results and shed light on the problems of the previous methods.
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2 Classical equations of motion

Here we demonstrate the classical version of the first nontrivial Higher Equation of
Motion. Even though the computation is simple it is instructive for the quantum case in
the section 6 below since part of the computation technique is the same.

The conformal factor obeys the Liouville equation:

∆σ = −K
2
eσ.

In the classical case, e−
σ
2 plays the role of the degenerate field. We compute the second

derivative of this field:

∂2(e−
σ
2 ) = ∂

(
−1

2
(∂σ)e−

σ
2

)
=

(
1

4
(∂σ)2 − 1

2
∂2σ

)
e−

σ
2 .

Therefore we obtain the equation:(
∂2 − 1

4
(∂σ)2 +

1

2
∂2σ

)
e−

σ
2 = 0.

This should be viewed as the classical second order BPZ equation with the operators
L−1 = ∂ and L−2 = −1

4(∂σ)
2 + 1

2∂
2σ. Here the operator L−2 is also the classical stress-

energy tensor T . The following notations are related to the analogous notations in the
quantum case below:

Q1 = −1

2
(∂σ)e−

σ
2 , Q1,1 =

1

4
(∂σ)2e−

σ
2 , Q2 = −1

2
(∂2σ)e−

σ
2 .

Lets now move to the classical higher equations of motion. The analogue of the logarithmic
field is σe−

σ
2 . Let D2 = L2

−1 + T . We compute:

D2D2(σe
−σ

2 ) = D2((∂
2σ) + 2(∂σ)∂)e−

σ
2 +D2σD2e

−σ
2

= D2((∂
2σ)− (∂σ)2)e−

σ
2 .

Next we use that D2 and ∂2 commute. We write:

2D2∂
2e−

σ
2 = 2∂2D2e

−σ
2 = 0.

This implies:

D2

(
1

2
(∂σ)2 − (∂2σ)

)
e−

σ
2 = 0.

Putting these last steps together we get that:

D2D2(σe
−σ

2 ) = −1

2
D2(∂σ)

2e−
σ
2 = −2D2Q1,1.

We also have the equation:

−2D2L−1e
−σ

2 = 0,

which implies: (
(∂∆σ) + 2(∆σ)∂

)
e−

σ
2 = 0.

Now we can compute:

D2(∂σ)
2e−

σ
2 =

(
∂
2
(∂σ)2 + 2∂(∂σ)2∂

)
e−

σ
2

=
(
2((∂∆σ)∂σ + (∆σ)2) + 4(∆σ)(∂σ)∂

)
e−

σ
2

= 2(∆σ)2e−
σ
2 =

K2

2
e

3σ
2 .

In the second to last inequality we have used the previous equation and in the last equality
the equation ∆σ = eσ. The conclusion is thus that:

D2D2(σe
−σ

2 ) = −K
2

4
e

3σ
2 .
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3 Probabilistic definition of Liouville CFT on the

Riemann sphere

We follow the probabilistic framework to Liouville CFT first introduced in [11] and
further developed in [14]. We work on the Riemann sphere S2 = C ∪ {∞} viewed as the
complex plane with a point at infinity, which is equipped with a Riemmannian metric g.
For simplicity we will work with the metric:

g(z) = |z|−4
+ with |z|+ := max(1, |z|). (18)

This metric is flat in the unit disk. We next definition gives the covariance of the
Gaussian free field on S2.

Definition 3.1. (Gaussian free field) The Gaussian free field X is the centered Gaussian
process on C with covariance given by, for x, y ∈ C:

E[X(x)X(y)] = log
1

|x− y|
+ log |x|+ + log |y|+. (19)

Since the variance at each point is infinite, X is not defined pointwise and exists as a
random distribution. It also satisfies:∫ 2π

0
X(eiθ)dθ = 0. (20)

Next we introduce a regularization Xϵ of our field X, which depends on a small pa-

rameter ϵ > 0. Define ηϵ =
1
ϵ2
η( |x|

2

ϵ2
) where η is a non-negative smooth function defined

on R+ with compact support in [12 , 1] that satisfies π
∫∞
0 η(t)dt = 1. We then define the

smooth field by the convolution Xϵ := X ∗ ηϵ. We now define the associated Gaussian
multiplicative chaos (GMC) measure.

