GEOMETRY OF THE CORNER GROWTH MODEL

Timo Seppäläinen
Summary. Qualitative and quantitative results on the geodesics, Busemann functions, and competition interfaces of the explicitly solvable corner growth model through the joint distribution of Busemann functions.

Collaborators: Louis Fan (Indiana), Firas Rassoul-Agha and Chris Janjigian (Utah).
Corner growth model with exponential distribution

To each $x \in \mathbb{Z}^2$ attach random weight ω_x.

$\omega_x \sim \text{Exp}(1): \mathbb{P}(\omega_x \geq t) = e^{-t}$ for $t \geq 0$.

IID random medium $\omega = (\omega_x : x \in \mathbb{Z}^2)$.

Weight of an up-right path γ is

$$W(\gamma) = \sum_{x \in \gamma} \omega_x$$

Point-to-point last-passage percolation:

$$G(u, v) = \max_{\gamma : u \rightarrow v} \sum_{x \in \gamma} \omega_x \quad \text{for } u \leq v \text{ in } \mathbb{Z}^2$$

A maximizing path is called a geodesic.
Corner growth model with exponential distribution: limit shape

Theorem We have this law of large numbers:

\[
\lim_{n \to \infty} n^{-1} G(0, [n\xi]) = g(\xi) \quad \text{a.s.} \quad \forall \xi \in \mathbb{R}_+^2
\]

with explicit *shape function*

\[
g(\xi) = \left(\sqrt{\xi_1} + \sqrt{\xi_2} \right)^2.
\]

[Rost 1981, several authors in the 1990’s]
The scaled growing cluster $t^{-1}\{(m, n) : G(0, (m, n)) \leq t\}$ at times $t = 100$ and $t = 400$.

The curve $\sqrt{x} + \sqrt{y} = 1$ (level curve of the shape function) is the boundary of the limit shape.

[Simulations: Firas Rassoul-Agha, Elnur Emrah]
Methods for studying exponential corner growth model

- Coupling with TASEP (totally asymmetric simple exclusion process).

- Methods of integrable probability: combinatorics (versions of RSK), determinantal structures, Fredholm determinants, asymptotic analysis.

- Tractable stationary version.

Focus of the talk: a natural coupling of all the stationary CGMs and some consequences for the geometry of the CGM.

Let’s first go over the stationary CGM.
Last-passage percolation with stationary increments

∀ x ∈ ℕ⁺ attach weight ωₓ ∼ Exp(1).

Let 0 < α < 1.

Edge weights:

\[I_{ie_1}^\alpha \sim \text{Exp}(\alpha) \]
\[J_{je_2}^\alpha \sim \text{Exp}(1 - \alpha) \]

Define last-passage percolation \(G^\alpha \) by maximizing over paths that use both boundary weights and interior weights:

\[
G_{(0,0),(m,n)}^\alpha = \max_{1 \leq k \leq m} \left\{ \sum_{i=1}^{k} I_{ie_1}^\alpha + G_{(k,1),(m,n)} \right\} \lor \max_{1 \leq \ell \leq n} \left\{ \sum_{j=1}^{\ell} J_{je_2}^\alpha + G_{(1,\ell),(m,n)} \right\}
\]
Here again the LPP process with boundary weights and interior weights:

\[
G^\alpha(0,0),(m,n) = \max_{1 \leq k \leq m} \left\{ \sum_{i=1}^{k} l^\alpha_{ie_1} + G(k,1),(m,n) \right\} \vee \max_{1 \leq \ell \leq n} \left\{ \sum_{j=1}^{\ell} J^\alpha_{je_2} + G(1,\ell),(m,n) \right\}
\]

Stationary increments: \(\forall x \left\{ l^\alpha_x = G^\alpha_0, x - G^\alpha_0, x-e_1 \sim \text{Exp}(\alpha) \right\} \)

\(J^\alpha_x = G^\alpha_0, x - G^\alpha_0, x-e_2 \sim \text{Exp}(1-\alpha) \)

Shape function immediate: \(\lim_{N \to \infty} N^{-1} G^\alpha(0,0),(N_s,N_t) = \frac{s}{\alpha} + \frac{t}{1-\alpha} \equiv g^\alpha(s, t) \).

Next solve for the shape function \(g \) that comes from the i.i.d. weights.

