GEOMETRY OF THE CORNER GROWTH
MODEL
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Summary. Qualitative and quantitative results on the geodesics,
Busemann functions, and competition interfaces of the explicitly solvable
corner growth model through the joint distribution of Busemann
functions.

Collaborators: Louis Fan (Indiana), Firas Rassoul-Agha and Chris Janjigian (Utah).
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Corner growth model with exponential distribution

. . ) ommme / o
oY ' wx ~ Exp(1): Pwx = t) =e " fort = 0.

I IID random medium w = (wx : x € Z?).
L] [ ] L] L[] [ ] L]
. u_l e o o o Weight of an up-right path ~ is
[ [ ] [ ] [ [ ] [ ] [
W(vy) = Z Wx
XEy

Point-to-point last-passage percolation:

G(u,v) = max Z Wy for u < v in Z?
Yiu—v
x€y

A maximizing path is called a geodesic.

To each x € Z? attach random weight w,.



Corner growth model with exponential distribution
shape

Theorem We have this law of large numbers:

lim n71G(0,[n¢]) = g(¢) as. VEeR3

n—0o0

with explicit shape function

&) = (Va +v&)>

[Rost 1981, several authors in the 1990’s]
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The scaled growing cluster t~*{(m, n) : G(0, (m, n)) < t} at times t = 100 and
t = 400.

The curve v/x + ,/y = 1 (level curve of the shape function) is the boundary of
the limit shape.

[Simulations: Firas Rassoul-Agha, Elnur Emrah]
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Methods for studying exponential corner growth model

e Coupling with TASEP (totally asymmetric simple exclusion process).

e Methods of integrable probability: combinatorics (versions of RSK),
determinantal structures, Fredholm determinants, asymptotic analysis.

e Tractable stationary version.

Focus of the talk: a natural coupling of all the stationary CGMs and
some consequences for the geometry of the CGM.

Let’s first go over the stationary CGM.



Last-passage percolation with stationary increments

¥ x € IN3 attach weight w, ~ Exp(1).

4 I o o ommme (M, n)

3 I o o« o let0<a <1
|
I Edge weights: I2, ~ Exp(a)
|

J&

Je2

~ Exp(1 — a)

Define last-passage percolation G* by maximizing over paths that use both
boundary weights and interior weights:

K ¢
G(%,(»,(m,,,) = lgka<xm { Z e + G(k,1),(m,n)} \/ 1Tza§n{ Z Jo, + G(l,l),(m,n)}
= i=1 STV =1



Benefit?

Here again the LPP process with boundary weights and interior weights:

k £
0.0, (mm) = lgfjm{ 2l G(k,n,(m,n)} max { DIE G(l,o,(m,n)}
<k< =

e 1<é<n

) . I>(<1 = G(?,x - GOa,xfel ~ EXp(a)
Statlonary increments: Vx

= GG — Ghyey, ~ Exp(l — «)

. . . . 1 S t
Shape function immediate: lim N 16(0,0)7(,\,57,\“) =—+
N—oo (81

Next solve for the shape function g that comes from the i.i.d. weights.

Rewrite the coupling with the scaling and take the limit:

Na

Nb
Glo.0),(ws,) = Mmax. { 2l t G(Na,n,(/vs,m)} V' max { DI G<1,Nb),<Ns,Nr>}
= b= j=1

1<b<t



0<a<s

Na Nb
G(o,0),(Ns, ey = Max {Z le + G(Na,1),(/vs,/vt)} \/ 1”25@{ Z Jo, + G(l,Nb),(Ns,Nt)}
i=1 ST V=1

Let N — oo. Write £ = (s, t) and n = (a,0) or (0, b).

g*(&) = sup {g"(n)+gl&—n)}

7 € boundary

From this g(&) = g®(&) for the unique o = (&) such that the geodesic for
the increment-stationary LPP process Gg'ye spends o(/N) time on the boundary.

