Lecture 6: Multivariate generating functions

Robin Pemantle

University of Pennsylvania

pemantle@math.upenn.edu

Minerva Lectures at Columbia University

16 November, 2016
Dinner at the Pemutzle house
Rational series: examples and phenomena
Let

\[f(z) = \frac{p(z)}{q(z)} = \sum_{r \geq 0} a_r z^r \]

be a rational function.

Then \(f \) has a partial fraction expansion as a sum of terms of the form \(c(1 - tz)^d \) and therefore there is an exact expression for the coefficient \(a_r \), namely

\[
a_t = \sum_{(t,d,c)} c \binom{n + d}{d} t^r
\]

summed over triples \((t, d, c)\) in the partial fraction expansion. In short, the theory is trivial.
Several variables

Now turn all the indices into multi-indices, which we denote by upper case letters:

\[F(Z) = \frac{P(Z)}{Q(Z)} = \sum_R a_R Z^R. \]

Here, and throughout, this stands for

\[F(z_1, \ldots, z_d) = \frac{P(z_1, \ldots, z_d)}{Q(z_1, \ldots, z_d)} = \sum_{r_1, \ldots, r_d} a_{r_1, \ldots, r_d} z_1^{r_1} \cdots z_d^{r_d}. \]

What phenomena are possible for the behavior of the multi-dimensional array \(\{a_R\} \)?
Binomial coefficients

\[F(x, y) = \frac{1}{1 - xy/2 - y/2} \]

shown: \(a_{i,200} \)
2-D quantum walk

\[F(x, y) = \frac{1}{1 - (1 - x)y/\sqrt{2} - xy^2} \]

shown: \(a_{i,200} \)
3-D quantum walk

\[F(x, y) = \det(I - yMU)^{-1}, \]
where \(M \) is a diagonal matrix of monomials and \(U \) is a real orthogonal matrix.

shown: grey scale plot of \(a_{i,j,200} \)
Dimer tiling

\[F(x, y) = \frac{z/2}{(1 - yz)\left[1 - (x + x^{-1} + y + y^{-1})z + z^2\right]} \]

shown: plot of

\[(r, s) \mapsto \lim_{t \to \infty} a_{rt, st, t}\]
Double-dimer tiling

\[F = \frac{P}{Q} \text{ where } Q(x, y, z) = 63x^2y^2z^2 - 62(x + y + z)xyz - (x^2y^2 + y^2z^2 + z^2x^2) + 62(xy + yz + zx) + (x^2 + y^2 + z^2) - 63. \]

shown: sample tiling, limiting boundaries
Possible behavior along a ray

Let $R = |R| \cdot \hat{R}$ decompose R into magnitude and direction.

The possible behaviors\(^1\) for a_R with \hat{R} roughly fixed are asymptotically, for some rational β, and nonnegative integer γ,

$$a_R = C(\hat{R}) |R|^\beta |\log(R)|^\gamma Z(\hat{R})^{-R}.$$

Also possible: a finite sum of such terms.

Such formulae hold piecewise, with β and γ constant on each piece and C and Z varying analytically within each piece.

Phase boundaries are algebraic curves;
One expects Airy-type behavior at the boundaries.

\(^1\)Precise statement not proved.
Analytic framework
Cauchy integral

Recall the one variable Cauchy integral

\[a_r = \frac{1}{2\pi i} \int z^{-r} f(z) \frac{dz}{z} \]
Cauchy integral

Recall the one variable Cauchy integral

\[a_r = \frac{1}{2\pi i} \int \frac{z^{-r} f(z)}{z} \, dz \]

In \(d \) variables it is nearly the same:

\[a_R = \frac{1}{(2\pi i)^d} \int_C Z^{-R} \frac{P(Z)}{Q(Z)} \frac{dZ}{Z} \]
Cauchy integral

Recall the one variable Cauchy integral

\[a_r = \frac{1}{2\pi i} \int z^{-r} f(z) \frac{dz}{z} \]

In \(d \) variables it is nearly the same:

\[a_R = \frac{1}{(2\pi i)^d} \int_C Z^{-R} \frac{P(Z)}{Q(Z)} \frac{dZ}{Z} \]

- \(dZ \) is the holomorphic volume form;
- integrand is holomorphic in \(\mathcal{M} := \mathbb{C}^d \setminus \{ Q \prod_{j=1}^d z_j = 0 \} \);
- \(C \) is a chain of integration topologically equivalent to the torus \(\prod_{j=1}^d \gamma_j \) where \(\gamma_j \) is a circle about the origin in the \(j^{th} \) coordinate and the equivalence is in \(H_d(\mathcal{M}) \).
\mathcal{M} is everything other than V and the coordinate axes.
We want an asymptotic formula for a_r as $r \to \infty$ with $r/|r| \to \hat{r}$.