Definition 3.2. (Gaussian multiplicative chaos) Fix a γ ∈ (0, 2). The Gaussian multi-
plicative chaos measure associated to the field X is defined by the following limit,

eγX(x)d2x = lim
ϵ→0

eγXϵ(x)− γ2

2
E[Xϵ(x)2]d2x, (21)

where the convergence is in probability and in the sense of weak convergence of measures
on C. More precisely, for a continuous compactly supported function f on C, the following
convergence holds in probability:∫

R
f(x)eγX(x)d2x = lim

ϵ→0

∫
C
f(x)eγXϵ(x)− γ2

2
E[Xϵ(x)2]d2x. (22)

For convenience we introduce the following shorthand notation for the Liouville field
ϕ on C,

ϕ(z) = X(x) +
Q

2
log g(z) + c, (23)

and for the regularized vertex operators

Vα,ϵ(z) = eα(Xϵ(z)+c)−α2

2
E[Xϵ(z)2]g(z)∆α ,

where again ∆α = α
2 (Q− α

2 ).

Definition 3.3. (Probabilistic definition of the LCFT correlation on S2) Consider disjoint
points zk ∈ C with associated weights αk ∈ R satisfying αk < Q and

∑
k αk > 2Q. Then

one can defined:

⟨
N∏
k=1

Vαk
(zk)⟩ := lim

ϵ→0

∫
R
e−2QcE

[
N∏
k=1

Vαk,ϵ(zk)e
−µeγc

∫
C Vγ,ϵ(x)d2x

]
dc.

6



The higher equations of motions will be expressed on correlations where one insertion
plays a special role. We will denote this insertion by z0 or simply z. It will have an
associated weight denoted by α0. Furthermore we need will consider correlation which
can at this special point z0 = z a so-called logarithmic field. We give the definition below.

Definition 3.4. (Probabilistic definition of the LCFT correlation on S2 with logarithmic
fields) Consider a special point z = z0 with weight α0 < Q and N disjoint points zk ∈ C
with associated weights αk ∈ R satisfying αk < Q and

∑N
k=0 αk > 2Q. Then one can

define:

⟨ϕ(z)
N∏
k=0

Vαk
(zk)⟩ := lim

ϵ→0

∫
R
e−2QcE

[
ϕϵ(z)

N∏
k=0

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc.

Throughout the proof we will use the following shorthand notations for correlation
functions with or without the logarithmic field:

⟨z, z⟩log := ⟨ϕ(z)
N∏
k=0

Vαk
(zk)⟩, ⟨z, z⟩ := ⟨

N∏
k=0

Vαk
(zk)⟩. (24)

We finish this section by giving the following lemma which tells us that the Lapla-
cian of the regularized logarithm converge up to a constant to a delta function as the
regularization ϵ is sent to 0.

Lemma 3.1. Let |z| ≤ 1. Let Aϵ(x, z) be a continuous function such that
limϵ→0Aϵ(x, z) = A(x, z) and such that the integral

Iϵ =

∫
C
dx ∂z∂z(E[Xϵ(x)Xϵ(z)]) · Aϵ(x, z) (25)

is absolutely convergent. Then one has:

lim
ϵ→0

Iϵ = πA(z, z). (26)

Proof. Recall that

1

(z)ϵ
=

∫
C
d2x1

∫
C
d2x2

1

z − x1 + x2
ηϵ(x1)ηϵ(x2), (27)

where ηϵ(x) = ϵ−2η(|x|2/ϵ2), and η is a smooth function with compact support separated
from 0 such that π

∫∞
0 η(x)dx = 1. In particular

∫
C d2x ηϵ(x) = 1. Let ψ(z) be a smooth

test function with compact support. Using first Stokes and then Fubini theorems we can
write

⟨ψ(x), ∂z̄1/(z)ϵ⟩ = −⟨∂z̄ψ(z), 1/(z)ϵ⟩ = −
∫
C2

d2x1d
2x2

∫
C
d2z

∂z̄ψ(z)

z − x1 + x2
ηϵ(x1)ηϵ(x2)

The interior integral is equal to∫
C
d2z

∂z̄ψ(z)

z − x1 + x2
ηϵ(x1)ηϵ(x2)

= − 1

2i

∮
|z|=δ

dz
ψ(z)

z − x1 + x2
ηϵ(x1)ηϵ(x2) = −πψ(x1 − x2)ηϵ(x1)ηϵ(x2),

where we used the Stokes formula and d2y = −dydȳ/2i. Then taking the limit we obtain:

lim
ϵ→0

⟨ψ(x), ∂z̄1/(z)ϵ⟩ = πψ(0). (28)
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4 A simple case: the (1, 1) equation.

