Space-dependent renormalization group
and anomalous dimensions in a hierarchical
model for 3d CFT

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Partly joint work with Ajay Chandra (Imperial)
and Gianluca Guadagni (UVa)

Recent developments in Constructive Field Theory
Columbia University, March 13, 2018
Main references:

1 Introduction
2 The hierarchical continuum
3 The rigorous hierarchical space-dependent renormalization group
In usual rigorous RG couplings are constant in space

\[
\int \{ g : \phi^4 : (x) + \mu : \phi^2 : (x) \} d^d x
\]
In usual rigorous RG couplings are constant in space

\[\int \{ g : \phi^4 : (x) + \mu : \phi^2 : (x) \} d^d x \]

(ACG2013) \(\rightarrow\) inhomogeneous RG for space-dependent couplings.

\[\int \{ g(x) : \phi^4 : (x) + \mu(x) : \phi^2 : (x) \} d^d x \]

e.g., \(g(x) = g + \delta g(x) \), with \(\delta g(x) \) a local perturbation such as test function.
In usual rigorous RG couplings are constant in space

\[\int \{ g : \phi^4 : (x) + \mu : \phi^2 : (x) \} \, d^d x \]

(ACG2013) \rightarrow \text{inhomogeneous RG for space-dependent couplings.}

\[\int \{ g(x) : \phi^4 : (x) + \mu(x) : \phi^2 : (x) \} \, d^d x \]

e.g., \(g(x) = g + \delta g(x) \), with \(\delta g(x) \) a local perturbation such as test function.

In the nonrigorous physical literature, this is called the local RG: Drummond-Shore PRD 1979, Jack-Osborn NPB 1990, \ldots
In usual rigorous RG couplings are constant in space

\[\int \{ g : \phi^4 : (x) + \mu : \phi^2 : (x) \} \, d^d x \]

(ACG2013) \rightarrow inhomogeneous RG for space-dependent couplings.

\[\int \{ g(x) : \phi^4 : (x) + \mu(x) : \phi^2 : (x) \} \, d^d x \]

e.g., \(g(x) = g + \delta g(x) \), with \(\delta g(x) \) a local perturbation such as test function.

In the nonrigorous physical literature, this is called the local RG: Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,\ldots

Used for generalizations of Zamolodchikov’s \(c \)-“Theorem”, study of scale vs. conformal invariance,\ldots
However, this local RG is **not Wilsonian** but in the spirit of old reparametrization RG of Stueckelberg, Petermann, Gell-Mann, Low, Bogoliubov and Shirkov.
However, this local RG is not Wilsonian but in the spirit of old reparametrization RG of Stueckelberg, Petermann, Gell-Mann, Low, Bogoliubov and Shirkov.

A true space-dependent RG (SDRG) should be Wilsonian, i.e., proceed by coarse graining/integrating out high frequency modes.
However, this local RG is not Wilsonian but in the spirit of old reparametrization RG of Stueckelberg, Petermann, Gell-Mann, Low, Bogoliubov and Shirkov.

A true space-dependent RG (SDRG) should be Wilsonian, i.e., proceed by coarse graining/integrating out high frequency modes.

As explained in (AA2013), it should also be done using parallel processing with each processor acting locally.
However, this local RG is not Wilsonian but in the spirit of old reparametrization RG of Stueckelberg, Petermann, Gell-Mann, Low, Bogoliubov and Shirkov.

A true space-dependent RG (SDRG) should be Wilsonian, i.e., proceed by coarse graining/integrating out high frequency modes.

As explained in (AA2013), it should also be done using parallel processing with each processor acting locally.

This parallel and local processing aspect is already present in existing rigorous RG approaches. However, one typically uses periodic boundary conditions:
However, this local RG is **not Wilsonian** but in the spirit of old reparametrization RG of Stueckelberg, Petermann, Gell-Mann, Low, Bogoliubov and Shirkov.