This specifies a one-to-one correspondence between a direction vector
& =(&,1—¢&) € (e2,e1) and a parameter o € (0,1):

_ V&
a(g)_ \/a+m € (071)



Remark in passing: What is the obstacle to generalization to other
i.i.d. weight distributions to find explicit limit shapes?

Their stationary last-passage percolation processes exist but not
sufficiently understood.
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NEXT STEP: Look for a natural coupling of the entire family of
stationary LPP processes {G* : 0 < av < 1}.

WHY? Parameter o associated with directions in the quadrant, and (as
we shall see) directions are associated with geodesics. Only a joint
distribution can reveal path-level properties such as singularities.

HOW? Let the LPP process itself produce the coupling for us. This
leads us to Busemann functions.

Like a Markov chain produces its invariant distribution by passing to a limit, the LPP process

produces its stationary versions by going to a limit in different spatial directions.
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Busemann function
Busemann function in direction £ € (e, e;) is defined by

Bs(x,y) = lim [G(x,v,) — G(y, vy)]

n—aoo0

for a sequence v, — @ s.t. v,/n — &.

For a given £ this can be proved, almost surely, simultaneously for all
sequences v,/n — &.

Two proofs: (i) Techniques due to Newman et al. 1990s applied by Cator, P.A.Ferrari, Martin,
Pimentel 2005-2012. (ii) More recent proof through coupling with stationary LPP processes.

{B%(x,y) : x,y € Z?} is a stationary cocycle with marginals
Bf(x,x +e1) ~ Exp(a) and B%(x,x + e3) ~ Exp(1 — a)

where

a=afg) = —YL__
V& +/1-6&
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Busemann function as a stationary LPP process

Fix any down-right path ) = {yk}kez on Z2.  (Means: yi — yi 1 € {e1, —es}.)

Then for points x below and left of ),
B(x,y0) = sup { Z wx + B(y,}’o)}
Tix—yEY xem\{y}
where supremum over up-right paths 7 from x to the boundary ).

Proof: B(x,y) = lim [G(x,v,) — G(yo, Vn)]

n—0o0

= lim [wx+ G(x +e1,v,) v G(x +ezv,) — Gy, Va) ]

n—ao0

=wx + B(x +e1,y0) v B(x + ez, y0).
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Busemann process {B* : ¢ € (es, e;)}

For a dense countable set of directions £ the almost sure limits

B (x,y) = lim [G(x,va) = G(y,vy)]

Vp/n— €

define the Busemann functions.

Left and right limits & — (£ (directions ordered from e, to e;)
Bt (x,y) = 5Ii\r"r1c B%(x,y) and B¢ (x,y) = 5|i/rvn¢ B%(x,y)

define a process {B**} indexed by the full set of directions .

The limits come from monotonicity (a planar feature).

For a fixed ¢, with probability 1, B¢t = B¢~ and

Bc(x,y) = lim [G(x,vs) — G(y,vs)]

v"/n—><
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From Busemann functions to semi-infinite geodesics

Recall: a (finite) geodesic is the (almost surely unique) maximizing path
between two points.

A semi-infinite geodesic is an infinite up-right nearest-neighbor path
(Xk)k=>0 that is the geodesic between any two of its points:

G(Xm, Xn) = Z Wy, Ym<n

i=m

Semi-infinite geodesic (xk)k>o is &-directed if  lim X _ I3
n—o0 n

Questions:

e Given x and &, existence and uniqueness of £-directed semi-infinite
geodesic from x7

e Given x, y and &, do the &-directed geodesics from x and y cross?
Coalesce?
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From Busemann functions to semi-infinite geodesics

For a fixed &, the (almost sure) answers have been known for a while:
e ¥ x 3 unique &-directed semi-infinite geodesic % ¢.
e Coalescence: Vx,yeZ? 3zeZ? : n*énn¥é=rn%t,

(Think here of geodesics as collections of edges and points.)