Recall the notation ϕ = X + Q
2 log g+ c given in equation (23). The quantity that will

obey the (1, 1) equation is given by the limit:

⟨ϕ(z)
N∏
k=1

Vαk
(zk)⟩ := lim

ϵ→0

∫
R
e−2QcE

[
ϕϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc.

In the case applying the operator of the higher equation of motion amounts to computing
∂z̄∂z⟨ϕϵ(z)

∏N
k=1 Vαk,ϵ(zk)⟩. By using the Cameron-Martin formula given in Lemma A.1,

note that one can write:∫
R
e−2QcE

[
Xϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc

=
d

dt |t=0

∫
R
e−2QcE

[
etXϵ(z)− t2

2
E[Xϵ(z)2]

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc

=
d

dt |t=0

∫
R
e−2QcE

[
N∏
k=1

Vαk,ϵ(zk)e
αktE[Xϵ(z)Xϵ(zk)]e−µ

∫
C Vγ,ϵ(x)eγtE[Xϵ(z)Xϵ(x)]d2x

]
dc.

By applying this formula to the GFF part of the field ϕ one obtains:

⟨ϕϵ(z)
N∏
k=1

Vαk,ϵ(zk)⟩ =
∫
R
e−2QcE

[(
Q

2
log g(z) + c

) N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc

+
N∑
k=1

αkE[Xϵ(z)Xϵ(zi)]

∫
R
e−2QcE

[
N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc

− µγ

∫
C
d2x1E[Xϵ(z)Xϵ(x1)]

∫
R
e−2QcE

[
Vγ,ϵ(x1)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc.

Now applying the operator ∂z∂z̄ to the final line we get that:

∂z̄∂z⟨ϕϵ(z)
N∏
k=1

Vαk,ϵ(zk)⟩ =

(
Q

2
∂z̄∂z log g(z) +

N∑
k=1

αk∂z̄∂zE[Xϵ(z)Xϵ(zi)]

)
⟨

N∏
k=1

Vαk
(zk)⟩

− µγ

∫
C
d2x1∂z̄∂z(E[Xϵ(z)Xϵ(x1)]) ⟨Vγ(x1)

N∏
k=1

Vαk
(zk)⟩.

In the line above the first term vanishes because |z| < 1 implies that log g(z) = 0 and the
second term vanishes since ∂z∂zE[Xϵ(z)Xϵ(x1)] = 0. The third term is computed using
the lemma 3.1, so that we get

∂z̄∂z⟨ϕ(z)
N∏
k=1

Vαk
(zk)⟩ = −πµγ/2⟨Vγ(z)

N∏
k=1

Vαk
(zk)⟩. (29)

This completes the proof of equation (13).

5 Derivative rules

In this section we list the key lemmas that will be required to compute the derivatives
of the correlation function required by the higher equations of motion beyond the simple
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case of the (1, 1) equation. We will extensively use the shorthand notations (24) for
correlation functions. We also will use the notations

Pn =
N∑
j=1

αj

2(zj − z)nϵ
, Pn =

∏
i

Pni , (30)

Qq =
(µγ

2

)p ∫
Cp

p∏
j=1

1

(yj − z)
qj
ϵ
⟨z, z,y⟩ϵd2y, (31)

and the same expression but with the logarithmic field:

Qq,log =
(µγ

2

)p ∫
Cp

p∏
j=1

1

(yj − z)
qj
ϵ
⟨z, z,y⟩log,ϵd2y. (32)

We start by the following simple lemma which will be used to cancel the background
metric dependent terms in the upcoming computations of the derivatives.

Lemma 5.1. One has the identity:

µγ

∫
C
⟨z; z, y⟩log,ϵd2y =

(
N∑
l=0

αl − 2Q

)
⟨z; z⟩log,ϵ + ⟨z; z⟩ϵ.