Rewrite the coupling with the scaling and take the limit:

\[
G^\alpha(0,0),(N_s,N_t) = \max_{0 \leq a \leq s} \left\{ \sum_{i=1}^{Na} l^\alpha_{ie_1} + G(Na,1),(N_s,N_t) \right\} \vee \max_{1 \leq b \leq t} \left\{ \sum_{j=1}^{Nb} J^\alpha_{je_2} + G(1,Nb),(N_s,N_t) \right\}
\]
\[G_{a0, (Ns, Nt)} = \max_{0 \leq a \leq s} \left\{ \sum_{i=1}^{Na} J_{ie_1} + G_{(Na, 1), (Ns, Nt)} \right\} \vee \max_{1 \leq b \leq t} \left\{ \sum_{j=1}^{Nb} J_{je_2} + G_{(1, Nb), (Ns, Nt)} \right\} \]

Let \(N \to \infty \). Write \(\xi = (s, t) \) and \(\eta = (a, 0) \) or \((0, b)\).

\[g^\alpha(\xi) = \sup_{\eta \in \text{boundary}} \{ g^\alpha(\eta) + g(\xi - \eta) \} \]

From this \(g(\xi) = g^\alpha(\xi) \) for the unique \(\alpha = \alpha(\xi) \) such that the geodesic for the increment-stationary LPP process \(G_{a, N\xi} \) spends \(o(N) \) time on the boundary.

This specifies a one-to-one correspondence between a direction vector \(\xi = (\xi_1, 1 - \xi_1) \in (e_2, e_1) \) and a parameter \(\alpha \in (0, 1) \):

\[\alpha(\xi) = \frac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1 - \xi_1}} \in (0, 1) \]
Remark in passing: What is the obstacle to generalization to other i.i.d. weight distributions to find explicit limit shapes?

Their stationary last-passage percolation processes exist but not sufficiently understood.
NEXT STEP: Look for a natural coupling of the entire family of stationary LPP processes \(\{ G^\alpha : 0 < \alpha < 1 \} \).

WHY? Parameter \(\alpha \) associated with directions in the quadrant, and (as we shall see) directions are associated with geodesics. Only a joint distribution can reveal path-level properties such as singularities.

HOW? Let the LPP process itself produce the coupling for us. This leads us to Busemann functions.

Like a Markov chain produces its invariant distribution by passing to a limit, the LPP process produces its stationary versions by going to a limit in different spatial directions.
Busemann function

Busemann function in direction $\xi \in (e_2, e_1)$ is defined by

$$B^\xi(x, y) = \lim_{n \to \infty} [G(x, v_n) - G(y, v_n)]$$

for a sequence $v_n \to \infty$ s.t. $v_n/n \to \xi$.

For a given ξ this can be proved, almost surely, simultaneously for all sequences $v_n/n \to \xi$.

$\{B^\xi(x, y) : x, y \in \mathbb{Z}^2\}$ is a stationary cocycle with marginals

$$B^\xi(x, x + e_1) \sim \text{Exp}(\alpha) \quad \text{and} \quad B^\xi(x, x + e_2) \sim \text{Exp}(1 - \alpha)$$

where

$$\alpha = \alpha(\xi) = \frac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1 - \xi_1}}.$$
Busemann function as a stationary LPP process

Fix any down-right path $\mathcal{Y} = \{y_k\}_{k \in \mathbb{Z}}$ on \mathbb{Z}^2. (Means: $y_k - y_{k-1} \in \{e_1, -e_2\}$.)

Then for points x below and left of \mathcal{Y},

$$B(x, y_0) = \sup_{\pi: x \to y \in \mathcal{Y}} \left\{ \sum_{x \in \pi \setminus \{y\}} \omega_x + B(y, y_0) \right\}$$

where supremum over up-right paths π from x to the boundary \mathcal{Y}.

Proof: \[B(x, y_0) = \lim_{n \to \infty} [G(x, v_n) - G(y_0, v_n)] \]

\[= \lim_{n \to \infty} \left[\omega_x + G(x + e_1, v_n) \vee G(x + e_2, v_n) - G(y_0, v_n) \right] \]

\[= \omega_x + B(x + e_1, y_0) \vee B(x + e_2, y_0). \]
Busemann process $\{B^{\zeta^\pm} : \zeta \in (e_2, e_1)\}$

For a dense countable set of directions ξ the almost sure limits

$$B^{\xi}(x, y) = \lim_{v_n/n \to \xi} [G(x, v_n) - G(y, v_n)]$$

define the Busemann functions.

Left and right limits $\xi \to \zeta^\pm$ (directions ordered from e_2 to e_1)

$$B^{\zeta^+}(x, y) = \lim_{\xi \searrow \zeta} B^{\xi}(x, y) \quad \text{and} \quad B^{\zeta^-}(x, y) = \lim_{\xi \nearrow \zeta} B^{\xi}(x, y)$$

define a process $\{B^{\zeta^\pm}\}$ indexed by the full set of directions ζ.

