LECTURES ON MEAN FIELD GAMES:
II. CALCULUS OVER WASSERSTEIN SPACE, CONTROL OF
McKEAN-VLASOV DYNAMICS, AND THE MASTER
EQUATION

René Carmona

Department of Operations Research & Financial Engineering
PACM
Princeton University

Minerva Lectures, Columbia U. October 2016
The Analytic (PDE) Approach to MFGs

For fixed $\mu = (\mu_t)_t$, the value function

$$V^\mu(t, x) = \inf_{(\alpha_s)_{t \leq s \leq T}} \mathbb{E}\left[\int_t^T f(s, X_s, \mu_s, \alpha_s) \, ds + g(X_T, \mu_T) \mid X_t = x \right]$$

solves a HJB (backward) equation

$$\partial_t V^\mu(t, x) + \inf_{\alpha} [b(t, x, \mu_t, \alpha) \cdot \partial_x V^\mu(t, x) + f(t, x, \mu_t, \alpha)]$$

$$\frac{1}{2} \text{trace} [\sigma(t, x)\sigma(t, x) \partial_{xx} V^\mu(t, x)] = 0$$

with terminal condition $V^\mu(T, x) = g(x, \mu_T)$

The fixed point step is implemented by requiring that $t \rightarrow \mu_t$ solves the (forward) Kolmogorov equation

$$\partial_t \mu_t = \mu_t \mathcal{L}_t^\dagger$$

This is also a **nonlinear PDE** because μ_t appears in b

System of **strongly coupled nonlinear PDEs**! Time goes in both directions
HJB EQUATION FROM ITÔ’S FORMULA

Classical Optimal Control set-up (μ fixed)

Dynamic Programming Principle

\[t \mapsto V^{\mu}(t, X_t) \text{ is a martingale when } (X_t)_{0 \leq t \leq T} \text{ is optimal} \]

Classical Itô formula to compute:

\[d_t V^{\mu}(t, X_t) \]

when \((t, x) \mapsto V^{\mu}(t, x)\) is smooth and

\[dX_t = b(t, X_t, \hat{\alpha}_t)dt + \sigma(t, X_t, \hat{\alpha}_t)dW_t \]

is optimal to

- set the drift to 0
- get HJB
MFG COUNTERPART

- MFG is not an optimization problem per-se
- Optimal control arguments (for μ fixed) affected by fixed point step
- What is the effect of last step substitution $\mu_t = \mathbb{P} X_t$?
- In equilibrium, do we still have:
 - Dynamic Programming Principle?
 - Martingale property of $t \mapsto V^\mu(t, X_t)$
- What would be the right Itô formula to compute:
 $$d_t V^\mu(t, X_t)$$

when
$$dX_t = b(t, X_t, \hat{\alpha}_t) dt + \sigma(t, X_t, \hat{\alpha}_t) dW_t$$
is optimal and $\mu_t = \mathbb{P} X_t$?
MORE REASONS TO DIFFERENTIATE FUNCTIONS OF MEASURES

Back to the \textit{N-player games} (with reduced or distributed controls):
\[
dx^i_t = b(t, X^i_t, \bar{\mu}^N_t, \phi(t, X^i_t, \bar{\mu}^N_t)) \, dt + \sigma(t, X^i_t, \bar{\mu}^N_t, \phi(t, X^i_t, \bar{\mu}^N_t)) \, dW^i_t, \quad t \in [0, T],
\]

Propagation of Chaos
\begin{itemize}
\item \(X^1_t, \ldots, X^k_t, \ldots\) become independent in the limit \(N \to \infty\)
\item \(X^i = (X^i_t)_{0 \leq t \leq T} \implies X = (X_t)_{0 \leq t \leq T}\) solution of the McKean–Vlasov equation:
\[
dx_t = b(t, X_t, \mathbb{P}_{X_t}, \phi(t, X_t, \mathbb{P}_{X_t})) \, dt + \sigma(t, X_t, \mathbb{P}_{X_t}, \phi(t, X_t, \mathbb{P}_{X_t})) \, dW_t, \quad t \in [0, T],
\]
where \(W = (W_t)_{0 \leq t \leq T}\) is a standard Wiener process.
\end{itemize}

