GEOMETRY OF THE CORNER GROWTH MODEL

Timo Seppäläinen

Summary. Qualitative and quantitative results on the geodesics, Busemann functions, and competition interfaces of the explicitly solvable corner growth model through the **joint distribution of Busemann functions**.

Collaborators: Louis Fan (Indiana), Firas Rassoul-Agha and Chris Janjigian (Utah).

Corner growth model with exponential distribution

To each $x \in \mathbb{Z}^2$ attach random weight ω_x .

$$\omega_x \sim \operatorname{Exp}(1)$$
: $\mathbb{P}(\omega_x \ge t) = e^{-t}$ for $t \ge 0$.

IID random medium $\omega = (\omega_x : x \in \mathbb{Z}^2).$

Weight of an up-right path γ is

$$W(\boldsymbol{\gamma}) = \sum_{x \in \boldsymbol{\gamma}} \omega_x$$

Point-to-point last-passage percolation:

$$G(\boldsymbol{u},\boldsymbol{v}) = \max_{\boldsymbol{\gamma}:\,\boldsymbol{u}\,\rightarrow\,\boldsymbol{v}}\,\sum_{x\,\in\,\boldsymbol{\gamma}}\,\omega_x \quad \text{for } \boldsymbol{u}\leqslant\boldsymbol{v} \text{ in } \mathbb{Z}^2$$

A maximizing path is called a geodesic.

Corner growth model with exponential distribution: limit shape

Theorem We have this law of large numbers:

$$\lim_{n \to \infty} n^{-1} G(0, \lfloor n \boldsymbol{\xi} \rfloor) = g(\boldsymbol{\xi}) \quad \text{a.s.} \quad \forall \, \boldsymbol{\xi} \in \mathbb{R}^2_+$$

with explicit shape function

$$\boldsymbol{g}(\boldsymbol{\xi}) = (\sqrt{\xi_1} + \sqrt{\xi_2})^2.$$

[Rost 1981, several authors in the 1990's]

The scaled growing cluster $t^{-1}\{(m, n) : G(0, (m, n)) \leq t\}$ at times t = 100 and t = 400.

The curve $\sqrt{x} + \sqrt{y} = 1$ (level curve of the shape function) is the boundary of the limit shape.

[Simulations: Firas Rassoul-Agha, Elnur Emrah]

Methods for studying exponential corner growth model

• Coupling with TASEP (totally asymmetric simple exclusion process).

• Methods of integrable probability: combinatorics (versions of RSK), determinantal structures, Fredholm determinants, asymptotic analysis.

• Tractable stationary version.

Focus of the talk: a natural coupling of all the stationary CGMs and some consequences for the geometry of the CGM.

Let's first go over the stationary CGM.

Last-passage percolation with stationary increments

$$orall x \in \mathbb{N}^2_+$$
 attach weight $\omega_x \sim \operatorname{Exp}(1)$
Let $0 < \alpha < 1$.
Edge weights: $I^{\alpha}_{ie_1} \sim \operatorname{Exp}(\alpha)$ $J^{\alpha}_{je_2} \sim \operatorname{Exp}(1 - \alpha)$

Define last-passage percolation G^{α} by maximizing over paths that use both boundary weights and interior weights:

$$G_{(0,0),(m,n)}^{\alpha} = \max_{1 \le k \le m} \left\{ \sum_{i=1}^{k} J_{ie_{1}}^{\alpha} + G_{(k,1),(m,n)} \right\} \bigvee \max_{1 \le \ell \le n} \left\{ \sum_{j=1}^{\ell} J_{je_{2}}^{\alpha} + G_{(1,\ell),(m,n)} \right\}$$

Benefit?