The limits come from monotonicity (a planar feature).

For a fixed ζ, with probability 1, $B^{\zeta^+} = B^{\zeta^-}$ and

$$B^{\zeta}(x, y) = \lim_{v_n/n \to \zeta} [G(x, v_n) - G(y, v_n)]$$
From Busemann functions to semi-infinite geodesics

Recall: a (finite) geodesic is the (almost surely unique) maximizing path between two points.

A semi-infinite geodesic is an infinite up-right nearest-neighbor path \((x_k)_{k \geq 0}\) that is the geodesic between any two of its points:

\[
G(x_m, x_n) = \sum_{i=m}^{n} \omega_{x_i} \quad \forall \ m < n
\]

Semi-infinite geodesic \((x_k)_{k \geq 0}\) is \(\xi\)-directed if

\[
\lim_{n \to \infty} \frac{x_n}{n} = \xi
\]

Questions:

- Given \(x\) and \(\xi\), existence and uniqueness of \(\xi\)-directed semi-infinite geodesic from \(x\)?
- Given \(x\), \(y\) and \(\xi\), do the \(\xi\)-directed geodesics from \(x\) and \(y\) cross? Coalesce?
For a fixed ξ, the (almost sure) answers have been known for a while:

- $\forall x \exists \text{ unique } \xi$-directed semi-infinite geodesic π^x, ξ.

- Coalescence: $\forall x, y \in \mathbb{Z}^2 \exists z \in \mathbb{Z}^2 : \pi^x, \xi \cap \pi^y, \xi = \pi^z, \xi$.

(Think here of geodesics as collections of edges and points.)

These facts can also be derived from the Busemann functions and their properties. Take **existence** as an example:
Semi-infinite geodesics from local increments of Busemann functions

The unique semi-infinite geodesic $\pi = \pi^x,\xi$ from x in direction ξ can be defined by following minimal local increments of the ξ-Busemann function:

$$
\pi_0 = x
$$

and

$$
\pi_{k+1} = \begin{cases}
\pi_k + e_1, & \text{if } B^\xi(\pi_k, \pi_k + e_1) \leq B^\xi(\pi_k, \pi_k + e_2) \\
\pi_k + e_2, & \text{if } B^\xi(\pi_k, \pi_k + e_2) < B^\xi(\pi_k, \pi_k + e_1).
\end{cases}
$$

"Proof"

$\pi_1 = x + e_2$ roughly iff $G(x + e_2, n\xi) > G(x + e_1, n\xi)$

$$
\iff G(x, n\xi) - G(x + e_2, n\xi) < G(x, n\xi) - G(x + e_1, n\xi)
$$

roughly iff $B^\xi(x, x + e_2) < B^\xi(x, x + e_1)$
Coalescing geodesics directed to $\xi = (\frac{2}{3}, \frac{1}{3})$

Blue paths = up-right $\xi = (\frac{2}{3}, \frac{1}{3})$-directed geodesics that cross the hyphened anti-diagonal segment. Picture shows the paths until coalescence.

[Simulation: Firas Rassoul-Agha]
Uniqueness fails in random directions!

\[(\varphi_n^x)_{n \geq 0} = \text{competition interface} \text{ from } x.\]

\[\exists \text{ almost sure random asymptotic direction:}\]

\[\xi^*(x) = (\xi_1^*, 1 - \xi_1^*) = \lim_{n \to \infty} \frac{\varphi_n^x}{n}\]

[Fierrari-Pimentel 2005]

From \(x\) \exists two distinct \(\xi^*(x)\)-directed semi-infinite geodesics. (One takes the initial \(e_1\) step, the other the \(e_2\) step.)

No point \(x\) is the source of three distinct semi-infinite geodesics in the same direction.

[Coupier 2011, Coupier-Heinrich 2012, with TASEP input from Amir-Angel-Valkó 2011]
Two distinct $\xi^*(x)$-directed semi-infinite geodesics on either side of the competition interface

Red competition interface, blue and green geodesics from 0 in direction $\xi^*(0)$.

Picture above is the initial 300-step part of the 5000-step picture below. The geodesics are the p2p geodesics from 0 to two points on either side of the competition interface. These p2p geodesics converge to the true semi-infinite things. [Simulations F. Rassoul-Agha]
Recall Busemann process \(\{ B^{\xi \pm} : \xi \in (e_2, e_1) \} \).