Expected Costs:
\[
J^i(\phi) = \mathbb{E} \left[\int_0^T f(t, X^i_t, \bar{\mu}^N_t, \phi(t, X^i_t, \bar{\mu}^N_t)) \, dt + g(X^i_T, \bar{\mu}^N_T) \right],
\]
converge to:
\[
J(\phi) = \mathbb{E} \left[\int_0^T f(t, X_t, \mathbb{P}_{X_t}, \phi(t, X_t, \mathbb{P}_{X_t})) \, dt + g(X_T, \mathbb{P}_{X_T}) \right].
\]

Optimization after the limit: Control of McKean-Vlasov equations!
\textbf{Taking Stock}

SDE State Dynamics
for \(N \) players
\quad \Downarrow \quad \text{Fixed Point}
\quad \lim_{N \to \infty}
\quad \text{McKean Vlasov\nDynamics}

\quad \xrightarrow{\text{Optimization}}

\quad \Downarrow \quad \text{Fixed Point}
\quad \lim_{N \to \infty}

\text{Nash Equilibrium}
for \(N \) players

\text{Mean Field Game?}
\text{Controlled McKean-Vlasov SDE?}

\text{Is the above diagram commutative?}
CONTROLLED MCKEAN-VLASOV SDEs

\[
\inf_{\alpha=(\alpha_t)_{0\leq t\leq T}} \mathbb{E} \left[\int_0^T f(t, X_t, P_{X_t}, \alpha_t) \, dt + g(X_T, P_{X_T}) \right]
\]

under dynamical constraint \(dX_t = b(t, X_t, P_{X_t}, \alpha_t) \, dt + \sigma(t, X_t, P_{X_t}, \alpha_t) \, dW_t \).

- State \((X_t, P_{X_t})\) infinite dimensional
- State trajectory \(t \mapsto (X_t, \mu_t) \) is a very thin submanifold due to constraint \(\mu_t = P_{X_t} \)
- Open loop form: \(\alpha = (\alpha_t)_{0\leq t\leq T} \) adapted
- Closed loop form: \(\alpha_t = \phi(t, X_t, P_{X_t}) \)

Whether we use

- Infinite dimensional HJB equation
- Pontryagin stochastic maximum principle with Hamiltonian

\[
H(t, x, \mu, y, z, \alpha) = b(t, x, \mu, \alpha) \cdot y + \sigma(t, x, \mu, \alpha) \cdot z + f(t, x, \mu, \alpha)
\]

and introduce the adjoint equations,

WE NEED TO DIFFERENTIATE FUNCTIONS OF MEASURES !
DIFFERENTIABILITY OF FUNCTIONS OF MEASURES

\(\mathcal{M}(\mathbb{R}^d) \) space of **signed** (finite) measures on \(\mathbb{R}^d \)

- Banach space (dual of a space of continuous functions)
- Classical differential calculus available
- If
 \[
 \mathcal{M}(\mathbb{R}^d) \ni m \mapsto \phi(m) \in \mathbb{R}
 \]
 "\(\phi \) is differentiable" has a meaning
- For \(m_0 \in \mathcal{M}(\mathbb{R}^d) \) one can define
 \[
 \frac{\delta \phi(m_0)}{\delta m}(\cdot)
 \]
 as a function on \(\mathbb{R}^d \) in **Fréchet** or **Gâteaux** sense

Bensoussan-Frehe-Yam alternative is to work only with measures with **densities** and view \(\phi \) as a function on \(L^1(\mathbb{R}^d, dx) \)!
Measures appearing in MFG theory are probability distributions of random variables !!!

Wasserstein space

\[\mathcal{P}_2(\mathbb{R}^d) = \left\{ \mu \in \mathcal{P}(\mathbb{R}^d); \int_{\mathbb{R}^d} |x|^2 d\mu(x) < \infty \right\} \]

Metric space for the 2-Wasserstein distance

\[W_2(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} {\left[\int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \pi(dx, dy) \right]}^{1/2} \]

where \(\Pi(\mu, \nu) \) is the set of probability measures coupling \(\mu \) and \(\nu \).

Topological properties of Wasserstein space well understood as following statements are equivalents

- \(\mu^N \rightarrow \mu \) in Wasserstein space
- \(\mu^N \rightarrow \mu \) weakly and \(\int |x|^2 \mu^N(dx) \rightarrow \int |x|^2 \mu(dx) \)
Glivenko-Cantelli in Wasserstein Space

X^1, X^2, \cdots, i.i.d. random variables in \mathbb{R}^d with common distribution μ s.t.

$$M_q(\mu) = \int_{\mathbb{R}^d} |x|^q \mu(dx) < \infty.$$

If $q = 2$,

$$\mathbb{P}\left[\lim_{N \to \infty} W_2(\mu^N, \mu) = 0 \right] = 1.$$

where $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}$ is a (random) empirical measure. Standard LLN!