Here again the LPP process with boundary weights and interior weights:

$$G_{(0,0),(m,n)}^{\alpha} = \max_{1 \le k \le m} \left\{ \sum_{i=1}^{k} I_{ie_1}^{\alpha} + G_{(k,1),(m,n)} \right\} \bigvee \max_{1 \le \ell \le n} \left\{ \sum_{j=1}^{\ell} J_{je_2}^{\alpha} + G_{(1,\ell),(m,n)} \right\}$$

Stationary increments:
$$\forall x \begin{cases} I_x^{\boldsymbol{\alpha}} = G_{0,x}^{\boldsymbol{\alpha}} - G_{0,x-e_1}^{\boldsymbol{\alpha}} \sim \operatorname{Exp}(\boldsymbol{\alpha}) \\ J_x^{\boldsymbol{\alpha}} = G_{0,x}^{\boldsymbol{\alpha}} - G_{0,x-e_2}^{\boldsymbol{\alpha}} \sim \operatorname{Exp}(1-\boldsymbol{\alpha}) \end{cases}$$

 $\text{Shape function immediate: } \lim_{N \to \infty} N^{-1} G^{\boldsymbol{\alpha}}_{(0,0),(Ns,Nt)} = \frac{s}{\alpha} + \frac{t}{1-\alpha} \equiv g^{\boldsymbol{\alpha}}(s,t).$

Next solve for the shape function g that comes from the i.i.d. weights.

Rewrite the coupling with the scaling and take the limit:

$$G_{(0,0),(Ns,Nt)}^{\alpha} = \max_{0 \le a \le s} \left\{ \sum_{i=1}^{Na} I_{ie_1}^{\alpha} + G_{(Na,1),(Ns,Nt)} \right\} \bigvee \max_{1 \le b \le t} \left\{ \sum_{j=1}^{Nb} J_{je_2}^{\alpha} + G_{(1,Nb),(Ns,Nt)} \right\}$$

$$G_{(0,0),(Ns,Nt)}^{\alpha} = \max_{0 \le a \le s} \left\{ \sum_{i=1}^{Na} I_{ie_1}^{\alpha} + G_{(Na,1),(Ns,Nt)} \right\} \bigvee \max_{1 \le b \le t} \left\{ \sum_{j=1}^{Nb} J_{je_2}^{\alpha} + G_{(1,Nb),(Ns,Nt)} \right\}$$

Let $N \to \infty$. Write $\boldsymbol{\xi} = (\boldsymbol{s}, t)$ and $\eta = (\boldsymbol{a}, 0)$ or (0, b).

$$g^{\boldsymbol{\alpha}}(\boldsymbol{\xi}) = \sup_{\eta \in \text{ boundary}} \left\{ g^{\boldsymbol{\alpha}}(\eta) + g(\boldsymbol{\xi} - \eta) \right\}$$

From this $g(\boldsymbol{\xi}) = g^{\boldsymbol{\alpha}}(\boldsymbol{\xi})$ for the unique $\boldsymbol{\alpha} = \boldsymbol{\alpha}(\boldsymbol{\xi})$ such that the geodesic for the increment-stationary LPP process $G_{0,N\boldsymbol{\xi}}^{\boldsymbol{\alpha}}$ spends o(N) time on the boundary.

This specifies a one-to-one correspondence between a direction vector $\boldsymbol{\xi} = (\xi_1, 1 - \xi_1) \in (\mathbf{e}_2, \mathbf{e}_1)$ and a parameter $\boldsymbol{\alpha} \in (0, 1)$:

$$\alpha(\xi) = rac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1 - \xi_1}} \in (0, 1)$$

Remark in passing: What is the obstacle to generalization to other i.i.d. weight distributions to find explicit limit shapes?

Their stationary last-passage percolation processes exist but not sufficiently understood.

NEXT STEP: Look for a natural coupling of the entire family of stationary LPP processes $\{G^{\alpha} : 0 < \alpha < 1\}$.

WHY? Parameter α associated with directions in the quadrant, and (as we shall see) directions are associated with geodesics. Only a joint distribution can reveal path-level properties such as singularities.

HOW? Let the LPP process itself produce the coupling for us. This leads us to Busemann functions.

Like a Markov chain produces its invariant distribution by passing to a limit, the LPP process produces its stationary versions by going to a limit in different spatial directions.

Busemann function

Busemann function in direction $\boldsymbol{\xi} \in (\mathbf{e}_2, \mathbf{e}_1)$ is defined by

$$B^{\boldsymbol{\xi}}(x,y) = \lim_{n \to \infty} [G(x,v_n) - G(y,v_n)]$$

for a sequence $v_n \to \infty$ s.t. $v_n/n \to \boldsymbol{\xi}$.

