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Discounted Dynamic Programming

Five ingredients: S, A,r, q, 3.

S - state space

A - set of actions

q(-|s,a) - law of motion

r(s,a) - daily reward function (bounded, real-valued)

B € [0,1) - discount factor



Play of the game

You begin at some state s; € S, select an action a1 € A, and
receive a reward r(s1,a1).

You then move to a new state s, with distribution q(-|s1,a1),
select a» € A, and receive 8- r(s2,a5).

Then you move to s3 with distribution ¢(:|so,a5), select a3 € A,
receive 82 -r(s3,a3). And so on.

Your total reward is the expected value of

@,

Z 57@—17“(8”70%).

n=1



Plans and Rewards

A plan 7 selects each action an, possibly at random, as a function
of the history (s1,a1,...,a,-1,8n). The reward from =« at the

initial state

s1 = s IS

V(m)(s) = Ens[ Y. 8" 'r(sn,an)].
n=1

Given s1 = s and a1 = a, the conditional plan x[s,a] is just the
continuation of = and

V() = [Ir(s,a) + 8 [ V(xls, a)) (1) aldtls, a)lm(s) (da).
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The Optimal Reward and the Bellman Equation

The optimal reward at s is

V*(s) = sup V (m)(s).

The Bellman Equation for V* is

V*(s) = suplr(s,a) + B [ V*(1) a(dt]s, a)].

I will sketch the proof for S and A countable.



Proof of <:

For every plan m and s € S,
V(m)(s) = [[r(s,0) + 8 [ V(xls,al)(t) a(dt]s, a)}x(s) (da)
<suplr(s,a) + B [ V(rls,aD)(®) q(dt]s,a")]

<suplr(s,a) + B [ V(1) a(dtls,a)].

Now take the sup over 7.



Proof of >: Fix ¢ > 0.

For every state t € S, select a plan m; such that
V() (t) > VE(t) — /2.
Fix a state s and choose an action a such that
r(s, )48 [ V(t) a(dt]s,a) >
sup(r(s,a’) + 8 [ V*() a(dt]s, a)] - ¢/2.
a

Define the plan 7w at s; = s to have first action a and conditional
plans w[s,a](t) = 7. Then

V¥(s) 2 V(m)(s) =r(s,a) + 8 [ V(m)(t) a(dt]s, a)
> suplr(s,a/) + 8 [ V*(1) a(dt]s, a)] — e.
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Measurable Dynamic Programming
The first formulation of dynamic programming in a general mea-
sure theoretic setting was given by Blackwell (1965). He as-

sumed:

1. S and A are Borel subsets of a Polish space (say, a Euclidean
space).

2. The reward function r(s,a) is Borel measurable.
3. The law of motion ¢(-|s,a) is a regular conditional distribution.

Plans are required to select actions in a Borel measurable way.



Measurability Problems

In his 1965 paper, Blackwell showed by example that for a Borel
measurable dynamic programming problem:

The optimal reward function V*(-) need not be Borel mea-
surable and good Borel measurable plans need not exist.

This led to nontrivial work by a number of mathematicians in-
cluding R. Strauch, D. Freedman, M. Orkin, D. Bertsekas, S.
Shreve, and Blackwell himself. It follows from their work that
for a Borel problem:

The optimal reward function V*(-) is universally measurable
and that there do exist good universally measurable plans.
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The Bellman Equation Again

The equation still holds, but a proof requires a lot of measure
theory. See, for example, chapter 7 of Bertsekas and Shreve
(1978) - about 85 pages.

Some additional results are needed to measurably select the my
in the proof of >. See Feinberg (1996).

The proof works exactly as given in a finitely additive setting,
and it works for general sets S and A.
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Finitely Additive Probability

Let v be a finitely additive probability defined on a sigma-field
of subsets of some set F'. The integral

/¢dv

of a simple function is defined in the usual way. The integral

/¢d7

of a bounded, measurable function ¢ is defined by squeezing with
simple functions.