Crucial Estimate: Glivenko-Cantelli If $q > 4$ for each dimension $d \geq 1$, $\exists C = C(d, q, M_q(\mu))$ s.t. for all $N \geq 1$:

$$\mathbb{E}\left[W_2(\mu^N, \mu)^2 \right] \leq C \begin{cases}
N^{-1/2}, & \text{if } d < 4, \\
N^{-1/2} \log N, & \text{if } d = 4, \\
N^{-2/d}, & \text{if } d > 4.
\end{cases} \quad (1)$$
What does it mean "\(\phi \) is differentiable" or "\(\phi \) is convex" for

\[
\mathcal{P}_2(\mathbb{R}^d) \ni \mu \mapsto \phi(\mu) \in \mathbb{R}
\]

Wasserstein space \(\mathcal{P}_2(\mathbb{R}^d) \) is a metric space for \(W_2 \)

- Optimal transportation (Monge-Ampere-Kantorovich)
- Curve length and shortest paths (geodesics)
- Notion of **convex function** on \(\mathcal{P}_2(\mathbb{R}^d) \)
- **Tangent spaces** and differential geometry on \(\mathcal{P}_2(\mathbb{R}^d) \).
- Differential calculus on Wasserstein space

Brenier, Benamou, Ambrosio, Gigli, Otto, Caffarelli, Villani, Carlier,
Differentiability in the sense of P.L. Lions

If $\mathcal{P}_2(\mathbb{R}^d) \ni \mu \mapsto \phi(\mu) \in \mathbb{R}$ is "differentiable" on Wasserstein space what about $\mathbb{R}^{dN} \ni (x^1, \ldots, x^N) \mapsto u(x^1, \ldots, x^N) = \phi \left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_j} \right)$?

How does $\partial \phi(\mu)$ relate to $\partial_{x_i} u(x^1, \ldots, x^N)$?

Lions’ Solution

- **Lift** ϕ up to $L^2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ into $\tilde{\phi}$ defined by $\tilde{\phi}(X) = \phi(\tilde{\mathbb{P}}X)$
- **Use** Fréchet differentials on **flat space** L^2

Definition of L-differentiability

ϕ is differentiable at μ_0 if $\tilde{\phi}$ is Fréchet differentiable at X_0 s.t. $\tilde{\mathbb{P}}X_0 = \mu_0$

- **Check** definition is **intrinsic**
Properties of L-differentials

- $\partial \phi(\mu_0) = D\tilde{\phi}(X_0) \in L^2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$
- The distribution of the random variable $\partial \phi(\mu_0)$ depends only on μ_0, NOT ON THE RANDOM VARIABLE X_0 used to represent it
- $\exists \xi : \mathbb{R}^d \mapsto \mathbb{R}^d$ uniquely defined μ_0 a.e. such that $\partial \phi(\mu_0) = D\tilde{\phi}(X_0) = \xi(X_0)$
- we use $\partial \phi(\mu_0)(\cdot) = \xi$

Examples

\[
\phi(\mu) = \int_{\mathbb{R}^d} h(x) \mu(dx) \implies \partial \phi(\mu)(\cdot) = \partial h(\cdot)
\]

\[
\phi(\mu) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x - y) \mu(dx) \mu(dy) \implies \partial \phi(\mu)(\cdot) = [2\partial h(\cdot) \ast \mu](\cdot)
\]

\[
\phi(\mu) = \int_{\mathbb{R}^d} \varphi(x, \mu) \mu(dx) \implies \partial \phi(\mu)(\cdot) = \partial_x \varphi(\cdot, \mu) + \int_{\mathbb{R}^d} \partial_\mu \varphi(x', \mu)(\cdot) \mu(dx')
\]
Two More Examples

Assume $\phi : \mathcal{P}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ is L-differentiable and define

$$
\phi^N : \mathbb{R}^d \times \cdots \times \mathbb{R}^d \ni (x^1, \ldots, x^N) \mapsto \phi^N(x^1, \ldots, x^N) = \phi\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}\right)
$$

$$
\partial_{x^i} \phi^N(x^1, \ldots, x^N) = \frac{1}{N} \partial_{\mu} \phi\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x^i}\right)(x^i)
$$