For a given $\boldsymbol{\xi}$ this can be proved, almost surely, simultaneously for all sequences $v_n/n \rightarrow \boldsymbol{\xi}$.

Two proofs: (i) Techniques due to Newman et al. 1990s applied by Cator, P.A.Ferrari, Martin, Pimentel 2005–2012. (ii) More recent proof through coupling with stationary LPP processes.

 $\{B^{\boldsymbol{\xi}}(x,y): x, y \in \mathbb{Z}^2\} \text{ is a stationary cocycle with marginals}$ $B^{\boldsymbol{\xi}}(x, x + \mathbf{e}_1) \sim \mathsf{Exp}(\boldsymbol{\alpha}) \quad \text{and} \quad B^{\boldsymbol{\xi}}(x, x + \mathbf{e}_2) \sim \mathsf{Exp}(1 - \boldsymbol{\alpha})$

where

$$\boldsymbol{\alpha} = \boldsymbol{\alpha}(\boldsymbol{\xi}) = rac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1-\xi_1}}.$$

Busemann function as a stationary LPP process

Fix any down-right path $\mathcal{Y} = \{y_k\}_{k \in \mathbb{Z}}$ on \mathbb{Z}^2 . (Means: $y_k - y_{k-1} \in \{e_1, -e_2\}$.)

Then for points x below and left of \mathcal{Y} ,

$$B(x, y_0) = \sup_{\pi: x \to y \in \mathcal{Y}} \left\{ \sum_{x \in \pi \setminus \{y\}} \omega_x + B(y, y_0) \right\}$$

where supremum over up-right paths π from x to the boundary \mathcal{Y} .

Proof:
$$B(x, y_0) = \lim_{n \to \infty} [G(x, v_n) - G(y_0, v_n)]$$

= $\lim_{n \to \infty} [\omega_x + G(x + \mathbf{e}_1, v_n) \lor G(x + \mathbf{e}_2, v_n) - G(y_0, v_n)]$
= $\omega_x + B(x + \mathbf{e}_1, y_0) \lor B(x + \mathbf{e}_2, y_0).$

Busemann process $\{B^{\boldsymbol{\zeta}\pm}: \boldsymbol{\zeta} \in (\mathbf{e}_2, \mathbf{e}_1)\}$

For a dense countable set of directions $\boldsymbol{\xi}$ the almost sure limits

$$B^{\boldsymbol{\xi}}(x,y) = \lim_{\boldsymbol{v}_n/n \to \boldsymbol{\xi}} \left[G(x,\boldsymbol{v}_n) - G(y,\boldsymbol{v}_n) \right]$$

define the Busemann functions.

Left and right limits $\boldsymbol{\xi} \to \boldsymbol{\zeta} \pm ~(\text{directions ordered from } \boldsymbol{e}_2 \text{ to } \boldsymbol{e}_1)$

$$B^{\zeta+}(x,y) = \lim_{\xi \searrow \zeta} B^{\xi}(x,y) \quad \text{and} \quad B^{\zeta-}(x,y) = \lim_{\xi \nearrow \zeta} B^{\xi}(x,y)$$

define a process $\{B^{\zeta\pm}\}$ indexed by the full set of directions ζ .

The limits come from monotonicity (a planar feature).

For a **fixed** ζ , with probability 1, $B^{\zeta+} = B^{\zeta-}$ and

$$B^{\boldsymbol{\zeta}}(x,y) = \lim_{v_n/n \to \boldsymbol{\zeta}} \left[G(x,v_n) - G(y,v_n) \right]$$

From Busemann functions to semi-infinite geodesics

Recall: a (finite) geodesic is the (almost surely unique) maximizing path between two points.