Two levels of accuracy, to be done in two steps:

1. Exponential rate
2. Asymptotic formula

To see how to execute these two steps, recall the univariate case.
Recall the univariate case

Step 1: let ρ be the radius of convergence.

$$\limsup \frac{\log a_n}{n} \leq -\log \rho.$$

This completes step one.

Step 2: Use singularity analysis. Find the particular singularity z_* on the radius of convergence and integrate on a contour designed to capture behavior near z_*.
Dominant singularity
Logarithmic coordinates

Instead of a radius of convergence there is a different multi-radius in every direction.

The domain of convergence of a power series or Laurent series is a union of tori

\[T_X := \{ |z_1| = e^{x_1}, \ldots, |z_d| = e^{x_d} \} \cdot \]

The set of \(X \in \mathbb{R}^d \) for which a series converges is convex.

Map \(\mathbb{C}^d \) to \(\mathbb{R}^d \) via the log-modulus map

\((z_1, \ldots, z_d) \mapsto (\log |z_1|, \ldots, \log |z_d|)\).
Amoebas

The amoeba of \mathbb{Q} is the set $\{\log |Z| : Q(Z) = 0\}$ where the log modulus map is taken coordinatewise.

On each component of the complement of the amoeba there is a convergent Laurent expansion $P/Q = \sum_{R} a_{R} Z^{R}$.

Components of the amoeba complement (white regions) are convex.
Letting $Z = \exp(X + iY)$ and sending X through a component of the complement, to a point on the boundary of the amoeba, the Cauchy integral becomes

$$a_R = (2\pi i)^{-d} \int Z^{-R} F(Z) \, dZ$$

$$= (2\pi)^{-d} e^{-R \cdot X} \int \exp(-iR \cdot Y) f(Y) \, dY$$

where $f(Y) = F(\exp(X + iY))$.
Choose $X = X_*$ to minimize the magnitude of the integrand.

For fixed \hat{R}, this means to make $-\hat{R} \cdot X_*$ as small as possible. This is a convex minimization problem (the Legendre transform).

B is a region of the complement corresponding to an ordinary power series;

\hat{R} is given;

X_* is the minimizing point.
Upper bound

The upper bound is immediate:

$$\limsup \frac{1}{|R|} \log |a_R| \leq -\hat{R} \cdot X_*(R)$$

where $X_*(R)$ is the support point on ∂B normal to R.
Asymptotic evaluation
Contributing points

We turn now to Step 2, namely the asymptotic evaluation of a_R. This is the only way to provide a matching lower bound (in fact the limsup and liminf behavior of the coefficients might not be the same).

Recall that every X in the amoeba of Q is $\log |Z|$ for some at least one $Z \in \mathcal{V}$. The Cauchy integral near some of these is what determines the asymptotics in direction R.

We next discuss the identification of point(s) $\exp(X_* + iY) \in \mathcal{V}$ that are responsible for the coefficient asymptotics in direction R.
Finally... we get back to hyperbolicity.

Let $T := \mathcal{V} \cap \{\exp(X^* + iY) : Y \in (\mathbb{R}/2\pi \mathbb{Z})^d\}$.

At each $Z \in T$, let $p = p_Z$ be the homogeneous polynomial defined by the leading term of $Q(Z + \cdot)$.

The polynomial p_Z is the **algebraic tangent cone** of Q at Z.

Proposition (Baryshnikov+P 2011)

1. For every $Z := \exp(X + iY)$ with X on the boundary of the amoeba of Q, the polynomial p_Z is hyperbolic.

2. p_Z has a cone of hyperbolicity containing the support cone B to the amoeba complement at X.
Family of cones

This is the key construction for evaluating the Cauchy integral.

Theorem (semi-continuous family of cones)

Let p be any hyperbolic homogeneous polynomial and let B be a cone of hyperbolicity for p. There is a family of cones $K(x)$ indexed by the points x at which p vanishes, such that the following hold.

(i) Each $K(x)$ is a cone of hyperbolicity for the tangent cone p_x.
(ii) All of the cones $K(x)$ contain B.
(iii) $K(x)$ is semi-continuous in x, meaning that if $x_n \rightarrow x$, then $K(x) \subseteq \lim \inf K(x_n)$.

Step 1: By the previous proposition p_x is hyperbolic. Now show that any vector hyperbolic for p is also hyperbolic for p_x. This result was originally proved by Atiyah-Bott-Gårding (1970); Borcea (personal communication) gave a short, self-contained proof.

Step 2: Pick u in B. Define $K(x)$ to be the cone of hyperbolicity of p_x that contains u. This gives (i) and also (ii) because the construction is the same for any $u \in B$.

Step 3: Prove (iii) by showing that these cones obey a condition similar to that of Whitney stratification. This takes a few geometric steps.
Example: orthant

If \(x \) is on a 2-D surface then \(K(x) \) is the halfspace containing \(B \).

If \(x \) is on one of the intersection lines then \(K(x) \) is the quarter-space containing \(B \).