Assume $\phi : \mathcal{M}_2(\mathbb{R}^d) \mapsto \mathbb{R}$ has a linear functional derivative (at least in a neighborhood of $\mathcal{P}_2(\mathbb{R}^d)$ and that $\mathbb{R}^d \ni x \mapsto [\delta \phi / \delta m](m)(x)$ is differentiable and the derivative

$$
\mathcal{M}_2(\mathbb{R}^d) \times \mathbb{R}^d \ni (m, x) \mapsto \partial_x \left[\frac{\delta \phi}{\delta m} \right](m)(x) \in \mathbb{R}^d
$$

is jointly continuous in (m, x) and is of linear growth in x, then ϕ is L-differentiable and

$$
\partial_{\mu} \phi(\mu)(\cdot) = \partial_x \frac{\delta \phi}{\delta m}(\mu)(\cdot), \quad \mu \in \mathcal{P}_2(\mathbb{R}^d).
$$
Convex Functions of Measures

\(\phi : \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R} \) is said to be **L-convex** if

\[
\forall \mu, \mu' \quad \phi(\mu') - \phi(\mu) - \mathbb{E}[\partial_\mu \phi(\mu)(X) \cdot (X' - X)] \geq 0,
\]

whenever \(P_X = \mu \) and \(P_{X'} = \mu' \).

Example 1

\[
\mu \mapsto \phi(\mu) = g\left(\int_{\mathbb{R}^d} \zeta(x)d\mu(x) \right),
\]

- for \(g : \mathbb{R} \to \mathbb{R} \) is non-decreasing convex differentiable
- and \(\zeta : \mathbb{R}^d \to \mathbb{R} \) convex differentiable with derivative of at most of linear growth

Example 2

\[
\mu \mapsto \phi(\mu) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} g(x, x')d\mu(x)d\mu(x')
\]

- If \(g : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) is convex differentiable (\(\partial g \) linear growth)

A sobering counter-example. If \(\mu_0 \in \mathcal{P}_2(E) \) is fixed, the square distance function

\[
\mathcal{P}_2(E) \ni \mu \to W_2(\mu_0, \mu)^2 \in \mathbb{R}
\]

may not be convex or even L-differentiable!
BACK TO THE CONTROL OF McKean-Vlasov EQUATIONS

\[
\inf_{\alpha=(\alpha_t)_{0 \leq t \leq T}} \mathbb{E} \left[\int_0^T f(t, X_t, \mathbb{P}_{X_t}, \alpha_t) \, dt + g(X_T, \mathbb{P}_{X_T}) \right]
\]

under the dynamical constraint

\[
dX_t = b(t, X_t, \mathbb{P}_{X_t}, \alpha_t) \, dt + \sigma(t, X_t, \mathbb{P}_{X_t}, \alpha_t) \, dW_t.
\]
EXAMPLE: POTENTIAL MEAN FIELD GAMES

Start with **Mean Field Game à la Lasry-Lions**

\[
\inf_{\alpha=(\alpha_t)_{0 \leq t \leq T}, \, dX_t=\alpha_t \, dt + \sigma \, dW_t} \mathbb{E} \left[\int_0^T \left[\frac{1}{2} |\alpha_t|^2 + f(t, X_t, \mu_t) \right] dt + g(X_T, \mu_T) \right]
\]

s.t. \(f \) and \(g \) are differentiable w.r.t. \(x \) and there exist differentiable functions \(F \) and \(G \)

\[
\partial_x f(t, x, \mu) = \partial_{\mu} F(t, \mu)(x) \quad \text{and} \quad \partial_x g(x, \mu) = \partial_{\mu} G(\mu)(x)
\]

Solving this **MFG** is equivalent to solving the **central planner** optimization problem

\[
\inf_{\alpha=(\alpha_t)_{0 \leq t \leq T}, \, dX_t=\alpha_t \, dt + \sigma \, dW_t} \mathbb{E} \left[\int_0^T \left[\frac{1}{2} |\alpha_t|^2 + F(t, \mathbb{P} X_t) \right] dt + G(\mathbb{P} X_T) \right]
\]

Special case of **McKean-Vlasov optimal control**
The Adjoint Equations

Lifted Hamiltonian

\[\tilde{H}(t, x, \tilde{X}, y, \alpha) = H(t, x, \mu, y, \alpha) \]

for any random variable \(\tilde{X} \) with distribution \(\mu \).