Proof. Starting from the expression

⟨z; z⟩log,ϵ =
∫
R
e−2QcE

[
ϕϵ(z)V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc,

we perform the change of variable c to c+ 1
γ log 1

µ to obtain the expression:

µ
1
γ
(2Q+χ−

∑N
k=1 αk) lim

ϵ→0

∫
R
e−2QcE

[
ϕϵ(z)V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−

∫
C Vγ,ϵ(x)d2x

]
dc

− 1

γ
(logµ)µ

1
γ
(2Q+χ−

∑N
k=1 αk) lim

ϵ→0

∫
R
e−2QcE

[
V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−

∫
C Vγ,ϵ(x)d2x

]
dc.

We now obtain take a derivative:

−
∫
C
⟨z; z, y⟩log,ϵd2y

=
1

γ
(2Q+ χ−

N∑
k=1

αk)µ
1
γ
(2Q+χ−

∑N
k=1 αk)−1

∫
R
e−2QcE

[
ϕϵ(z)V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−

∫
C Vγ,ϵ(x)d2x

]
dc

− 1

γ
(2Q+ χ−

N∑
k=1

αk)(logµ)µ
1
γ
(2Q+χ−

∑N
k=1 αk)−1

∫
R
e−2QcE

[
V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−

∫
C Vγ,ϵ(x)d2x

]
dc

− 1

γ
µ

1
γ
(2Q+χ−

∑N
k=1 αk)−1

∫
R
e−2QcE

[
V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−

∫
C Vγ,ϵ(x)d2x

]
dc

=
1

γµ

(
2Q−

N∑
l=0

αl

)
⟨z; z⟩log,ϵ −

1

γµ
⟨z; z⟩ϵ.

This implies the claim of the lemma.

Next we state two lemmas that give the derivatives of the correlation functions with
or without the logarithmic insertion. The first of these lemmas has been proved in [19].
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Lemma 5.2. (Derivative rule for ordinary correlations) The following formula holds

∂zi⟨V−χ,ϵ(z)

N∏
l=1

Vαl,ϵ(zl)⟩

= − αiχ

2(z − zi)ϵ
⟨z, z⟩ϵ +

∑
j ̸=i

αiαj

2(zj − zi)ϵ
⟨z, z⟩ϵ −

µγαi

2

∫
C

1

(y − zi)ϵ
⟨z, z, y⟩ϵd2y,

and for the z derivative:

∂z⟨V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩ = −
N∑
j=1

χαj

2(zj − z)ϵ
⟨z, z⟩ϵ +

µγχ

2

∫
C

1

(y − z)ϵ
⟨z, z, y⟩ϵd2y.

Now the analogue result for a correlation with the logarithmic insertion.

Lemma 5.3. (Derivative rule for logarithmic correlations) The following formula holds

∂zi⟨ϕϵ(z)V−χ,ϵ(z)

N∏
l=1

Vαl,ϵ(zl)⟩

=
αi

2(z − zi)ϵ
⟨z, z⟩ϵ −

αiχ

2(z − zi)ϵ
⟨z, z⟩log,ϵ +

∑
j ̸=i

αiαj

2(zj − zi)ϵ
⟨z, z⟩log,ϵ −

µγαi

2

∫
C

1

(y − zi)ϵ
⟨z, z, y⟩log,ϵd2y,

and for the z derivative:

∂z⟨ϕϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩ = −
N∑
j=1

χαj

2(zj − z)ϵ
⟨z, z⟩log,ϵ +

µγχ

2

∫
C

1

(y − z)ϵ
⟨z, z, y⟩log,ϵd2y

+
N∑
j=1

αj

2(zj − z)ϵ
⟨z, z⟩ϵ −

µγ

2

∫
C

1

(y − z)ϵ
⟨z, z, y⟩ϵd2y.

Proof. Let us start with the first identity. When differentiating we get the quantity:

αi⟨ϕϵ(z)∂zi(Xϵ(zi) +
Q

2
log g(zi))V−χ,ϵ(z)

N∏
l=1

Vαl,ϵ(zl)⟩.