A semi-infinite geodesic is an infinite up-right nearest-neighbor path $(x_k)_{k\geq 0}$ that is the geodesic between any two of its points:

$$G(x_m, x_n) = \sum_{i=m}^n \omega_{x_i} \quad \forall \ m < n$$

Semi-infinite geodesic $(x_k)_{k \ge 0}$ is $\boldsymbol{\xi}$ -directed if $\lim_{n \to \infty} \frac{x_n}{n} = \boldsymbol{\xi}$

Questions:

• Given x and ξ , existence and uniqueness of ξ -directed semi-infinite geodesic from x?

• Given x, y and ξ , do the ξ -directed geodesics from x and y cross? Coalesce?

From Busemann functions to semi-infinite geodesics

For a **fixed** $\boldsymbol{\xi}$, the (almost sure) answers have been known for a while:

- $\forall x \exists$ unique ξ -directed semi-infinite geodesic $\pi^{x,\xi}$.
- Coalescence: $\forall x, y \in \mathbb{Z}^2 \exists z \in \mathbb{Z}^2 : \pi^{x, \xi} \cap \pi^{y, \xi} = \pi^{z, \xi}$.

(Think here of geodesics as collections of edges and points.) [Newman et al. 1990s, P.A.Ferrari-Pimentel 2005, Coupier 2011]

These facts can also be derived from the Busemann functions and their properties. Take **existence** as an example:

Semi-infinite geodesics from local increments of Busemann functions

The unique semi-infinite geodesic $\pi = \pi^{x,\xi}$ from x in direction ξ can be defined by following minimal local increments of the ξ -Busemann function:

$$\pi_0 = x$$

and
$$\pi_{k+1} = \begin{cases} \pi_k + \mathbf{e}_1, & \text{if } B^{\boldsymbol{\xi}}(\pi_k, \pi_k + \mathbf{e}_1) \leq B^{\boldsymbol{\xi}}(\pi_k, \pi_k + \mathbf{e}_2) \\ \pi_k + \mathbf{e}_2, & \text{if } B^{\boldsymbol{\xi}}(\pi_k, \pi_k + \mathbf{e}_2) < B^{\boldsymbol{\xi}}(\pi_k, \pi_k + \mathbf{e}_1). \end{cases}$$

"Proof"

$$\begin{aligned} \pi_1 &= x + \mathbf{e}_2 \quad \text{roughly iff} \quad G(x + \mathbf{e}_2, n\boldsymbol{\xi}) > G(x + \mathbf{e}_1, n\boldsymbol{\xi}) \\ &\iff \quad G(x, n\boldsymbol{\xi}) - G(x + \mathbf{e}_2, n\boldsymbol{\xi}) < G(x, n\boldsymbol{\xi}) - G(x + \mathbf{e}_1, n\boldsymbol{\xi}) \\ & \text{roughly iff} \quad B^{\boldsymbol{\xi}}(x, x + \mathbf{e}_2) < B^{\boldsymbol{\xi}}(x, x + \mathbf{e}_1) \end{aligned}$$

Coalescing geodesics directed to $\boldsymbol{\xi} = (\frac{2}{3}, \frac{1}{3})$

Blue paths = up-right $\boldsymbol{\xi} = (\frac{2}{3}, \frac{1}{3})$ -directed geodesics that cross the hyphened anti-diagonal segment. Picture shows the paths until coalescence.

[Simulation: Firas Rassoul-Agha]

Uniqueness fails in random directions!

 $(\varphi_n^x)_{n \ge 0} =$ competition interface from *x*.

∃ almost sure **random** asymptotic direction:

$$\boldsymbol{\xi}^*(\mathbf{x}) = (\xi_1^*, 1 - \xi_1^*) = \lim_{n \to \infty} \frac{\varphi_n^x}{n}$$

[Ferrari-Pimentel 2005]

From $x \exists$ **two** distinct $\boldsymbol{\xi}^*(x)$ -directed semi-infinite geodesics. (One takes the initial \mathbf{e}_1 step, the other the \mathbf{e}_2 step.)

No point x is the source of **three** distinct semi-infinite geodesics in the same direction.

[Coupier 2011, Coupier-Heinrich 2012, with TASEP input from Amir-Angel-Valkó 2011]

Two distinct $\boldsymbol{\xi}^*(\boldsymbol{x})$ -directed semi-infinite geodesics on either side of the competition interface

Red competition interface, blue and green geodesics from 0 in direction $\xi^*(0)$.