[Newman et al. 1990s, P.A.Ferrari-Pimentel 2005, Coupier 2011]

These facts can also be derived from the Busemann functions and their
properties. Take existence as an example:
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Semi-infinite geodesics from local increments of Busemann
functions

The unique semi-infinite geodesic 7 = 7¢ from x in direction & can be
defined by following minimal local increments of the £&-Busemann

function:
o = X
Tk + ey, if B(mk, mk +e1) < B (i, mk + €))
and mgy1 =
T + ey, if Bg(ﬂ'k, Tk +€) < Bg(ﬂ'k, Tk + €1).
" Proof "

m1 = x + ey roughly iff G(x + ey, n§) > G(x + ey, nk)
< G(x,n€) — G(x + ey, nt) < G(x,n€) — G(x + eq, nf)

roughly iff B*(x,x + ) < B*(x,x + e;)
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Coalescing geodesics directed to & = (%, %)

1
3
anti-diagonal segment. Picture shows the paths until coalescence.

Blue paths = up-right £ = (%, )-directed geodesics that cross the hyphened

[Simulation: Firas Rassoul-Agha]
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Uniqueness fails in random directions!

:‘rr‘ | S (¢%)n=0 = competition interface from x.
1 r 3 almost sure random asymptotic direction:
_I_I":'._IE P
£ (x) = (&, 1) = lim
O I n—o0 n
xo° [Ferrari-Pimentel 2005]

From x 3 two distinct £*(x)-directed semi-infinite geodesics. (One takes
the initial e; step, the other the e, step.)

No point x is the source of three distinct semi-infinite geodesics in the

same direction.

[Coupier 2011, Coupier-Heinrich 2012, with TASEP input from Amir-Angel-Valké 2011]
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Two distinct £*(x)-directed semi-infinite geodesics on
either side of the competition interface

Red competition interface, blue and green geodesics from 0 in direction £*(0).

Picture above is the initial 300-step part of the 5000-step picture below. The geodesics are the
p2p geodesics from 0 to two points on either side of the competition interface. These p2p

geodesics converge to the true semi-infinite things. [Simulations F. Rassoul-Agha]
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Unifying the geodesics picture

Recall Busemann process {B** : £ € (e, e;)}.

With this process we can define ¥ x € Z? and V£ and + a semi-infinite
geodesic 7*¢% by following the minimal increments of B¢t and by
breaking ties with e; for + and with e, for —.

We can characterize the simultaneous existence, uniqueness and
coalescence of all geodesics.
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Global geodesics picture

Theorem [Janjigian, Rassoul-Agha, S]

3 countable random set V* < (e3, e1) of directions, with the following
properties, all with probability 1.

e For each direction & ¢ V* there is a unique geodesic from each lattice
point. For a given & these geodesics coalesce.

e For directions & € V¥, from each lattice point x there are exactly two
geodesics 76+ and ¢~ in direction £ that eventually separate.
Geodesics {m¢* : x € Z?2} form a coalescing tree, and geodesics
(¢~ : x € Z?} form a separate coalescing tree.

e V¥ = {£*(x) : x € Z?}, the collection of asymptotic directions of the
competition interfaces at all x, at a fixed w.

o VW ={¢:3x,yeZ?: B (x,y) # B (x,y)}, the set of
discontinuities of Busemann functions.

e There are no other semi-infinite geodesics except the trivial ones
X+ ke,-, k > 0.
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Global geodesics picture

Proof of the global geodesics theorem comes from a combination of
earlier facts with properties of the Busemann process {B** : £ € (es, e1)}.