If ~v is defined on the sigma-field F of all subsets of F', it is
called a gamble and [ d~ is defined for all bounded, real-valued
functions .
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Finitely Additive Processes

Let G(F) be the set of all gambles on F. A strategy o is
a sequence o1,09,... such that o1 € G(F) and for n > 2, oy
is a mapping from F"1 to G(F). Every strategy o naturally
determines a finitely additive probability P, on the product sigma-
field FN. (Dubins and Savage (1965), Dubins (1974), and Purves
and Sudderth (1976))

Ps is regarded as the distribution of a random sequence

f17f27'°'7f77n----

Here f1 has distribution o1 and, given fy1, fo,..., fn—1, the condi-
tional distribution of f is on(f1, fo, ..., fn_1)-
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Finitely Additive Dynamic Programming

For each (s,a), q(:|s,a) is @ gamble on S. A plan « chooses
actions using gambles on A.

Each 7 together with ¢ and an initial state s; = s determines a
strategy ¢ = o(s,7) on (A x S)N. For DC A x S,

01(D) = [ a(Dals, a) 1 (da)
and

on-1(a1,52, -+, 1,50)(D) = [ a(Dalsn,a) (a1, 52, an_1,5n)(da).
Let
P’]’(',S — PO'-
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Rewards and the Bellman Equation

For any bounded, real-valued reward function r, the reward for
a plan = is well-defined by the same formula as before:

V(r)(s) = E?T,S[ Z 5n_1"°(5na an)].

n=1

Also as before, the optimal reward function is
V*(s) =sup V(x)(s).
7T
The Bellman equation

V*(s) = suplr(s,a) + B [ V*() a(dt]s, a)].

can be proved exactly as in the discrete case.
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Blackwell Operators

Let B be the Banach space of bounded functions =z : S — R
equipped with the supremum norm.

For each function f : S+ A, define the operator Ty for elements
x €B by

(Tgz)(s) = (s, () + B [ (s a(ds']s, /().
Also define the operator T™ by

(T"2)(s) = suplr(s,a) + 8 [ a(s) a(ds'|s, a)].

This definition of T* makes sense in the finitely additive case,
and in the countably additive case when S is countable. There
IS trouble in the general measurable case.
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Fixed Points

The operators Ty and T* are pB-contractions. By a theorem of
Banach, they have unique fixed points.

The fixed point of T™ is the optimal reward function V*. The
equality

V*(s) = (T"V™)(s)
IS just the Bellman equation

V*(s) = suplr(s,a) + B [ V*(1) a(dt]s, a)].

16



Stationary Plans

A plan =« is stationary if there is a function f: S +— A such that
w(s1,a1,...,a,_1,5n) = f(sp) for all (s1,a1,...,a,_1,5n).

Notation: m = f°°.

The fixed point of T} is the reward function V(x)(-) for the
stationary plan ©m = f°.

Vi(m)(s) =r(s, f(s)) + B/V(W)(t) q(dt]s, f(s)) = (TfV(m))(s)

Fundamental Question: Do optimal or nearly optimal
stationary plans exist?
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EXxistence of Good Stationary Plans

Fix e > 0. For each s, choose f(s) such that

(TyV*)(s) 2 V¥(s) —e(1 = B).

Let # = f°°. An easy induction shows that

(TFV*)(s) =2 V7 (s) — ¢, for allsandn.

But, by Banach’s Theorem,

(TFV*)(s) = V(m)(s).

So the stationary plan « is € - optimal.

18



The Measurable Case: Trouble for T

T* does not preserve Borel measurability.

T* does not preserve universal measurability.

T* does preserve “‘upper semianalytic” functions, but these do
not form a Banach space.