A true space-dependent RG (**SDRG**) should be Wilsonian, i.e., proceed by coarse graining/integrating out high frequency modes.

As explained in (**AA2013**), it should also be done using parallel processing with each processor acting **locally**.

This parallel and local processing aspect is already present in existing rigorous RG approaches. However, one typically uses **periodic boundary conditions**: all processors are given the same job to do.
Possibilities offered by the SDRG:

• Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.

• Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.

• Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015). QFT with defect/domain wall.

• Showing global/Möbius conformal invariance of scaling limit by controlling space-dependent UV cutoffs.

• Constructing explicit examples of holography or AdS/CFT correspondence.
Possibilities offered by the SDRG:

- Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits.
- Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
- Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015).
- Showing global/Möbius conformal invariance of scaling limit by controlling space-dependent UV cutoffs.
- Constructing explicit examples of holography or AdS/CFT correspondence.
Possibilities offered by the SDRG:

- Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
Possibilities offered by the SDRG:
• Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
• Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
Possibilities offered by the SDRG:

- Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
- Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
- Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015).
Possibilities offered by the SDRG:

- Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
- Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
- Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015). QFT with defect/domain wall.
Possibilities offered by the SDRG:

- Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
- Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
- Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015). QFT with defect/domain wall.
- Showing global/Möbius conformal invariance of scaling limit by controlling space-dependent UV cutoffs.
Possibilities offered by the SDRG:
• Constructing correlation functions of scaling/continuum limits and corresponding probability measures, while simultaneously performing UV and large volume limits. Not just a stability bound.
• Constructing composite fields, e.g., the square Φ^2 of the elementary field Φ. Here Φ would be scaling limit of spin field and Φ^2 that of the energy field.
• Showing Osterwalder-Schrader positivity with Fourier cutoffs, by emptying the interaction in a vanishing corridor around reflection hyperplane (A2015). QFT with defect/domain wall.
• Showing global/Möbius conformal invariance of scaling limit by controlling space-dependent UV cutoffs.
• Constructing explicit examples of holography or AdS/CFT correspondence.
A touristic view of AdS/CFT:

\[\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{ \infty \} \cong \mathbb{S}^d. \]

The Möbius group \(\mathbb{M}(\mathbb{R}^d) \) is the group of bijective transformations of \(\hat{\mathbb{R}}^d \) generated by isometries, dilations and the unit sphere inversion \(J(x) = |x|^{-2}x \).

This is also the invariance group of the absolute cross-ratio
\[
CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3|}{|x_2 - x_4|}.
\]

Conformal ball model: \(\hat{\mathbb{R}}^d \cong \mathbb{S}^d \) seen as boundary of \(\mathbb{B}^{d+1} \) with metric
\[
ds = \frac{2}{|dx|} - \frac{1}{|x|^2}.
\]

Half-space model: \(\mathbb{R}^d \) seen as boundary of \(\mathbb{H}^{d+1} = \mathbb{R}^d \times (0, \infty) \) with metric
\[
ds = \frac{|dx|}{x^{d+1}}.
\]

Correspondence: \(f \in \mathbb{M}(\mathbb{R}^d) \leftrightarrow \) hyperbolic isometry of the interior \(\mathbb{B}^{d+1} \) or \(\mathbb{H}^{d+1} \), the Euclidean AdS space.
A touristic view of AdS/CFT:

Let $\mathbb{R}^d = \mathbb{R}^d \cup \{\infty\} \simeq S^d$.

The Möbius group M^d is the group of bijective transformations of \mathbb{R}^d generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$. This is also the invariance group of the absolute cross-ratio $\text{CR}(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3|}{|x_2 - x_4|}$.

Conformal ball model: $\hat{\mathbb{R}}^d \simeq S^d$ seen as boundary of B^{d+1} with metric $ds = \frac{2|dx|}{1-|x|^2}$.