Picture above is the initial 300-step part of the 5000-step picture below. The geodesics are the p2p geodesics from 0 to two points on either side of the competition interface. These p2p geodesics converge to the true semi-infinite things. [Simulations F. Rassoul-Agha]

Unifying the geodesics picture

Recall Busemann process $\{B^{\boldsymbol{\xi}\pm}: \boldsymbol{\xi} \in (\mathbf{e}_2, \mathbf{e}_1)\}.$

With this process we can define $\forall x \in \mathbb{Z}^2$ and $\forall \xi$ and \pm a semi-infinite geodesic $\pi^{x,\xi\pm}$ by following the minimal increments of $B^{\xi\pm}$ and by breaking ties with \mathbf{e}_1 for + and with \mathbf{e}_2 for -.

We can characterize the simultaneous existence, uniqueness and coalescence of all geodesics.

Global geodesics picture

Theorem [Janjigian, Rassoul-Agha, S]

 \exists countable random set $\mathcal{V}^{\omega} \subset (\mathbf{e}_2, \mathbf{e}_1)$ of directions, with the following properties, all with probability 1.

• For each direction $\boldsymbol{\xi} \notin \mathcal{V}^{\omega}$ there is a unique geodesic from each lattice point. For a given $\boldsymbol{\xi}$ these geodesics coalesce.

• For directions $\boldsymbol{\xi} \in \mathcal{V}^{\omega}$, from each lattice point x there are exactly two geodesics $\pi^{x,\boldsymbol{\xi}+}$ and $\pi^{x,\boldsymbol{\xi}-}$ in direction $\boldsymbol{\xi}$ that eventually separate. Geodesics $\{\pi^{x,\boldsymbol{\xi}+}: x \in \mathbb{Z}^2\}$ form a coalescing tree, and geodesics $\{\pi^{x,\boldsymbol{\xi}-}: x \in \mathbb{Z}^2\}$ form a separate coalescing tree.

• $\mathcal{V}^{\omega} = \{ \boldsymbol{\xi}^*(x) : x \in \mathbb{Z}^2 \}$, the collection of asymptotic directions of the competition interfaces at all x, at a fixed ω .

• $\mathcal{V}^{\omega} = \{ \boldsymbol{\xi} : \exists x, y \in \mathbb{Z}^2 : B^{\boldsymbol{\xi}+}(x, y) \neq B^{\boldsymbol{\xi}-}(x, y) \}$, the set of discontinuities of Busemann functions.

• There are no other semi-infinite geodesics except the trivial ones $x + k\mathbf{e}_i, \ k \ge 0.$

Proof of the global geodesics theorem comes from a combination of earlier facts with properties of the Busemann process $\{B^{\xi\pm}: \xi \in (\mathbf{e}_2, \mathbf{e}_1)\}$.

First the distribution of the process $\boldsymbol{\xi} \mapsto B^{\boldsymbol{\xi} \pm}(x, x + \mathbf{e}_1)$ on a fixed horizontal edge $(x, x + \mathbf{e}_1)$.

Busemann process on an edge, indexed by directions $\boldsymbol{\xi}$

Parametrize directions $\boldsymbol{\xi} = (\xi_1, 1 - \xi_1) \in (\mathbf{e}_2, \mathbf{e}_1)$ with $\alpha \in (0, 1)$:

$$\alpha(\boldsymbol{\xi}) = \frac{\sqrt{\xi_1}}{\sqrt{\xi_1} + \sqrt{1 - \xi_1}}$$

Define a marked point process X on (0, 1]:

- On (0,1), N = Poisson point process with intensity measure $r^{-1}dr$, and $N\{1\} = 1$.
- To each point $r \in N$ attach an independent variable $Z_r \sim \text{Exp}(r)$.

• Set
$$X(\alpha) = \sum_{r \in N(\alpha, 1]} Z_r$$
 for $0 < \alpha \leq 1$. $X(\alpha) \sim \mathsf{Exp}(\alpha)$.