If \(x \) is the origin then then \(K(x) \) is the octant \(B \).
Example: product of two linear polynomials

If \(x = 1 \), the common intersection of the two divisors, then \(K(x) = B \).

If \(x \) is on only one of the lines then \(K(x) \) is a halfspace tangent to one of the two factor amoebas.

Shown: the amoeba for \(p = (3z - x - 2y)(3z - 2x - y) \).

The amoeba of the product is the union of the two factor amoebas.
Counterexample: when \(p \) is not hyperbolic

Along the line \((0, y, 0)\), \(K(y) \) cones of hyperbolicity for \(p_y \) can be chosen but are forced to select the positive or negative \(z \) direction.

One of these violates semi-continuity for \(K(0^+, y, 0) \) while the other choice violates semi-continuity at \(K(0^-, y, 0) \).
Semi-continuous cones give vector field

Theorem (Morse deformation; BP2011, after ABG1970)

If \(\{K(x)\} \) is a semi-continuous family of cones, then a continuous vector field \(\Psi \) may be constructed with \(\Psi(x) \subseteq K(x) \) for each \(x \).

This allows the chain of integration for the Cauchy integral to be deformed so that the integrand is very small except in a neighborhood of \(Z \).

The deformation is locally projective.
The Cauchy integral and the Riesz kernel

Recall the integral in logarithmic coordinates

$$a_R = (2\pi)^{(1-d)/2} \exp(-R \cdot X) \int \exp(-(iR \cdot Y)f(Y) \, dY.$$

Pushing the chain of integration from the imaginary fiber outward in a conical manner produces a homogeneous inverse Fourier transform.

Leading asymptotic behavior only depends on leading behavior of the homogenization $1/p_z$. We recognize the IFT

$$\int_{\gamma} p_z^{-1} \exp(iR \cdot Y)$$

as the Riesz kernel for the homogeneous hyperbolic polynomial p_z.
Inverse Fourier transforms

The estimates needed to establish the existence of the integral rely on the projective deformation.

Relating it to previously computed IFT’s (in, e.g., [ABG1970]) uses the theory of boundaries of holomorphic functions, laid out by Hörmander (1990).

For example, the IFT of a linear function $ax + by + cz$ is a delta function on the ray $\lambda \langle a, b, c \rangle$ in the dual space. (Here the index space \mathbb{Z}^d is the dual space and the real/complex space in which the generating function variables live is the primal space.)
Examples of computed IFT’s

Example (orthant)

The IFT of \(1/(xyz)\) is the constant 1 on the orthant. This corresponds to the generating function

\[
\frac{1}{(1 - x)(1 - y)(1 - z)}.
\]
"Quadratic times linear" describes the homogeneous part of the Aztec Diamond probability generating function

\[
\frac{z/2}{(1 - yz) \left[1 - (x + x^{-1} + y + y^{-1})z + z^2 \right]}.
\]
Example: Aztec diamond tilings

IFT is a convolution of a delta function on the ray \((0, \lambda, \lambda)\) with the IFT of a circular quadratic. The quadratic is self-dual, with IFT equal to \(t^2 - r^2 - s^2\).

shown: plot of
\[(r, s) \mapsto \lim_{t \to \infty} a_{rt, st, t}\]
General case

Inverse Fourier transforms for general hyperbolic homogeneous polynomials have not been effectively computed although quite a number have been worked out, e.g., Atiyah-Bott-Gårding (Acta Math. 1970) “Lacunas for hyperbolic differential operators with constant coefficients, I.”
More to be done

General cubic and quartic integrals are a little trickier to evaluate explicitly than are the quadratics and factored cubics. The so-called fortress tillings are an example of this (work in progress with Y. Baryshnikov).

This cubic arises in analysis of the hexahedron recurrence. Its IFT gives a limit shape theorem (work in progress). At present we can describe the feasible region but not the limit statistics within the region. For a particular parameter value, the central collar becomes a plane and the results for Quadratic times Linear apply.
Analytic Combinatorics in Several Variables

ROBIN PEMANTLE
MARK C. WILSON
References I

M. Atiyah, R. Bott, and L. Gårding.
Lacunas for hyperbolic differential operators with constant coefficients, I.

Y. Baryshnikov and R. Pemantle.
Asymptotics of multivariate sequences, part III: quadratic points.

Lars Hörmander.
An Introduction to Complex Analysis in Several Variables.

R. Pemantle and M.C. Wilson.
Asymptotics of multivariate sequences. I. Smooth points of the singular variety.

R. Pemantle and M.C. Wilson.
Asymptotics of multivariate sequences, II. Multiple points of the singular variety.
R. Pemantle and M.C. Wilson.
Twenty combinatorial examples of asymptotics derived from multivariate generating functions.

R. Pemantle and M.C. Wilson.
Asymptotic expansions of oscillatory integrals with complex phase.