Half-space model: \mathbb{R}^d seen as boundary of $H^{d+1} = \mathbb{R}^d \times (0, \infty)$ with metric $ds = \frac{|dx|}{x^{d+1}}$.

Correspondence: $f \in \text{M}^d \leftrightarrow \text{hyperbolic isometry of the interior } B^{d+1} \text{ or } H^{d+1}$, the Euclidean AdS space.
A touristic view of AdS/CFT:

Let $\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\} \simeq S^d$. The Möbius group $\mathcal{M}(\mathbb{R}^d)$ is the group of bijective transformations of $\hat{\mathbb{R}}^d$ generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$.
A touristic view of AdS/CFT:

Let $\mathbb{R}^d = \mathbb{R}^d \cup \{\infty\} \simeq S^d$. The Möbius group $\mathcal{M}(\mathbb{R}^d)$ is the group of bijective transformations of \mathbb{R}^d generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$. This is also the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3||x_2 - x_4|}{|x_1 - x_4||x_2 - x_3|}.$$
A touristic view of AdS/CFT:

Let $\mathbb{R}^d = \mathbb{R}^d \cup \{\infty\} \simeq S^d$. The Möbius group $M(\mathbb{R}^d)$ is the group of bijective transformations of \mathbb{R}^d generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$. This is also the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| \; |x_2 - x_4|}{|x_1 - x_4| \; |x_2 - x_3|}.$$

Conformal ball model: $\mathbb{R}^d \simeq S^d$ seen as boundary of \mathbb{B}^{d+1} with metric $ds = \frac{2dx}{1-|x|^2}$.
A touristic view of AdS/CFT:

Let \(\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{ \infty \} \simeq S^d \). The Möbius group \(\mathcal{M}(\mathbb{R}^d) \) is the group of bijective transformations of \(\hat{\mathbb{R}}^d \) generated by isometries, dilations and the unit sphere inversion \(J(x) = |x|^{-2}x \). This is also the invariance group of the absolute cross-ratio

\[
CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.
\]

Conformal ball model: \(\hat{\mathbb{R}}^d \simeq S^d \) seen as boundary of \(B^{d+1} \) with metric \(ds = \frac{2|dx|}{1-|x|^2} \).

Half-space model: \(\mathbb{R}^d \) seen as boundary of \(\mathbb{H}^{d+1} = \mathbb{R}^d \times (0, \infty) \) with metric \(ds = \frac{|dx|}{x_{d+1}} \).
A touristic view of AdS/CFT:

Let \(\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\} \cong S^d \). The Möbius group \(\mathcal{M}(\mathbb{R}^d) \) is the group of bijective transformations of \(\hat{\mathbb{R}}^d \) generated by isometries, dilations and the unit sphere inversion \(J(x) = |x|^{-2}x \). This is also the invariance group of the absolute cross-ratio

\[
CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3|}{|x_1 - x_4|} \frac{|x_2 - x_4|}{|x_2 - x_3|}.
\]

Conformal ball model: \(\hat{\mathbb{R}}^d \cong S^d \) seen as boundary of \(B^{d+1} \) with metric \(ds = \frac{2|dx|}{1-|x|^2} \).

Half-space model: \(\mathbb{R}^d \) seen as boundary of \(\mathbb{H}^{d+1} = \mathbb{R}^d \times (0, \infty) \) with metric \(ds = \frac{|dx|}{x_{d+1}} \).

Correspondence: \(f \in \mathcal{M}(\mathbb{R}^d) \leftrightarrow \) hyperbolic isometry of the interior \(B^{d+1} \) or \(\mathbb{H}^{d+1} \),
A touristic view of AdS/CFT:

Let $\hat{\mathbb{R}}^d = \mathbb{R}^d \cup \{\infty\} \simeq S^d$. The Möbius group $\mathcal{M}(\mathbb{R}^d)$ is the group of bijective transformations of $\hat{\mathbb{R}}^d$ generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$. This is also the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}.$$

Conformal ball model: $\hat{\mathbb{R}}^d \simeq S^d$ seen as boundary of \mathbb{B}^{d+1} with metric $ds = \frac{2|dx|}{1-|x|^2}$.