Theorem [Fan-S]

On a fixed horizontal edge $(x, x + \mathbf{e}_1)$,

$$\{B^{\boldsymbol{\xi}+}(\boldsymbol{x},\boldsymbol{x}+\boldsymbol{e}_1):\boldsymbol{\xi}\in(\boldsymbol{e}_2,\boldsymbol{e}_1)\} \stackrel{d}{=} \{X(\alpha(\boldsymbol{\xi})):\boldsymbol{\xi}\in(\boldsymbol{e}_2,\boldsymbol{e}_1)\}.$$

Geometric significance of jumps of $\boldsymbol{\xi} \mapsto B_{x,x+\mathbf{e}_1}^{\boldsymbol{\xi}\pm}$

Recall: for a countable dense set of directions ζ , geodesics $\{\pi^{x,\zeta}\}_{x\in\mathbb{Z}^2}$ coalesce a.s.

 $\begin{array}{ll} \text{If } \mathbf{z}^{\boldsymbol{\zeta}}(x,y) = \text{coalescence point of geodesics } \pi^{x,\boldsymbol{\zeta}} \text{ and } \pi^{y,\boldsymbol{\zeta}} \\ \text{then } & B^{\boldsymbol{\zeta}}(x,y) = G(x,\mathbf{z}^{\boldsymbol{\zeta}}(x,y)) - G(y,\mathbf{z}^{\boldsymbol{\zeta}}(x,y)). \end{array}$

If $B^{\zeta}(x,y)$ is constant for $\zeta \in (\eta',\eta'') \zeta \in (\xi,\eta)$ then $z^{\zeta}(x,y)$ cannot jump.

Let $\zeta \searrow \xi$. Geodesics converge: $\pi^{x,\zeta} \to \pi^{x,\xi+}$, $\pi^{y,\zeta} \to \pi^{y,\xi+}$ and $B^{\xi+}(x,y) = G(x, \mathbf{z}^{\xi+}(x,y)) - G(y, \mathbf{z}^{\xi+}(x,y))$.

We conclude that $\pmb{\xi}+$ geodesics coalesce, as claimed in the global geodesics theorem.

Furthermore, the coalescence point $\boldsymbol{\xi} \mapsto \mathbf{z}^{\boldsymbol{\xi} \pm}(x, x + \mathbf{e}_1)$ jumps at the locations of an inhomogeneous Poisson process.

Distribution of increments on the x-axis of the lattice

Let
$$\boldsymbol{\zeta}, \boldsymbol{\eta} \in (\mathbf{e}_2, \mathbf{e}_1)$$
 again satisfy $\zeta_1 < \eta_1$.

$$\Delta_k = B^{\boldsymbol{\zeta}}(k\mathbf{e}_1, (k+1)\mathbf{e}_1) - B^{\boldsymbol{\eta}}(k\mathbf{e}_1, (k+1)\mathbf{e}_1) \ge 0$$
Distribution of process $\{\Delta_k\}_{k \in \mathbb{Z}_k}$?

Define 2-sided RW
$$S_n = \begin{cases} \sum_{i=1}^{n} Y_i, & n > 0\\ 0, & n = 0\\ -\sum_{i=n+1}^{0} Y_i, & n < 0. \end{cases}$$

with steps $Y_i \sim \operatorname{Exp}(\alpha(\boldsymbol{\zeta})) - \operatorname{Exp}(\alpha(\boldsymbol{\eta}))$. $E(Y_i) > 0$.

Theorem
$$\left\{\Delta_k\right\}_{k\in\mathbb{Z}} \stackrel{d}{=} \left\{\left(\inf_{m>k}S_m - S_k\right)^+\right\}_{k\in\mathbb{Z}}$$

Finding the joint distribution of $\{B^{\boldsymbol{\xi}} : \boldsymbol{\xi} \in (\mathbf{e}_2, \mathbf{e}_1)\}$

 \forall level $t \in \mathbb{Z}$ define bi-infinite sequences

$$\overline{\omega}_t = (\omega_{(k,t)})_{k \in \mathbb{Z}} \quad \text{and} \quad \overline{B}_t^{\boldsymbol{\xi}, \mathbf{e}_1} = (B_{(k,t), (k+1,t)}^{\boldsymbol{\xi}})_{k \in \mathbb{Z}}$$