Given an admissible control \(\alpha = (\alpha_t)_{0 \leq t \leq T} \) and the corresponding controlled state process \(X^\alpha = (X^\alpha_t)_{0 \leq t \leq T} \), any couple \((Y_t, Z_t)_{0 \leq t \leq T} \) satisfying:

\[
\begin{cases}
 dY_t = -\partial_x H(t, X^\alpha_t, \mathbb{P}X^\alpha_t, Y_t, \alpha_t)dt + Z_t dW_t \\
 Y_T = \partial_x g(X^\alpha_T, \mathbb{P}X^\alpha_T) + \tilde{E}[\partial_\mu H(t, \tilde{X}_t, X, \tilde{Y}_t, \tilde{\alpha}_t)|X = X^\alpha_t] dt
\end{cases}
\]

where \((\tilde{\alpha}, \tilde{X}, \tilde{Y}, \tilde{Z})\) is an independent copy of \((\alpha, X^\alpha, Y, Z)\), is called a set of adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!

Extra terms in red are the ONLY difference between MFG and Control of McKean-Vlasov dynamics !!!
PONTRYAGIN MAXIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;
3. $\alpha = (\alpha_t)_{0 \leq t \leq T}$ admissible control, $X = (X_t)_{0 \leq t \leq T}$ corresponding dynamics, $(Y, Z) = (Y_t, Z_t)_{0 \leq t \leq T}$ adjoint processes and

$$(x, \mu, \alpha) \mapsto H(t, x, \mu, Y_t, Z_t, \alpha)$$

is $dt \otimes d\mathbb{P}$ a.e. convex,

then, if moreover

$$H(t, X_t, \mathbb{P}X_t, Y_t, Z_t, \alpha_t) = \inf_{\alpha \in A} H(t, X_t, \mathbb{P}X_t, Y_t, \alpha), \quad \text{a.s.}$$

Then α is an optimal control, i.e.

$$J(\alpha) = \inf_{\beta \in A} J(\beta).$$
Particular Case: Scalar Interactions

\[b(t, x, \mu, \alpha) = \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \quad \sigma(t, x, \mu, \alpha) = \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha) \]

\[f(t, x, \mu, \alpha) = \tilde{f}(t, x, \langle \gamma, \mu \rangle, \alpha) \quad g(x, \mu) = \tilde{g}(x, \langle \zeta, \mu \rangle) \]

- \(\psi, \phi, \gamma \) and \(\zeta \) differentiable with at most quadratic growth at \(\infty \),
- \(\tilde{b}, \tilde{\sigma} \) and \(\tilde{f} \) differentiable in \((x, r) \in \mathbb{R}^d \times \mathbb{R} \) for \(t, \alpha \) fixed
- \(\tilde{g} \) differentiable in \((x, r) \in \mathbb{R}^d \times \mathbb{R} \).

Recall that the adjoint process satisfies

\[Y_T = \partial_x g(X_T, \mathbb{P} X_T) + \tilde{\mathbb{E}}[\partial_\mu g(\tilde{X}_T, \mathbb{P} \tilde{X}_T)(X_T)]. \]

but since

\[\partial_\mu g(x, \mu)(x') = \partial_r \tilde{g}(x, \langle \zeta, \mu \rangle) \partial_\zeta(x'), \]

the terminal condition reads

\[Y_T = \partial_x \tilde{g}(X_T, \mathbb{E}[\zeta(X_T)]) + \tilde{\mathbb{E}}[\partial_r \tilde{g}(\tilde{X}_T, \mathbb{E}[\zeta(X_T)])] \partial_\zeta(X_T) \]

Convexity in \(\mu \) follows convexity of \(\tilde{g} \).
Scalar Interactions (cont.)

\[H(t, x, \mu, y, z, \alpha) = \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \cdot y + \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha) \cdot z + \tilde{f}(t, x, \langle \gamma, \mu \rangle, \alpha). \]

\[\partial_\mu H(t, x, \mu, y, z, \alpha) \] can be identified with

\[\partial_\mu H(t, x, \mu, y, z, \alpha)(x') = \left[\partial_r \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \cdot y \right] \partial_\mu \psi(x') \]
\[+ \left[\partial_r \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha) \cdot z \right] \partial_\mu \phi(x') \]
\[+ \partial_r \tilde{f}(t, x, \langle \gamma, \mu \rangle, \alpha) \partial_\mu \gamma(x') \]

and the adjoint equation rewrites:

\[dY_t = -\left\{ \partial_x \tilde{b}(t, X_t, \mathbb{E}[\psi(X_t)], \alpha_t) \cdot Y_t + \partial_x \tilde{\sigma}(t, X_t, \mathbb{E}[\phi(X_t)], \alpha_t) \cdot Z_t \right\} dt + Z_t dW_t \]
\[-\left\{ \tilde{E}[\partial_r \tilde{b}(t, \tilde{X}_t, \mathbb{E}[\psi(\tilde{X}_t)], \tilde{\alpha}_t) \cdot \tilde{Y}_t] \partial_\mu \psi(X_t) + \tilde{E}[\partial_r \tilde{\sigma}(t, \tilde{X}_t, \mathbb{E}[\phi(\tilde{X}_t)], \tilde{\alpha}_t) \cdot \tilde{Z}_t] \partial_\mu \phi(X_t) \right\} dt \]