With this process we can define \(\forall x \in \mathbb{Z}^2 \) and \(\forall \xi \) and \(\pm \) a semi-infinite geodesic \(\pi^{x, \xi \pm} \) by following the minimal increments of \(B^{\xi \pm} \) and by breaking ties with \(e_1 \) for + and with \(e_2 \) for −.

We can characterize the simultaneous existence, uniqueness and coalescence of all geodesics.
Global geodesics picture

Theorem [Janjigian, Rassoul-Agha, S]

∃ countable random set $\mathcal{V}^{\omega} \subset (e_2, e_1)$ of directions, with the following properties, all with probability 1.

- For each direction $\xi \notin \mathcal{V}^{\omega}$ there is a unique geodesic from each lattice point. For a given ξ these geodesics coalesce.

- For directions $\xi \in \mathcal{V}^{\omega}$, from each lattice point x there are exactly two geodesics π^{x,ξ^+} and π^{x,ξ^-} in direction ξ that eventually separate. Geodesics $\{\pi^{x,\xi^+} : x \in \mathbb{Z}^2\}$ form a coalescing tree, and geodesics $\{\pi^{x,\xi^-} : x \in \mathbb{Z}^2\}$ form a separate coalescing tree.

- $\mathcal{V}^{\omega} = \{\xi^*(x) : x \in \mathbb{Z}^2\}$, the collection of asymptotic directions of the competition interfaces at all x, at a fixed ω.

- $\mathcal{V}^{\omega} = \{\xi : \exists x, y \in \mathbb{Z}^2 : B^{\xi^+}(x, y) \neq B^{\xi^-}(x, y)\}$, the set of discontinuities of Busemann functions.

- There are no other semi-infinite geodesics except the trivial ones $x + k e_i$, $k \geq 0$.

Global geodesics picture

Proof of the global geodesics theorem comes from a combination of earlier facts with properties of the Busemann process \(\{ B^{\xi_{\pm}} : \xi \in (e_2, e_1) \} \).

First the distribution of the process \(\xi \mapsto B^{\xi_{\pm}}(x, x + e_1) \) on a fixed horizontal edge \((x, x + e_1)\).
Busemann process on an edge, indexed by directions ξ

Parametrize directions $\xi = (\xi_1, 1 - \xi_1) \in (e_2, e_1)$ with $\alpha \in (0, 1)$:

$$\alpha(\xi) = \frac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1 - \xi_1}}$$

Define a marked point process X on $(0, 1]$:

- On $(0, 1)$, N = Poisson point process with intensity measure $r^{-1} \, dr$, and $N\{1\} = 1$.
- To each point $r \in N$ attach an independent variable $Z_r \sim \text{Exp}(r)$.
- Set $X(\alpha) = \sum_{r \in N(\alpha,1]} Z_r$ for $0 < \alpha \leq 1$. $X(\alpha) \sim \text{Exp}(\alpha)$.

Theorem [Fan-S]

On a fixed horizontal edge $(x, x + e_1)$,

$$\{B^{\xi^+}(x, x + e_1) : \xi \in (e_2, e_1)\} \overset{d}{=} \{X(\alpha(\xi)) : \xi \in (e_2, e_1)\}.$$
Geometric significance of jumps of $\xi \mapsto B_{x,x+e_1}^{\xi\pm}$

Recall: for a countable dense set of directions ζ, geodesics $\{\pi^{x,\zeta}\}_{x \in \mathbb{Z}^2}$ coalesce a.s.

If $z^{\zeta}(x, y) =$ coalescence point of geodesics $\pi^{x,\zeta}$ and $\pi^{y,\zeta}$ then $B^{\zeta}(x, y) = G(x, z^{\zeta}(x, y)) - G(y, z^{\zeta}(x, y))$.

If $B^{\zeta}(x, y)$ is constant for $\zeta \in (\eta', \eta'')$ $\zeta \in (\xi, \eta)$ then $z^{\zeta}(x, y)$ cannot jump.

Let $\zeta \searrow \xi$. Geodesics converge: $\pi^{x,\zeta} \to \pi^{x,\xi^+}$, $\pi^{y,\zeta} \to \pi^{y,\xi^+}$ and $B^{\xi^+}(x, y) = G(x, z^{\xi^+}(x, y)) - G(y, z^{\xi^+}(x, y))$.

We conclude that ξ^+ geodesics coalesce, as claimed in the global geodesics theorem.