 \exists mapping D from a subset of $\mathbb{R}_+^\mathbb{Z}\times\mathbb{R}_+^\mathbb{Z}$ into $\mathbb{R}_+^\mathbb{Z}$ such that

$$\overline{B}_t^{\boldsymbol{\xi}, \mathbf{e}_1} = Dig(\overline{B}_{t+1}^{\boldsymbol{\xi}, \mathbf{e}_1}, \overline{\omega}_t ig) \quad orall \boldsymbol{\xi} ext{ and } t \in \mathbb{Z}.$$

Definition of $\tilde{I} = D(I, \omega)$: with G satisfying $I_k = G_k - G_{k+1}$, let

$$\widetilde{G}_k = \sup_{m: m \ge k} \left\{ G_m + \sum_{i=k}^m \omega_i \right\}, \quad \widetilde{I}_k = \widetilde{G}_k - \widetilde{G}_{k+1}.$$

 \tilde{I} is the departure process of a FIFO queue with arrivals I and services ω with time running right to left on \mathbb{Z} .

Level-by-level evolution of the Busemann function

For $\xi_1, \ldots, \xi_n \in (\mathbf{e}_2, \mathbf{e}_1)$, the *n*-tuple of sequences evolves as a Markov chain backwards in the time parameter *t* via the mapping

$$\left(\overline{B}_{t}^{\boldsymbol{\xi}_{1},\mathbf{e}_{1}},\ldots,\overline{B}_{t}^{\boldsymbol{\xi}_{n},\mathbf{e}_{1}}\right)=\left(D\left(\overline{B}_{t+1}^{\boldsymbol{\xi}_{1},\mathbf{e}_{1}},\overline{\omega}_{t}\right),\ldots,D\left(\overline{B}_{t+1}^{\boldsymbol{\xi}_{n},\mathbf{e}_{1}},\overline{\omega}_{t}\right)\right)$$

Theorem [Fan-S] Given $(\rho_1, \ldots, \rho_n) \in (1, \infty)^n$, the Markov chain above has a unique invariant distribution ergodic under spatial translation and with mean

$$\left(\mathsf{E}B_{(k,t),(k+1,t)}^{\boldsymbol{\xi}_{1}},\ldots,\mathsf{E}B_{(k,t),(k+1,t)}^{\boldsymbol{\xi}_{n}}\right)=(\rho_{1},\ldots,\rho_{n}).$$

Description of the invariant distribution

Let $D^{(n)}(\zeta^1, \zeta^2, ..., \zeta^n) =$ departure process from sending arrival process ζ^1 successively through service processes $\zeta^2, ..., \zeta^n$.

Let I^1, I^2, \ldots, I^n be independent sequences of i.i.d. exponentials with $I^i_k \sim \text{Exp}(\alpha(\boldsymbol{\xi}_i))$. Define sequences η^1, \ldots, η^n by

$$\begin{split} \eta^1 &= l^1, \qquad \eta^2 = D(l^2, l^1), \qquad \eta^3 = D^{(3)}(l^3, l^2, l^1), \dots, \\ \eta^n &= D^{(n)}(l^n, l^{n-1}, \dots, l^1). \end{split}$$

Well-defined if $\boldsymbol{\xi}_1 \cdot \boldsymbol{e}_1 > \cdots > \boldsymbol{\xi}_n \cdot \boldsymbol{e}_1$ so that $\alpha(\boldsymbol{\xi}_1) > \cdots > \alpha(\boldsymbol{\xi}_n)$.

Then the invariant distribution is given by

$$\left(\overline{B}_t^{\boldsymbol{\xi}_1,\mathbf{e}_1},\ldots,\overline{B}_t^{\boldsymbol{\xi}_n,\mathbf{e}_1}\right) \stackrel{d}{=} (\boldsymbol{\eta}^1,\ldots,\boldsymbol{\eta}^n)$$

[Ferrari-Martin 2006-2009 on invariant distributions of multiclass TASEP pointed the way. Existence of invariant distributions for multiclass TASEP go back to Liggett 1976.]