Half-space model: \mathbb{R}^d seen as boundary of $\mathbb{H}^{d+1} = \mathbb{R}^d \times (0, \infty)$ with metric $ds = \frac{|dx|}{x_{d+1}}$.

Correspondence: $f \in \mathcal{M}(\mathbb{R}^d) \iff$ hyperbolic isometry of the interior \mathbb{B}^{d+1} or \mathbb{H}^{d+1}, the Euclidean AdS space.
A scalar field O of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle O(x_1) \cdots O(x_n) \rangle = (n! \prod_{i=1}^n |J_f(x_i)|^\Delta)^d \times \langle O(f(x_1)) \cdots O(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{f^{-1}(\infty)\}$.

Here, $J_f(x)$ denotes the Jacobian of f at x.

The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$\langle e^{\int_{\mathbb{R}^d j(x)O(x)dx} \rangle}_{\text{CFT}} = e^{-S[\phi_{\text{ext}}]}$$

where $S[\phi]$ is an action for a field $\phi(x, x_{d+1})$ on AdS space and ϕ_{ext} makes it extremal for a boundary condition $\phi(x, x_{d+1}) \sim |x_{d+1}|^{d-\Delta} j(x)$ when $x_{d+1} \to 0$.
A scalar field O of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle O(x_1) \cdots O(x_n) \rangle = \left(\prod_{i=1}^{n} |J_f(x_i)|^{\frac{\Delta}{d}} \right) \times \langle O(f(x_1)) \cdots O(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{f^{-1}(\infty)\}$.
A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\Delta d/n} \right) \times \langle \mathcal{O}(f(x_1)) \cdots \mathcal{O}(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{ f^{-1}(\infty) \}$. Here, $J_f(x)$ denotes the Jacobian of f at x.

The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$\left[e^{\int \mathcal{O}(x) \mathcal{J}(x) d^d x} \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle_{\text{CFT}} \right] = e^{-S[\phi]\text{ext}}$$

where $S[\phi]$ is an action for a field $\phi(x, x_{d+1})$ on AdS space and ϕext makes it extremal for a boundary condition $\phi(x, x_{d+1}) \sim (x_{d+1})^{-\Delta}$ when $x_{d+1} \to 0$.

A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle = \left(\prod_{i=1}^{n} |J_f(x_i)|^{\frac{\Delta}{d}} \right) \times \langle \mathcal{O}(f(x_1)) \cdots \mathcal{O}(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{f^{-1}(\infty)\}$. Here, $J_f(x)$ denotes the Jacobian of f at x.

The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:
A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle = \left(\prod_{i=1}^{n} \left| J_f(x_i) \right|^{\Delta} \right) \times \langle \mathcal{O}(f(x_1)) \cdots \mathcal{O}(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \backslash \{ f^{-1}(\infty) \}$. Here, $J_f(x)$ denotes the Jacobian of f at x. The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$\langle e^{\int_{\mathbb{R}^d} j(x) \mathcal{O}(x) d^d x} \rangle_{\text{CFT}} = e^{-S[\phi_{\text{ext}}]}$$
A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle = \left(\prod_{i=1}^{n} |J_f(x_i)|^{\Delta/d} \right) \times \langle \mathcal{O}(f(x_1)) \cdots \mathcal{O}(f(x_n)) \rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{ f^{-1}(\infty) \}$. Here, $J_f(x)$ denotes the Jacobian of f at x.

