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Summary. Qualitative and quantitative results on the geodesics,
Busemann functions, and competition interfaces of the explicitly solvable
corner growth model through the joint distribution of Busemann
functions.

Collaborators: Louis Fan (Indiana), Firas Rassoul-Agha and Chris Janjigian (Utah).
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Corner growth model with exponential distribution
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‚ To each x P Z2 attach random weight ωx .

ωx „ Exp(1): Ppωx ě tq “ e´t for t ě 0.

IID random medium ω “ pωx : x P Z2
q.

γ

Weight of an up-right path γ is

W pγq “
ÿ

xPγ

ωx

u

v

Point-to-point last-passage percolation:

Gpu, vq “ max
γ : uÑ v

ÿ

x Pγ

ωx for u ď v in Z2

A maximizing path is called a geodesic.
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Corner growth model with exponential distribution: limit
shape

Theorem We have this law of large numbers:

lim
nÑ8

n´1Gp0, tnξuq “ gpξq a.s. @ ξ P R2
`

with explicit shape function

gpξq “
`

a

ξ1 `
a

ξ2
˘2
.

[Rost 1981, several authors in the 1990’s]
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The scaled growing cluster t´1
tpm, nq : Gp0, pm, nqq ď tu at times t “ 100 and

t “ 400.

The curve
?

x `?y “ 1 (level curve of the shape function) is the boundary of
the limit shape.

[Simulations: Firas Rassoul-Agha, Elnur Emrah]
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Methods for studying exponential corner growth model

‚ Coupling with TASEP (totally asymmetric simple exclusion process).

‚ Methods of integrable probability: combinatorics (versions of RSK),
determinantal structures, Fredholm determinants, asymptotic analysis.

‚ Tractable stationary version.

Focus of the talk: a natural coupling of all the stationary CGMs and
some consequences for the geometry of the CGM.

Let’s first go over the stationary CGM.
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Last-passage percolation with stationary increments
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@ x P N2
` attach weight ωx „ Exp(1).
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Let 0 ă α ă 1.

Edge weights: Iα
ie 1 „ Exp(α)

Jα
je 2 „ Exp(1´ α)

pm, nq

Define last-passage percolation Gα by maximizing over paths that use both
boundary weights and interior weights:

Gα
p0,0q,pm,nq “ max

1ďkďm

" k
ÿ

i“1

Iα
ie1 ` Gpk,1q,pm,nq

*

ł

max
1ď`ďn

"

ÿ̀

j“1

Jα
je2 ` Gp1,`q,pm,nq

*

7/29



Benefit?
Here again the LPP process with boundary weights and interior weights:

Gα
p0,0q,pm,nq “ max

1ďkďm

" k
ÿ

i“1
Iα
ie1 ` Gpk,1q,pm,nq

*

ł

max
1ď`ďn

"

ÿ̀

j“1
Jα

je2 ` Gp1,`q,pm,nq
*

Stationary increments: @x

$

&

%

Iα
x “ Gα

0,x ´ Gα
0,x´e1 „ Exppαq

Jα
x “ Gα

0,x ´ Gα
0,x´e2 „ Expp1´ αq

Shape function immediate: lim
NÑ8

N´1Gα
p0,0q,pNs,Ntq “

s
α
`

t
1´ α

” gα
ps, tq.

Next solve for the shape function g that comes from the i.i.d. weights.

Rewrite the coupling with the scaling and take the limit:

Gα
p0,0q,pNs,Ntq “ max

0ďaďs

" Na
ÿ

i“1

Iα
ie1 ` GpNa,1q,pNs,Ntq

*

ł

max
1ďbďt

" Nb
ÿ

j“1

Jα
je2 ` Gp1,Nbq,pNs,Ntq

*
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Gα
p0,0q,pNs,Ntq “ max

0ďaďs

" Na
ÿ

i“1

Iα
ie1 ` GpNa,1q,pNs,Ntq

*

ł

max
1ďbďt

" Nb
ÿ

j“1

Jα
je2 ` Gp1,Nbq,pNs,Ntq

*

Let N Ñ8. Write ξ “ ps, tq and η “ pa, 0q or p0, bq.

gα
pξq “ sup

η P boundary
t gα

pηq ` gpξ ´ ηq u

From this gpξq “ gα
pξq for the unique α “ αpξq such that the geodesic for

the increment-stationary LPP process Gα
0,Nξ spends opNq time on the boundary.