Furthermore, the coalescence point $\xi \mapsto z^{\xi\pm}(x, x + e_1)$ jumps at the locations of an inhomogeneous Poisson process.
Distribution of increments on the x-axis of the lattice

Let $\zeta, \eta \in (e_2, e_1)$ again satisfy $\zeta_1 < \eta_1$.

$$\Delta_k = B^\zeta(ke_1, (k+1)e_1) - B^\eta(ke_1, (k+1)e_1) \geq 0$$

Distribution of process $\{\Delta_k\}_{k \in \mathbb{Z}}$?

Define 2-sided RW

$$S_n = \begin{cases}
\sum_{i=1}^{n} Y_i, & n > 0 \\
0, & n = 0 \\
-\sum_{i=n+1}^{0} Y_i, & n < 0.
\end{cases}$$

with steps $Y_i \sim \text{Exp}(\alpha(\zeta)) - \text{Exp}(\alpha(\eta))$. $E(Y_i) > 0$.

Theorem

$$\{\Delta_k\}_{k \in \mathbb{Z}} \overset{d}{=} \{\left(\inf_{m>k} S_m - S_k\right)^+\}_{k \in \mathbb{Z}}$$
Finding the joint distribution of \(\{ B^\xi : \xi \in (e_2, e_1) \} \)

\(\forall \) level \(t \in \mathbb{Z} \) define bi-infinite sequences

\[\bar{\omega}_t = (\omega(k,t))_{k \in \mathbb{Z}} \quad \text{and} \quad \bar{B}^{\xi,e_1}_t = (B^{\xi}_{(k,t),(k+1,t)})_{k \in \mathbb{Z}} \]

\(\exists \) mapping \(D \) from a subset of \(\mathbb{R}^\mathbb{Z}_+ \times \mathbb{R}^\mathbb{Z}_+ \) into \(\mathbb{R}^\mathbb{Z}_+ \) such that

\[\bar{B}^{\xi,e_1}_t = D(\bar{B}^{\xi,e_1}_{t+1}, \bar{\omega}_t) \quad \forall \xi \text{ and } t \in \mathbb{Z}. \]

Definition of \(\tilde{I} = D(I, \omega) \): with \(G \) satisfying \(I_k = G_k - G_{k+1} \), let

\[\tilde{G}_k = \sup_{m: m \geq k} \left\{ G_m + \sum_{i=k}^m \omega_i \right\}, \quad \tilde{I}_k = \tilde{G}_k - \tilde{G}_{k+1}. \]

\(\tilde{I} \) is the departure process of a FIFO queue with arrivals \(I \) and services \(\omega \) with time running right to left on \(\mathbb{Z} \).
Level-by-level evolution of the Busemann function

For $\xi_1, \ldots, \xi_n \in (e_2, e_1)$, the n-tuple of sequences evolves as a Markov chain backwards in the time parameter t via the mapping

$$(\overline{B}_{t}^{\xi_1, e_1}, \ldots, \overline{B}_{t}^{\xi_n, e_1}) = \left(D\left(\overline{B}_{t+1}^{\xi_1, e_1}, \omega_t\right), \ldots, D\left(\overline{B}_{t+1}^{\xi_n, e_1}, \omega_t\right)\right)$$

Theorem [Fan-S] Given $(\rho_1, \ldots, \rho_n) \in (1, \infty)^n$, the Markov chain above has a unique invariant distribution ergodic under spatial translation and with mean

$$(EB^{\xi_1}_{(k,t), (k+1,t)}, \ldots, EB^{\xi_n}_{(k,t), (k+1,t)}) = (\rho_1, \ldots, \rho_n).$$
Description of the invariant distribution

Let \(D^{(n)}(\zeta^1, \zeta^2, \ldots, \zeta^n) \) = departure process from sending arrival process \(\zeta^1 \) successively through service processes \(\zeta^2, \ldots, \zeta^n \).

Let \(I^1, I^2, \ldots, I^n \) be independent sequences of i.i.d. exponentials with \(I^i_k \sim \text{Exp}(\alpha(\xi_i)) \). Define sequences \(\eta^1, \ldots, \eta^n \) by

\[
\eta^1 = I^1, \quad \eta^2 = D(I^2, I^1), \quad \eta^3 = D^{(3)}(I^3, I^2, I^1), \ldots, \\
\eta^n = D^{(n)}(I^n, I^{n-1}, \ldots, I^1).
\]

Well-defined if \(\xi_1 \cdot e_1 > \cdots > \xi_n \cdot e_1 \) so that \(\alpha(\xi_1) > \cdots > \alpha(\xi_n) \).

Then the invariant distribution is given by

\[
\left(\overline{B}^{\xi_1, e_1}_t, \ldots, \overline{B}^{\xi_n, e_1}_t \right) \overset{d}{=} \left(\eta^1, \ldots, \eta^n \right)
\]