Anderson - Djehiche
Solution of the McKV Control Problem

Assume

\[b(t, x, \mu, \alpha) = b_0(t) \int_{\mathbb{R}^d} xd\mu(x) + b_1(t)x + b_2(t)\alpha \]

with \(b_0, b_1 \) and \(b_2 \) is \(\mathbb{R}^{d \times d} \)-valued and are bounded.

\[f \text{ and } g \text{ as in MFG problem.} \]

Then there exists a solution \((X, Y, Z) = (X_t, Y_t, Z_t)_{0 \leq t \leq T}\) of the McKean-Vlasov FBSDE

\[
\begin{aligned}
 dX_t &= b_0(t)\mathbb{E}(X_t)dt + b_1(t)X_t dt + b_2(t)\hat{\alpha}(t, X_t, \mathbb{P}_{X_t}, Y_t)dt + \sigma dW_t, \\
 dY_t &= -\partial_x H(t, X_t, \mathbb{P}_{X_t}, Y_t, \hat{\alpha}_t) dt \\
 &\quad - \mathbb{E}[\partial_\mu \tilde{H}(t, \tilde{X}_t, X_t, \tilde{Y}_t, \tilde{\alpha}_t)] dt + Z_t dW_t.
\end{aligned}
\]

with \(Y_t = u(t, X_t, \mathbb{P}_{X_t}) \) for a function

\[u : [0, T] \times \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d) \ni (t, x, \mu) \mapsto u(t, x, \mu) \]

uniformly of Lip-1 and with linear growth in \(x \).
For N independent Brownian motions (W^1, \ldots, W^N) and for a square integrable exchangeable process $\beta = (\beta^1, \ldots, \beta^N)$, consider the system

$$dX^i_t = \frac{1}{N} b_0(t) \sum_{j=1}^N X^j_t + b_1(t)X^i_t + b_2(t)\beta^i_t + \sigma dW^i_t, \quad X^i_0 = \xi^i_0,$$

and define the common cost

$$J^N(\beta) = \mathbb{E} \left[\int_0^T f(s, X^i_s, \bar{\mu}^N_s, \beta^i_s) ds + g(X^i_T, \bar{\mu}^N_T) \right], \quad \text{with } \bar{\mu}^N_t = \frac{1}{N} \sum_{i=1}^N \delta_{X^i_t}.$$

Then, there exists a sequence $(\epsilon_N)_{N \geq 1}$, $\epsilon_N \searrow 0$, s.t. for all $\beta = (\beta^1, \ldots, \beta^N)$,

$$J^N(\beta) \geq J^N(\alpha) - \epsilon_N,$$

where, $\alpha = (\alpha^1, \ldots, \alpha^N)$ with

$$\alpha^i_t = \hat{\alpha}(s, \tilde{X}^i_t, u(t, \tilde{X}^i_t), \mathbb{P}_{X^i_t})$$

where X and u are from the solution to the controlled McKean Vlasov problem, and $(\tilde{X}^1, \ldots, \tilde{X}^N)$ is the state of the system controlled by α, i.e.

$$d\tilde{X}^i_t = \frac{1}{N} \sum_{j=1}^N b_0(t)\tilde{X}^j_t + b_1(t)\tilde{X}^i_t + b_2(t)\hat{\alpha}(s, \tilde{X}^i_s, u(s, \tilde{X}^i_s), \mathbb{P}_{X^i_s}) + \sigma dW^i_t, \quad \tilde{X}^i_0 = \xi^i_0.$$
APPLICATION #2: CHAIN RULE