This specifies a one-to-one correspondence between a direction vector
ξ “ pξ1, 1´ ξ1q P pe2, e1q and a parameter α P p0, 1q:

αpξq “

?
ξ1

?
ξ1 `

?
1´ ξ1

P p0, 1q
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Remark in passing: What is the obstacle to generalization to other
i.i.d. weight distributions to find explicit limit shapes?

Their stationary last-passage percolation processes exist but not
sufficiently understood.
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NEXT STEP: Look for a natural coupling of the entire family of
stationary LPP processes tGα : 0 ă α ă 1u.

WHY? Parameter α associated with directions in the quadrant, and (as
we shall see) directions are associated with geodesics. Only a joint
distribution can reveal path-level properties such as singularities.

HOW? Let the LPP process itself produce the coupling for us. This
leads us to Busemann functions.
Like a Markov chain produces its invariant distribution by passing to a limit, the LPP process
produces its stationary versions by going to a limit in different spatial directions.
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Busemann function
Busemann function in direction ξ P pe2, e1q is defined by

Bξpx , yq “ lim
nÑ8

rGpx , vnq ´ Gpy , vnqs

for a sequence vn Ñ8 s.t. vn{n Ñ ξ.

For a given ξ this can be proved, almost surely, simultaneously for all
sequences vn{n Ñ ξ.
Two proofs: (i) Techniques due to Newman et al. 1990s applied by Cator, P.A.Ferrari, Martin,
Pimentel 2005–2012. (ii) More recent proof through coupling with stationary LPP processes.

tBξpx , yq : x , y P Z2u is a stationary cocycle with marginals

Bξpx , x ` e1q „ Exppαq and Bξpx , x ` e2q „ Expp1´αq

where
α “ αpξq “

?
ξ1

?
ξ1 `

?
1´ ξ1

.
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Busemann function as a stationary LPP process

Fix any down-right path Y “ tykukPZ on Z2. (Means: yk ´ yk´1 P te1,´e2u.)

Then for points x below and left of Y,

Bpx , y0q “ sup
π: xÑy PY

!

ÿ

x Pπztyu
ωx ` Bpy , y0q

)

where supremum over up-right paths π from x to the boundary Y.

Proof: Bpx , y0q “ lim
nÑ8

rGpx , vnq ´ Gpy0, vnqs

“ lim
nÑ8

rωx ` Gpx ` e1, vnq _ Gpx ` e2, vnq ´ Gpy0, vnq s

“ ωx ` Bpx ` e1, y0q _ Bpx ` e2, y0q.
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Busemann process tBζ˘ : ζ P pe2, e1qu
For a dense countable set of directions ξ the almost sure limits

Bξpx , yq “ lim
vn{nÑ ξ

rGpx , vnq ´ Gpy , vnqs

define the Busemann functions.

Left and right limits ξ Ñ ζ˘ (directions ordered from e2 to e1)

Bζ`px , yq “ lim
ξŒ ζ

Bξpx , yq and Bζ´px , yq “ lim
ξÕ ζ

Bξpx , yq

define a process tBζ˘u indexed by the full set of directions ζ.

The limits come from monotonicity (a planar feature).

For a fixed ζ, with probability 1, Bζ` “ Bζ´ and

Bζpx , yq “ lim
vn{nÑ ζ

rGpx , vnq ´ Gpy , vnqs

14/29



From Busemann functions to semi-infinite geodesics

Recall: a (finite) geodesic is the (almost surely unique) maximizing path
between two points.

A semi-infinite geodesic is an infinite up-right nearest-neighbor path
pxkqkě0 that is the geodesic between any two of its points:

Gpxm, xnq “
n
ÿ

i“m
ωxi @m ă n

Semi-infinite geodesic pxkqkě0 is ξ-directed if lim
nÑ8

xn
n “ ξ

Questions:
‚ Given x and ξ, existence and uniqueness of ξ-directed semi-infinite
geodesic from x?
‚ Given x , y and ξ, do the ξ-directed geodesics from x and y cross?
Coalesce?
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From Busemann functions to semi-infinite geodesics

For a fixed ξ, the (almost sure) answers have been known for a while:

‚ @ x D unique ξ-directed semi-infinite geodesic π x, ξ.

‚ Coalescence: @ x, y P Z2 D z P Z2 : π x, ξ X π y, ξ “ π z, ξ.