The first step is to apply the Gaussian integration by parts formula of Lemma A.1 to the
term containing the ∂ziXϵ(zi). One obtains:

⟨ϕϵ(z)∂ziXϵ(zi)V−χ,ϵ(z)

N∏
l=1

Vαl,ϵ(zl)⟩

= ∂ziE[ϕϵ(z)Xϵ(zi)]⟨z, z⟩ϵ − χ∂ziE[Xϵ(zi)ϕϵ(z)]⟨z, z⟩log,ϵ

+
∑
j ̸=i

αj∂ziE[Xϵ(zi)ϕϵ(zj)]⟨z, z⟩log,ϵ − µγ

∫
C
∂ziE[Xϵ(zi)ϕϵ(y)]⟨z, z, y⟩log,ϵd2y.

Now the above expression reduces to the expression claimed in the lemma up to the
following terms:

−1

4
∂zig(zi)

⟨z, z⟩ϵ + (
∑
j

αj − χ− 2Q)⟨z, z⟩log,ϵ − µγ

∫
C
⟨z, z, y⟩log,ϵd2y

 .

These terms then cancels thanks to the results of Lemma 5.1.
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Let us now move to the expression for the ∂z derivative. The computation is analogous
except that this time there is a terms that will not be canceled by the identity of Lemma
5.1. By computing the derivative we get:

∂z⟨ϕϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩δ =
Q

2
∂z log g(z)⟨z, z⟩ϵ

+ ⟨∂zXϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩ − χ⟨ϕϵ(z)∂zXϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩.

Integrating by parts the first term of the last line:

⟨∂zXϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩ = −χ∂zE[Xϵ(z)ϕϵ(z)]⟨z, z⟩ϵ +
∑
j

αj∂zE[Xϵ(z)ϕϵ(zj)]⟨z, z⟩ϵ

− µγ

∫
C
∂zE[Xϵ(z)ϕϵ(y)]⟨z, z, y⟩ϵd2y.

By integrating by parts the last term of the last line:

−χ⟨ϕϵ(z)∂zXϵ(z)V−χ,ϵ(z)
N∏
l=1

Vαl,ϵ(zl)⟩ = −χ∂zE[ϕϵ(z)Xϵ(z)]⟨z, z⟩

+ χ2∂zE[Xϵ(z)ϕϵ(z)]⟨z, z⟩log − χ
∑
j

αj∂zE[Xϵ(z)ϕϵ(zj)]⟨z, z⟩log

+ χµγ

∫
C
∂zE[Xϵ(z)ϕϵ(y)]⟨z, z, y⟩logd2y.

Here we assume z ∈ D where the metric is flat, namely g = 1 in a small ball surrounding
z. Therefore the extra metric dependent term vanishes.

Recall the operators from equation (8):

L−1 = ∂z, L−2 =
N∑
l=1

(
∆αl

(zl − z)2
− 1

(zl − z)
∂zl

)
. (33)

We now give the two lemmas that explicitly compute the action of the operators L2
−1

and L−2.

Lemma 5.4. The following relation holds:

L2
−1Q0,log = (χ2P 2

1 − χP2)Q0,log + χ(1− χγ

2
)Q2,log − 2χ2P1Q1,log + χ2Q1,1,log

+ P2Q0 −Q2 − 2χP 2
1Q0 + 4χP1Q1 + χγQ2 − 2χQ1,1.

Proof. Starting from the expression for the z derivative given in Lemma 5.3

∂zQ0,log = −
N∑
j=1

χαj

2(zj − z)ϵ
⟨z, z⟩log,ϵ +

µγχ

2

∫
C

1

(y − z)ϵ
⟨z, z, y⟩log,ϵd2y

+
N∑
j=1

αj

2(zj − z)ϵ
⟨z, z⟩ϵ −

µγ

2

∫
C

1

(y − z)ϵ
⟨z, z, y⟩ϵd2y,
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we take another derivative in z to get:

∂zzQ0,log = −
N∑
j=1

χαj

2(zj − z)2
⟨z, z⟩log,ϵ +

µγχ

2

∫
C

1

(y − z)2
⟨z, z, y⟩log,ϵd2y

+

N∑
j=1

αj

2(zj − z)2
⟨z, z⟩ϵ −

µγ

2

∫
C

1

(y − z)2
⟨z, z, y⟩ϵd2y

−
N∑
j=1

χαj

2(zj − z)ϵ
∂z⟨z, z⟩log,ϵ +

µγχ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩log,ϵd2y

+

N∑
j=1

αj

2(zj − z)ϵ
∂z⟨z, z⟩ϵ −

µγ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩ϵd2y.

This can be rewritten as:

− χP2Q0,log + χQ2,log + P2Q0 −Q2 − χP1L−1Q0,log + P1L−1Q0

+
µγχ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩log,ϵd2y −

µγ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩ϵd2y.

By treating the extra point y as a spectator insertion of weight γ and applying again
Lemma 5.3 one obtains the identities:

∂z⟨z, z, y⟩log,ϵ = −
N∑
j=1

χαj

2(zj − z)ϵ
⟨z, z, y⟩log,ϵ −

χγ

2(y − z)ϵ
⟨z, z, y⟩log,ϵ +

µγχ

2

∫
C

1

(x− z)ϵ
⟨z, z, y, x⟩log,ϵd2x

+
N∑
j=1

αj

2(zj − z)ϵ
⟨z, z, y⟩ϵ +

γ

2(y − z)ϵ
⟨z, z, y⟩ϵ −

µγ

2

∫
C

1

(x− z)ϵ
⟨z, z, y, x⟩ϵd2x,

∂z⟨z, z, y⟩ϵ = −
N∑
j=1

χαj

2(zj − z)ϵ
⟨z, z, y⟩ϵ −

χγ

2(y − z)ϵ
⟨z, z, y⟩ϵ +

µγχ

2

∫
C

1

(x− z)ϵ
⟨z, z, y, x⟩ϵd2x.

We thus compute:

− µγ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩ϵd2y = χP1Q1 +

χγ

2
Q2 − χQ1,1,

µγχ

2

∫
C

1

(y − z)ϵ
∂z⟨z, z, y⟩log,ϵd2y = −χ2P1Q1,log −

χ2γ

2
Q2,log + χ2Q1,1,log + χP1Q1 +

χγ

2
Q2 − χQ1,1.

Note that one can rewrite the claim of Lemmas 5.2 and 5.3 as:

L−1Q0 = −χP1Q0 + χQ1, L−1Q0,log = −χP1Q0,log + χQ1,log + P1Q0 −Q1.

Putting everything together one obtains:

L2
−1Q0,log = −χP2Q0,log + χQ2,log + P2Q0 −Q2 − χP1L−1Q0,log + P1L−1Q0

− χ2P1Q1,log −
χ2γ

2
Q2,log + χ2Q1,1,log + 2χP1Q1 + χγQ2 − 2χQ1,1

= (χ2P 2
1 − χP2)Q0,log + χ(1− χγ

2
)Q2,log − 2χ2P1Q1,log + χ2Q1,1,log

+ P2Q0 −Q2 − 2χP 2
1Q0 + 4χP1Q1 + χγQ2 − 2χQ1,1.

12



Lemma 5.5. The following relation holds:

L−2Q0,log = (−P 2
1 +

1

χ
P2)Q0,log + 2P1Q1,log + (χ− 2

γ
)Q2,log −Q1,1,log

+ P2Q0 −Q2 + o(ϵ).

Proof. By using the result of Lemma 5.3 we obtain:

L−2⟨z, z⟩ϵ =

−
∑
j

∑
l ̸=j

αiαj

2(zj − z)(zl − zj)ϵ
−
∑
j

χαj

2(zj − z)(zj − z)ϵ
+
∑
j

∆αj

(zj − z)2

 ⟨z, z⟩log,ϵ

+
∑
j

µγαj

2(zj − z)

∫
C

1

(y − zj)ϵ
⟨z, z, y⟩log,ϵ +

∑
j

αj

2(zj − z)2
⟨z, z⟩ϵ.

To group the terms in ⟨z, z⟩log,ϵ in the desired form we will use the identity:

1

(x1 − x2)(x2 − z)
− 1

(x1 − x2)(x1 − z)
=

1

(x1 − z)(x2 − z)
.

We will now perform an integration by parts on the term with the integration over C.
Starting from the term

N∑
i=1

µγαi

2(zi − z)

∫
C

1

(y − zi)ϵ
⟨z, z, y⟩logd2y,

we compute the difference:

N∑
i=1

µγαi

2(zi − z)

∫
C

1

(y − zi)ϵ
⟨z, z, y⟩logd2y −

N∑
i=1

µγαi

2

∫
C

1

(y − zi)ϵ

1

(y − z)ϵ
⟨z, z, y⟩logd2y

=
∑
j

µγαj

2(zj − z)

∫
C

1

(y − z)
⟨z, z, y⟩log,ϵd2y + o(ϵ).