First the distribution of the process £ — B&*(x,x + e;) on a fixed
horizontal edge (x, x + e1).
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Busemann process on an edge, indexed by directions &

Parametrize directions & = (£1,1 — &) € (ez,e1) with a € (0,1):

a() = — Vo
Va+vl-&

Define a marked point process X on (0, 1]:

e On (0,1), N = Poisson point process with intensity measure r~1dr,
and N{1} = 1.

e To each point r € N attach an independent variable Z, ~ Exp(r).

e Set X(a) = 2 Z for0<a<1l X(a)~ Exp(a).

re N(a,1]

Theorem [Fan-5]
On a fixed horizontal edge (x, x + e;),

{BS*(x,x +e1) £ € (e e1)} £ {X(a(§)): €€ (ez,e1)).
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Geometric significance of jumps of £ — fiﬂl

Recall: for a countable dense set of directions ¢, geodesics {m*¢} ez
coalesce a.s.

If z¢(x,y) = coalescence point of geodesics 7¢ and 77
then BC(X7y): G(X,ZC(X,y))fG(y,ZC(X’y)).

If BS(x,y) is constant for ¢ € (1, n") ¢ € (&,7m) then z¢(x, y) cannot
jump.

Let ¢ N\, &. Geodesics converge: ¢ — &+ 7v¢  nv€+ and
Bt (x,y) = G(x, 25" (x,y)) — G(y, 2" (x,y)).

We conclude that £+ geodesics coalesce, as claimed in the global
geodesics theorem.

Furthermore, the coalescence point £ — z¢%(x, x + e;) jumps at the
locations of an inhomogeneous Poisson process.
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Distribution of increments on the x-axis of the lattice

Let ¢,n € (e2, e;) again satisfy (3 < 1.
Ay = BS(key, (k +1)ey) — B"(key, (k+1)e;) = 0

Distribution of process {Ax}, , 7

27:1 \/I'a n> 0
Define 2-sided RW S, =<0, n=
_Z?:n-q-l Yi’ n<0.

with steps Y; ~ Exp(a(¢)) — Exp(a(n)). E(Y;) > 0.

Theorem  {A(}, ., £ {(,Lr;fksm_sk)Jr}keZ
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Finding the joint distribution of {B¢ : € € (es, e;)}

Y level t € Z define bi-infinite sequences

_ =&
Wt = (W) Jkez and B, o (Bfk,t),(kJrLt))keZ

3 mapping D from a subset of ]R% X IR% into ]Rz such that

BS® = D(BSS @) VEand teZ.

Definition of T = D(l,w): with G satisfying Iy = Gy — Gk1, let

Ge— sup (Gt Y} o= G G

m: m=k i—k

Tis the departure process of a FIFO queue with arrivals | and services w
with time running right to left on Z.

27/29



Level-by-level evolution of the Busemann function

For &1,...,&, € (ea,e1), the n-tuple of sequences evolves as a Markov
chain backwards in the time parameter t via the mapping

Béner Béne e Séner _
(BS™,....B"™) = (D(Bi @) ... D(BY @)
Theorem [Fan-s] Given (p1,...,pn) € (1,00)", the Markov chain above
has a unique invariant distribution ergodic under spatial translation and
with mean

13 En
(EB(;,t),(kJrl,t)""’EB(k,t),(kJrl,t)) = (p1,-- -, pn).
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Description of the invariant distribution

Let DM (¢, ¢2,...,¢") = departure process from sending arrival
process (j’l successively through service processes ¢2,...,(".

Let /1, /2,...,I" be independent sequences of i.i.d. exponentials with /] ~
Exp(a(&;)). Define sequences n',...,n" by

=1 n?=D(P ), n®=DOB 12 M, . ..,
n" =D .
Well-defined if &1 - €1 > -+ > £, - e; so that a(&1) > -+ > a(&,).
Then the invariant distribution is given by

—é1.e —&n.e d
(Bt1 1,...,Bt 1) = (nl,...,n”)

[Ferrari-Martin 2006-2009 on invariant distributions of multiclass TASEP pointed the way.
Existence of invariant distributions for multiclass TASEP go back to Liggett 1976.]
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