Good stationary plans do exist, but the proof is more compli-
cated.
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Finitely Additive Extensions of Measurable Problems

Every probability measure on an algebra of subsets of a set F
can be extended to a gamble on F', that is, a finitely additive
probability defined on all subsets of F'. (The extension is typically
not unique.)

Thus a measurable, discounted problem S, A,r,q,8 can be ex-
tended to a finitely additive problem S, A, r,q, 8 where g(-|s,a) is

a gamble on S that extends q¢(:|s,a) for every s,a.

Questions: Is the optimal reward the same for both problems?
Can a player do better by using non-measurable plans?
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Reward Functions for Measurable and for Finitely Additive
Plans

For a measurable plan mw, the reward

Vir(m)(s) = EW,S[ Z Bn_lr(snaan)]

n=1

is the expectation under the countably additive probability Pr s.

Each measurable m can be extended to a finitely additive plan 7
with reward

V(#)(s) = Ez 4[> 8" r(sn,an)]
n=1

calculated under the finitely additive probability P; .

Fact: Vy,(7m)(s) =V (7)(s).
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Optimal Rewards

For a measurable problem, let

Vir(s) = sup Vi (m)(s),
where the sup is over all measurable plans «, and let
V*(s) = sup V(mr)(s),

where the sup is over all plans 7 in some finitely additive exten-
sion.
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Theorem: V7, (s) = V*(s).

Proof: The Bellman equation is known to hold in the measurable
theory:

Vir(s) = suplr(s,a) + 5/\/]\*4(75) q(dt|s, a)].

In other terms

Vir(s) = (T"Vy) (s).
But V* is the unique fixed point of T,
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Positive Dynamic Programming

Assume the daily reward function r is nonnegative and that the
discount factor g = 1. Let

V(m)(s) = Exs| Z r(sn,an)].
n=1

In a measurable setting

V(m)(s) = 5”511 Ers[ Y. B" 'r(sn,an)]
n=1

by the monotone convergence theorem. Blackwell (1967) used
this equality to prove, for example,

Theorem. In a measurable positive dynamic programming prob-
lem, there always exists, for each ¢ > 0 and s € S such that
V*(s) < oo, an e-optimal stationary plan at s.
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Finitely Additive Positive Dynamic Programming

The monotone convergence theorem fails for finitely additive
measures. An example with S equal to the set of ordinals less
than or equal to the first uncountable ordinal (Dubins and Sud-
derth, 1975) shows that good stationary plans need not exist.

There is also a countably additive counterexample with a much
larger state space (Ornstein, 1969).

25



References: Countably Additive Dynamic Programming

D. Blackwell (1965).Discounted dynamic programming. Ann.
Math. Statist. 36 226-235.

D. Blackwell, D. Freedman and M. Orkin (1974). The optimal
reward operator in dynamic programming. Ann. Prob. 2 926-
041.

D. Bertsekas and S. Shreve (1978). Stochastic Optimal Control:
The Discrete Time Case. Academic Press.

E. Feinberg (1996). On measurability and representation of
strategic measures in Markov decision theory. Statistics, Prob-
ability, and Game Theory: Papers in Honor of David Blackwell,
editors T. S. Ferguson, L.S. Shapley, J. B. MacQueen. IMS
Lecture Notes-Monograph Series 30 29-44.

26



D. Ornstein (1969). On the existence of stationary optimal
strategies. Proc. Amer. Math Soc. 20 563-569.

References: Gambling and Finite Additivity

L. Dubins (1974). On Lebesgue-like extensions of finitely addi-
tive measures. Ann. Prob. 2 226-241.

L. E. Dubins and L. J. Savage (1965). How to Gamble If You
Must: Inequalities for Stochastic Processes. McGraw-Hill.

L. E. Dubins and W. Sudderth (1975). An example in which
stationary strategies are not adequate. Ann. Prob. 3 722-725.

R. Purves and W. Sudderth (1976). Some finitely additive prob-
ability theory. Ann. Prob. 4 259-276.
27