We then perform the following integration by parts:∫
C

∑
j

αjµγ

2(y − zj)ϵ(y − z)
⟨z, z, y⟩ϵ,logd2y

= −2

γ

∫
C

µγ

2(y − z)2
⟨z, z, y⟩ϵ,logd2y + χ

∫
C

µγ

2(y − z)(y − z)ϵ
⟨z, z, y⟩ϵ,logd2y

−
∫
C2

µ2γ2

2(x− y)ϵ(y − z)
⟨z, z, x, y⟩ϵ,logd2xd2y −

µγ

2

∫
C

1

(yj − z)2ϵ
⟨z, z,y⟩ϵd2y.

By using symmetry on the double integral above and collecting all the terms we obtain
the claimed result.

6 The (2, 1) higher equation of motion.

We now move to study the equations of order 2. The operator we wish to apply is thus

(L
2
−1 + χ2L−2)(L

2
−1 + χ2L−2). We will furthermore assume that χ = γ

2 . We will apply
this to:

⟨z; z⟩log := ⟨ϕ(z)V−χ,ϵ(z)

N∏
l=1

Vαl,ϵ(zl)⟩

= 4e−2χQ2
lim
ϵ→0

∫
R
e−2QcE

[
(ϕϵ(z) + c)V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc.
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Lets first apply the operator L2
−1 + χ2L−2. By the second order BPZ equation we know:

(
L2
−1 + χ2L−2

)
lim
ϵ→0

∫
R
e−2QcE

[
V−χ,ϵ(z)

N∏
k=1

Vαk,ϵ(zk)e
−µ

∫
C Vγ,ϵ(x)d2x

]
dc→ 0.

As performed in [19] this cancellation is obtained by the fact that

L2
−1Q0 = (−χP2 + χ2P 2

1 )Q0 − 2χ2P1Q1 + χ2Q1,1 + χ(−γχ
2

+ 1)Q2,

L−2Q0 = (−P 2
1 +

1

χ
P2)Q0 + 2P1Q1 −Q1,1 + (χ− 2

γ
)Q2 + o(ϵ),

and where thus the error term o(ϵ) vanishes as ϵ → 0. Moving now to the case of the
logarithmic insertions, combing the results of Lemmas 5.4 and 5.5:

(L2
−1 + χ2L−2)Q0,log = χ2(P2Q0 −Q2) + P2Q0 −Q2 − 2χP 2

1Q0 + 4χP1Q1 + χγQ2 − 2χQ1,1.

Lets now apply the anti-holomorphic operator to this answer. We notice that applied
to Q0 it gives 0. We get:

(L
2
−1 + χ2L−2)(L

2
−1 + χ2L−2)Q0,log = (L

2
−1 + χ2L−2)

(
(χγ − 1− χ2)Q2 + 4χP1Q1 − 2χQ1,1

)
.

We use the notation D2 = L2
−1 + χ2L−2 and D2 = L

2
−1 + χ2L−2. By commuting the

holomorphic and anti-holomorphic operators one obtains that:

D2Q0 = 0, D2(P1L−1Q0) = 0, D2(L−2Q0) = 0.

Combining these three relation implies that:

D2

(
Q1,1 + (

1

χ
− γ

2
)Q2

)
= 0.

From here one can deduce that the expression

(L
2
−1 + χ2L−2)

(
(χγ − 1− χ2)Q2 + 4χP1Q1 − 2χQ1,1

)
is equal to

−γ
2
D2Q1,1 (34)

using the fact that we are assuming that χ = γ
2 . We thus now need to analyze carefully

these two terms using the regularization procedure. Before doing so, let us first record a
consequence of the fact that D2Q1 = 0 (which is itself a consequence of D2(P1L−1Q0) =
0). Written out explicitly D2Q1 = 0 implies:

D2Q1 =

∫
C
d2x

(
∂zz

1

(x− z)ϵ

)
⟨z, z, x⟩ϵ+

+ 2

∫
C
d2x

(
∂z

1

(x− z)ϵ

)
∂z⟨z, z, x⟩ϵ +

∫
C
d2x

1

(x− z)ϵ
D2⟨z, z, x⟩ϵ = 0. (35)