Assume
\[dX_t = b_t dt + \sigma_t dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}, \mathbb{P}), \]
where
- \(W = (W_t)_{t \geq 0} \) is a \(\mathbb{F} \)-Brownian motion with values in \(\mathbb{R}^d \)
- \((b_t)_{t \geq 0} \) and \((\sigma_t)_{t \geq 0} \) are \(\mathbb{F} \)-progressive processes in \(\mathbb{R}^d \) and \(\mathbb{R}^{d \times d} \)
- Assume
\[\forall T > 0, \quad \mathbb{E} \left[\int_0^T (|b_t|^2 + |\sigma_t|^4) dt \right] < +\infty. \]

Then for any \(t \geq 0 \), if \(\mu_t = \mathbb{P}X_t \), and \(a_t = \sigma_t \sigma_t^\dagger \) then:
\[
 u(\mu_t) = u(\mu_0) + \int_0^t \mathbb{E}[\partial_\mu u(\mu_s)(X_s) \cdot b_s] ds + \frac{1}{2} \int_0^t \mathbb{E}[\partial_V (\partial_\mu u(\mu_s))(X_s) \cdot a_s] ds.
\]
Problem: if \(f : \mathcal{P}_2(\mathbb{R}^d) \mapsto \mathbb{R} \), minimize

\[
J(\alpha) = \int_0^T f(\mathbb{P}_{X_t^{\alpha}}) \, dt + \mathbb{E} \left[\int_0^T \frac{1}{2} |\alpha_t|^2 \, dt \right]
\]

under the constraint:

\[
dX_t^{\alpha} = \alpha_t \, dt + dW_t, \quad 0 \leq t \leq T,
\]

Verification Argument: Assume \(u : [0, T] \times \mathcal{P}_2(\mathbb{R}^d) \rightarrow \mathbb{R} \) is \(C^{1,2} \), and satisfies

\[
\partial_t u(t, \mu) - \frac{1}{2} \int_{\mathbb{R}^d} |\partial_\mu u(t, \mu)(v)|^2 \, d\mu(v) + \frac{1}{2} \text{trace} \left[\int_{\mathbb{R}^d} \partial_v \partial_\mu u(t, \mu)(v) d\mu(v) \right] + f(\mu) = 0,
\]

then, the McKean-Vlasov SDE

\[
d\hat{X}_t = -\partial_\mu u(t, \mathbb{P}_{\hat{X}_t})(\hat{X}_t) \, dt + dW_t, \quad 0 \leq t \leq T,
\]

has a unique solution \((\hat{X}_t)_{0 \leq t \leq T}\) satisfying \(\mathbb{E}[\sup_{0 \leq t \leq T} |\hat{X}_t|^2] < \infty \) which is the unique optimal path since \(\hat{\alpha}_t = -\partial_\mu u(t, \mathbb{P}_{\hat{X}_t})(\hat{X}_t) \) minimizes the cost:

\[
J(\hat{\alpha}) = \inf_{\alpha \in \mathcal{A}} J(\alpha).
\]
For a generic admissible control $\alpha = (\alpha_t)_{0 \leq t \leq T}$, set $X_t^\alpha = X_0 + \int_0^T \alpha_s ds + W_t$ and apply the chain rule:

$$du(t, \mathbb{P}_{X_t^\alpha})$$

$$= \left[\partial_t u(t, \mathbb{P}_{X_t^\alpha}) + \mathbb{E} \left[\partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha) \cdot \alpha_t \right] + \frac{1}{2} \mathbb{E} \left[\text{trace} \left[\partial_\nu \partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha) \right] \right] \right] dt$$

$$= \left[-f(\mathbb{P}_{X_t^\alpha}) + \frac{1}{2} \mathbb{E} \left[|\partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha)|^2 \right] + \mathbb{E} \left[\partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha) \cdot \alpha_t \right] \right] dt$$

$$= \left[-f(\mathbb{P}_{X_t^\alpha}) - \frac{1}{2} \mathbb{E} [\alpha_t^2] + \frac{1}{2} \mathbb{E} \left[|\alpha_t + \partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha)|^2 \right] \right] dt$$

where we used the PDE satisfied by u, and identified a perfect square. Integrate both sides and get:

$$J(\alpha) = u(0, \mathbb{P}_{X_0^\alpha}) + \frac{1}{2} \mathbb{E} \left[\int_0^T \left[|\alpha_t + \partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha)|^2 \right] dt \right],$$

which shows that $\alpha_t = -\partial_\mu u(t, \mathbb{P}_{X_t^\alpha}) (X_t^\alpha)$ is optimal.
Joint Chain Rule