(Think here of geodesics as collections of edges and points.)
[Newman et al. 1990s, P.A.Ferrari-Pimentel 2005, Coupier 2011]

These facts can also be derived from the Busemann functions and their
properties. Take existence as an example:
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Semi-infinite geodesics from local increments of Busemann
functions

The unique semi-infinite geodesic π “ π x ,ξ from x in direction ξ can be
defined by following minimal local increments of the ξ-Busemann
function:

π0 “ x

and πk`1 “

$

&

%

πk ` e1, if Bξpπk , πk ` e1q ď Bξpπk , πk ` e2q

πk ` e2, if Bξpπk , πk ` e2q ă Bξpπk , πk ` e1q.

"Proof "

π1 “ x ` e2 roughly iff Gpx ` e2, nξq ą Gpx ` e1, nξq

ðñ Gpx , nξq ´ Gpx ` e2, nξq ă Gpx , nξq ´ Gpx ` e1, nξq

roughly iff Bξpx , x ` e2q ă Bξpx , x ` e1q
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Coalescing geodesics directed to ξ “ p23 ,
1
3q

1

Blue paths = up-right ξ “ p 23 ,
1
3 q-directed geodesics that cross the hyphened

anti-diagonal segment. Picture shows the paths until coalescence.
[Simulation: Firas Rassoul-Agha]
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Uniqueness fails in random directions!

x

pϕx
nqně0 “ competition interface from x .

D almost sure random asymptotic direction:

ξ˚pxq “ pξ˚1 , 1´ ξ˚1 q “ lim
nÑ8

ϕx
n

n
[Ferrari-Pimentel 2005]

From x D two distinct ξ˚pxq-directed semi-infinite geodesics. (One takes
the initial e1 step, the other the e2 step.)

No point x is the source of three distinct semi-infinite geodesics in the
same direction.
[Coupier 2011, Coupier-Heinrich 2012, with TASEP input from Amir-Angel-Valkó 2011]

19/29



Two distinct ξ˚pxq-directed semi-infinite geodesics on
either side of the competition interface

Red competition interface, blue and green geodesics from 0 in direction ξ˚p0q.

Picture above is the initial 300-step part of the 5000-step picture below. The geodesics are the
p2p geodesics from 0 to two points on either side of the competition interface. These p2p
geodesics converge to the true semi-infinite things. [Simulations F. Rassoul-Agha]
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Unifying the geodesics picture

Recall Busemann process tBξ˘ : ξ P pe2, e1qu.

With this process we can define @ x P Z2 and @ ξ and ˘ a semi-infinite
geodesic π x ,ξ˘ by following the minimal increments of Bξ˘ and by
breaking ties with e1 for ` and with e2 for ´.

We can characterize the simultaneous existence, uniqueness and
coalescence of all geodesics.

21/29



Global geodesics picture
Theorem [Janjigian, Rassoul-Agha, S]

D countable random set Vω Ă pe2, e1q of directions, with the following
properties, all with probability 1.

‚ For each direction ξ R Vω there is a unique geodesic from each lattice
point. For a given ξ these geodesics coalesce.

‚ For directions ξ P Vω, from each lattice point x there are exactly two
geodesics πx ,ξ` and πx ,ξ´ in direction ξ that eventually separate.
Geodesics tπx ,ξ` : x P Z2u form a coalescing tree, and geodesics
tπx ,ξ´ : x P Z2u form a separate coalescing tree.

‚ Vω “ tξ˚pxq : x P Z2u, the collection of asymptotic directions of the
competition interfaces at all x , at a fixed ω.

‚ Vω “ tξ : Dx , y P Z2 : Bξ`px , yq ‰ Bξ´px , yqu, the set of
discontinuities of Busemann functions.

‚ There are no other semi-infinite geodesics except the trivial ones
x ` kei , k ě 0.
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Global geodesics picture

Proof of the global geodesics theorem comes from a combination of
earlier facts with properties of the Busemann process tBξ˘ : ξ P pe2, e1qu.

First the distribution of the process ξ ÞÑ Bξ˘px , x ` e1q on a fixed
horizontal edge px , x ` e1q.
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Busemann process on an edge, indexed by directions ξ

Parametrize directions ξ “ pξ1, 1´ ξ1q P pe2, e1q with α P p0, 1q:

αpξq “

?
ξ1

?
ξ1 `

?
1´ ξ1

Define a marked point process X on p0, 1s:
‚ On p0, 1q, N “ Poisson point process with intensity measure r´1dr ,
and Nt1u “ 1.
‚ To each point r P N attach an independent variable Zr „ Expprq.

‚ Set X pαq “
ÿ

r PNpα,1s
Zr for 0 ă α ď 1. X pαq „ Exppαq.