To compute the last term we can use the following trick. We know that D2⟨z, z⟩ϵ = o(ϵ),
which implies by completing the operator with x as a spectator

D2⟨z, z, x⟩ϵ = −χ2

(
∆γ

(x− z)2ϵ
− 1

(x− z)ϵ
∂x

)
⟨z, z, x⟩ϵ + o(ϵ),

where here we have used the notation:

1

(x− z)2ϵ
:= ∂z

1

(x− z)ϵ
.
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Record ∆γ = 1. Therefore:∫
C
d2x

1

(x− z)ϵ
D2⟨z, z, x⟩ϵ = −χ2

∫
C
d2x

1

(x− z)ϵ

(
1

(x− z)2ϵ
− 1

(x− z)ϵ
∂x

)
⟨z, z, x⟩ϵ + o(ϵ)

= −χ2

∫
C
d2x

(
∂x

1

(x− z)ϵ

)
1

(x− z)ϵ
⟨z, z, x⟩ϵ + o(ϵ).

We therefore have the identity:

∫
C
d2x

(
∂zz

1

(x− z)ϵ

)
⟨z, z, x⟩+ 2

∫
C
d2x

(
∂z

1

(x− z)ϵ

)
∂z⟨z, z, x⟩

− χ2

∫
C
d2x

(
∂x

1

(x− z)ϵ

)
1

(x− z)ϵ
⟨z, z, x⟩ = o(ϵ). (36)

We will use it with y of weight γ added as an extra spectator point. Lets now move to
computing D2Q1,1. We start by writing:

D2Q1,1 = 2

∫
C2

d2xd2y

(
∂zz

1

(x− z)ϵ

)
1

(y − z)ϵ
⟨z, z, x, y⟩ϵ

+ 2

∫
C2

d2xd2y

(
∂z

1

(x− z)ϵ

)(
∂z

1

(y − z)ϵ

)
⟨z, z, x, y⟩ϵ

+ 4

∫
C2

d2xd2y

(
∂z

1

(x− z)ϵ

)
1

(y − z)ϵ
∂z⟨z, z, x, y⟩ϵ

+

∫
C2

d2xd2y
1

(x− z)ϵ

1

(y − z)ϵ
D2⟨z, z, x, y⟩ϵ + o(ϵ).

Again we write that:∫
C2

d2xd2y
1

(x− z)ϵ

1

(y − z)ϵ
D2⟨z, z, x, y⟩ϵ

= −χ2

∫
C2

d2xd2y
1

(x− z)ϵ

1

(y − z)ϵ

(
1

(x− z)2ϵ
− 1

(x− z)ϵ
∂x +

1

(y − z)2ϵ
− 1

(y − z)ϵ
∂y

)
⟨z, z, x, y⟩ϵ + o(ϵ)

= −2χ2

∫
C2

d2xd2y

(
∂x

1

(x− z)ϵ

)
1

(y − z)ϵ

1

(x− z)ϵ
⟨z, z, x, y⟩ϵ + o(ϵ).

Using 2
∫
C d

2y 1
(y−z)ϵ

times equation (36) with y added as a spectator point we can cancel

three of the four terms of in D2Q1,1 and end up with:

D2Q1,1 = 2
(µγ

2

)2 ∫
C2

d2xd2y

(
∂z

1

(x− z)ϵ

)(
∂z

1

(y − z)ϵ

)
⟨z, z, x, y⟩ϵ + o(ϵ). (37)

Now we send ϵ to 0 and use Lemma 3.1 to evaluate the integrals in x and y with the
result:

D2Q1,1 =
(µγπ)2

2
⟨z, z, x, y⟩x=y=z. (38)

Using the expression (34) we find

D2,1D2,1⟨z; z⟩ = −µ
2π2γ3

4
⟨z, z, x, y⟩x=y=z. (39)

This finishes the proof of equation (15).
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A Some useful facts in probability

We state the Cameron-Martin formula also known as the Girsanov theorem.

Lemma A.1. Let Y (x) be a Gaussian process on the sphere, and Z a Gaussian random
variable such that (X(x), Z) is jointly Gaussian. Then for any suitable functional F one
has:

E
[
eZ− 1

2
E[Z2]F (X)

]
= E [F (X + E[X(·)Z])] .
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