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Abstract
The origins of Malliavin Calculus can be traced to Malliavin’s work on hypoel-

lipticity of PDEs. However, the Malliavin Divergence Operator (MDO) has some
other precursors, in particular, Skorokhod integral, Wick product, creation operator
in Quantum Physics, etc. Moreover, both Skorokhod integral and MDO are related
to “stochastic quantization”, a methodology developed in Quantum Physics to mit-
igate divergence of certain potentials (see e.g. B. Simon, “The P (ϕ)2 Euclidean
Quantum Field Theory”, Princeton University Press, 1974). Roughly speaking, this
methodology is based on the replacement of standard products u · v of functionals
on Wiener space by the Wick product u¦v. The relations between Skorokhod (Itô)
integral, Wick product, and MDO could be illustrated by the following formula

∫ T

0

δẆ (f (t)) dt =
∫ T

0

f (t) dW (t) =
∫ T

0

f (t) ¦ Ẇ (t) dt

Currently, the predominant driving random source in Malliavin calculus is an
isonormal Gaussian process (white noise) Ẇ on a separable Hilbert space. In this
lectures we will discuss two main topics:

(a) Extension of Malliavin calculus to the driving random source given by a non-
linear functional v := v

(
Ẇ

)
of white noise. More specifically, we will discuss the

main operators of Malliavin calculus: Malliavin derivative Dv (f); divergence oper-
ator δv (f), and Ornstein-Uhlenbeck operator Lv (f) with respect to a generalized
random field v.

(b) Applications of the extended Malliavin calculus to Elliptic and Parabolic
stochastic PDEs.

A simple but representative example of stochastic PDEs to be discussed in the
lectures is given by the following equation:

(0.1) − (a (x) ux(x))x = f(x), x ∈ (0, 1) , u (0) = u (1) = 0,

with a(x) = ā(x) + ε(x), where ā(x) is the mean and ε(x) =
∑

k≥1 σk(x)ξk is
a Gaussian noise term, is a typical example of stochastic PDEs we will discuss.
Recently, this equation was investigated in the context of uncertainty quantification
for mathematical and computational models. Problem (0.1) is ill posed because
the diffusion coefficient a may take negative values. However, a natural stochastic
quantization reduces (0.1) to equation

(0.2)
− (ā (x) vx(x))x +

(
δε(x) (vx (x))

)
x

= f(x),
x ∈ (0, 1) , v (0) = v (1) = 0,

where ‘δε(x)’ stands for Malliavin divergence operator (Skorokhod integral) with
respect to Gaussian noise ε(x). In contrast to (0.1), equation (0.2) is well posed
and uniquely solvable.

Familiarity of attendees with Malliavin calculus will not be assumed.

1



2

Course Description

Lecture 1. Stochastic Quantization and Navier-Stokes Equation.

This lecture will consists ow two parts: (a) Stochastic quantization of Navier-
Stokes equation; (b) Introduction to Wiener Chaos. Part (a) will be a seminar type
review of stochastic quantization of Navier Stokes equation. Part (b) will be the
first part of a detailed review of Wiener Chaos.

Lecture 2. Introduction to Malliavin calculus.

We will first review the construction of the standard Malliavin calculus in non-
adapted and adapted settings. Then we will discuss several simple examples of
SPDEs driven by strictly spatial white noise. Given a typical SPDE, we will derive
its propagator, a system of deterministic PDEs for the coefficients of the Wiener
chaos expansion of the solution. By analyzing the propagator, we will discover that
a solution of a typical SPDE driven by spatial white noise has infinite variance.

Lecture 3. Generalized Malliavin calculus
To deal with random fields with infinite second moments, we will develop gen-

eralized Malliavin calculus. This extension of Malliavin calculus is based on the
procedure known in Quantum Physics as “second quantization”. In mathematical
terminology, the second quantization corresponds to a special rescaling/weighting
of the Wiener Chaos expansions of the generalized random fields v and f in the
main operators of Malliavin calculus: Malliavin derivative Dv (f); divergence oper-
ator δv (f), and Ornstein-Uhlenbeck operator Lv (f) . The rest of the lecture will be
dedicated to exploration of continuity of the main operators of Malliavin Calculus.

Lecture 4. Bi-linear stochastic PDEs driven by stationary noise
This lecture deals with bilinear stochastic parabolic and elliptic PDEs driven by

purely spatial white noise. We will discuss solvability of such equations in weighted
Wiener chaos spaces and study the long-time behavior of the solutions of evolution
equations.

We will also discuss analytical and numerical issues related to elliptic equations
with random coefficients which are generally nonlinear functions of white noise.
The existence and uniqueness of the solutions will be established under rather
weak assumptions, the main of which requires only that the expectation of the
highest order (differential) operator is a non-degenerate elliptic operator. It will
be shown that the deterministic coefficients of the Wiener Chaos expansion of the
solution solve a lower-triangular system of linear elliptic equations (the propagator).
This structure of the propagator insures linear complexity of the related numerical
algorithms.