Theorem [Fan-S]

On a fixed horizontal edge px , x ` e1q,

tBξ`px , x ` e1q : ξ P pe2, e1qu
d
“ tX pαpξqq : ξ P pe2, e1qu.
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Geometric significance of jumps of ξ ÞÑ Bξ˘
x ,x`e1

Recall: for a countable dense set of directions ζ, geodesics tπx ,ζuxPZ2

coalesce a.s.

If zζpx , yq “ coalescence point of geodesics πx ,ζ and πy ,ζ

then Bζpx , yq “ Gpx , zζpx , yqq ´ Gpy , zζpx , yqq.

If Bζpx , yq is constant for ζ P pη1,η2q ζ P pξ,ηq then zζpx , yq cannot
jump.

Let ζ Œ ξ. Geodesics converge: πx ,ζ Ñ πx ,ξ`, πy ,ζ Ñ πy ,ξ` and
Bξ`px , yq “ Gpx , zξ`px , yqq ´ Gpy , zξ`px , yqq.

We conclude that ξ` geodesics coalesce, as claimed in the global
geodesics theorem.

Furthermore, the coalescence point ξ ÞÑ zξ˘px , x ` e1q jumps at the
locations of an inhomogeneous Poisson process.
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Distribution of increments on the x -axis of the lattice

Let ζ,η P pe2, e1q again satisfy ζ1 ă η1.

∆k “ Bζpke1, pk ` 1qe1q ´ Bηpke1, pk ` 1qe1q ě 0

Distribution of process
 

∆k
(

kPZ ?

Define 2-sided RW Sn “

$

’

&

’

%

řn
i“1 Yi , n ą 0

0, n “ 0
´
ř0

i“n`1 Yi , n ă 0.

with steps Yi „ Exppαpζqq ´ Exppαpηqq. E pYiq ą 0.

Theorem
 

∆k
(

kPZ
d
“

 `

inf
mąk

Sm ´ Sk
˘`(

kPZ
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Finding the joint distribution of tBξ : ξ P pe2, e1qu

@ level t P Z define bi-infinite sequences

ωt “ pωpk,tqqkPZ and B ξ,e1
t “ pBξ

pk,tq,pk`1,tqqkPZ

D mapping D from a subset of RZ` ˆRZ` into RZ` such that

B ξ,e1
t “ D

`

B ξ,e1
t`1 , ωt

˘

@ξ and t P Z.

Definition of rI “ DpI, ωq: with G satisfying Ik “ Gk ´ Gk`1, let

rGk “ sup
m: měk

!

Gm `
m
ÿ

i“k
ωi

)

, rIk “ rGk ´ rGk`1.

rI is the departure process of a FIFO queue with arrivals I and services ω
with time running right to left on Z.
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Level-by-level evolution of the Busemann function

For ξ1, . . . , ξn P pe2, e1q, the n-tuple of sequences evolves as a Markov
chain backwards in the time parameter t via the mapping

`

B ξ1,e1
t , . . . ,B ξn,e1

t
˘

“

´

D
`

B ξ1,e1
t`1 , ωt

˘

, . . . , D
`

B ξn,e1
t`1 , ωt

˘

¯

Theorem [Fan-S] Given pρ1, . . . , ρnq P p1,8qn, the Markov chain above
has a unique invariant distribution ergodic under spatial translation and
with mean

`

EBξ1
pk,tq,pk`1,tq, . . . ,EBξn

pk,tq,pk`1,tq
˘

“ pρ1, . . . , ρnq.
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Description of the invariant distribution
Let Dpnqpζ1, ζ2, . . . , ζnq “ departure process from sending arrival
process ζ1 successively through service processes ζ2, . . . , ζn.

Let I1, I2, . . . , In be independent sequences of i.i.d. exponentials with I i
k „

Exp(αpξiq). Define sequences η1, . . . ,ηn by

η1 “ I1, η2 “ DpI2, I1q, η3 “ Dp3qpI3, I2, I1q, . . . ,

ηn “ DpnqpIn, In´1, . . . , I1q.

Well-defined if ξ1 ¨ e1 ą ¨ ¨ ¨ ą ξn ¨ e1 so that αpξ1q ą ¨ ¨ ¨ ą αpξnq.

Then the invariant distribution is given by
`

B ξ1,e1
t , . . . ,B ξn,e1

t
˘ d
“ pη1, . . . ,ηnq

[Ferrari-Martin 2006-2009 on invariant distributions of multiclass TASEP pointed the way.
Existence of invariant distributions for multiclass TASEP go back to Liggett 1976.]
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