- If u is smooth
- If $d\xi_t = \eta_t dt + \gamma_t dW_t$
- If $dX_t = b_t dt + \sigma_t dW_t$ and $\mu_t = \mathbb{P}X_t$

\[
\begin{align*}
 u(t, \xi_t, \mu_t) &= u(0, \xi_0, \mu_0) + \int_0^t \partial_x u(s, \xi_s, \mu_s) \cdot (\gamma_s dW_s) \\
 &\quad + \int_0^t \left(\partial_t u(s, \xi_s, \mu_s) + \partial_x u(s, \xi_s, \mu_s) \cdot \eta_s + \frac{1}{2} \text{trace} \left[\partial_{xx} u(s, \xi_s, \mu_s) \gamma_s \gamma_s^\top \right] \right) ds \\
 &\quad + \int_0^t \tilde{E} \left[\partial_\mu u(s, \xi_s, \mu_s)(\tilde{X}_s) \cdot \tilde{b}_s \right] ds + \frac{1}{2} \int_0^t \tilde{E} \left[\text{trace} \left(\partial_v \left[\partial_\mu u(s, \xi_s, \mu_s) \right] (\tilde{X}_s) \tilde{\sigma}_s \tilde{\sigma}_s^\top \right) \right] ds
\end{align*}
\]

where the process $(\tilde{X}_t, \tilde{b}_t, \tilde{\sigma}_t)_{0 \leq t \leq \tau}$ is an independent copy of the process $(X_t, b_t, \sigma_t)_{0 \leq t \leq \tau}$, on a different probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$.
Deriving the Master Equation

If \((t, x, \mu) \mapsto \mathcal{U}(t, x, \mu)\) is the master field

\[
\left(\mathcal{U}(t, X_t, \mu_t) - \int_0^t f(s, X_s, \mu_s, \hat{\alpha}(s, X_s, \mu_s, Y_s)) \, ds \right)_{0 \leq t \leq T}
\]

is a martingale whenever \((X_t, Y_t, Z_t)_{0 \leq t \leq T}\) is the solution of the forward-backward system characterizing the optimal path under the flow of measures \((\mu_t)_{0 \leq t \leq T}\). So if we compute its Itô differential, the drift must be 0.
An Example of Derivation

\[dX_t = b(t, X_t, \mu_t, \alpha_t)dt + dW_t \]
\[H(t, x, \mu, y, \alpha) = b(t, x, \mu, \alpha) \cdot y + f(t, x, \mu, \alpha) \]
\[\hat{\alpha}(t, x, \mu, y) = \arg\inf_{\alpha} H(t, x, \mu, y, \alpha) \]

Itô’s Formula with \(\mu_t = \mathbb{P}X_t \)
(set \(\hat{\alpha}_t = \hat{\alpha}(t, X_t, \mu_t, \partial U(t, X_t, \mu_t)) \) and \(b_t = b(t, X_t, \mu_t, \hat{\alpha}_t) \))

\[dU(t, X_t, \mu_t) = \]
\[\left(\partial_t U(t, X_t, \mu_t) + b_t \cdot \partial_x U(t, X_t, \mu_t) + \frac{1}{2} \text{tr}[\partial_{xx}^2 U(t, X_t, \mu_t)] + f(t, x, \mu, \hat{\alpha}_t) \right)dt \]
\[+ \mathbb{E} \left[b_t \cdot \partial_{\mu} U(t, X_t, \mu_t)(X_t) + \frac{1}{2} \partial_{\nu} \partial_{\mu} U(t, X_t, \mu_t)(X_t) \right] dt + \partial_x U(t, X_t, \mu_t)dW_t \]
The Actual Master Equation

\[
\begin{align*}
\partial_t U(t, x, \mu) &+ b(t, x, \mu, \alpha(t, x, \mu, \partial U(t, x, \mu))) \cdot \partial_x U(t, x, \mu) \\
&+ \frac{1}{2} \text{trace} \left[\partial^2_{xx} U(t, x, \mu) \right] + f(t, x, \mu, \alpha(t, x, \mu, \partial U(t, x, \mu))) \\
&+ \int_{\mathbb{R}^d} \left[b(t, x', \mu, \alpha(t, x, \mu, \partial U(t, x, \mu))) \cdot \partial_\mu U(t, x, \mu)(x') \\
&\quad + \frac{1}{2} \text{trace} \left(\partial_v \partial_\mu U(t, x, \mu)(x') \right) \right] d\mu(x') = 0,
\end{align*}
\]

for \((t, x, \mu) \in [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)\), with the **terminal** condition \(V(T, x, \mu) = g(x, \mu)\).