The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$\left\langle e^{\int_{\mathbb{R}^d} j(x) \mathcal{O}(x) \, d^d x} \right\rangle_{\text{CFT}} = e^{-S[\phi_{\text{ext}}]}$$

where $S[\phi]$ is an action for a field $\phi(x, x_{d+1})$ on AdS space and ϕ_{ext} makes it extremal for a boundary condition $\phi(x, x_{d+1}) \sim (x_{d+1})^{d-\Delta} j(x)$ when $x_{d+1} \to 0$.
AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:

\[
\int_{\mathbb{R}^{d+1}} \sqrt{\det g_{\mu\nu}} \left\{ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} m^2 \phi^2 + \cdots \right\}
\]

where m^2 is related to Δ and is allowed to be (not too) negative. This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams). The simplest "Mercedes logo" 3-point Witten diagram reproduces the correct CFT prediction $O(1)$ for $\langle O_1(x_1) O_2(x_2) O_3(x_3) \rangle$ by a calculation of Freedman, Mathur, Matusis and Rastelli 1999.
AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:

$$\int_{\mathbb{R}^d \times (0,\infty)} d^d x \, dx_{d+1} \, \sqrt{\det g_{\mu\nu}} \left\{ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} m^2 \phi^2 + \cdots \right\}$$

where m^2 is related to Δ and is allowed to be (not too) negative.
AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:

$$
\int_{\mathbb{R}^d \times (0,\infty)} d^d x \, dx_{d+1} \, \sqrt{\det g_{\mu\nu}} \, \left\{ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} m^2 \phi^2 + \cdots \right\}
$$

where m^2 is related to Δ and is allowed to be (not too) negative. This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams).
AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:

$$\int_{\mathbb{R}^d \times (0,\infty)} d^d x \sqrt{\det g_{\mu\nu}} \left\{ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} m^2 \phi^2 + \cdots \right\}$$

where m^2 is related to Δ and is allowed to be (not too) negative. This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams). The simplest “Mercedes logo” 3-point Witten diagram reproduces the correct CFT prediction

$$O(1)$$

for $\langle O_1(x_1) O_2(x_2) O_3(x_3) \rangle$ by a calculation of Freedman, Mathur, Matusis and Rastelli 1999.
The good news:

All of the above makes sense for the hierarchical model. See in particular:

• Gubser et al. “O(N) and O(N) and O(N)”, JHEP 2017.

The calculations of the last reference for scaling dimensions of Φ and Φ^2, for $N=1$ in hierarchical case were made nonperturbatively rigorous in (ACG2013).
The good news:

All of the above makes sense for the hierarchical model.
The good news:

All of the above makes sense for the hierarchical model.

See in particular:
- Gubser et al. “$O(N)$ and $O(N)$ and $O(N)$”, JHEP 2017.
The good news:

All of the above makes sense for the hierarchical model.

See in particular:
- Gubser et al. “$O(N)$ and $O(N)$ and $O(N)$”, JHEP 2017.

The calculations of the last reference for scaling dimensions of Φ and Φ^2, for $N = 1$ in hierarchical case were made nonperturbatively rigorous in (ACG2013).
1 Introduction
2 The hierarchical continuum
3 The rigorous hierarchical space-dependent renormalization group
Hierarchical models have a long history:
Hierarchical models have a long history:

Dyson 1969,
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion),…
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion), . . .

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen),
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion), . . .

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni,
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion),

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni, Walsh-Fourier series in harmonic analysis,
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion),

But also Mandelbrot cascades (see 2013 IAS talk by
Kupiainen), the branching Brownian motion used by Bramson
and Zeitouni, Walsh-Fourier series in harmonic analysis, the
setup used by Brydges, Evans and Imbrie which takes
advantage of an additive group structure and Fourier
analysis,...
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion),

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni, Walsh-Fourier series in harmonic analysis, the setup used by Brydges, Evans and Imbrie which takes advantage of an additive group structure and Fourier analysis,

the “God given” p-adic setup...
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion), . . .

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni, Walsh-Fourier series in harmonic analysis, the setup used by Brydges, Evans and Imbrie which takes advantage of an additive group structure and Fourier analysis, . . .

the “God given” p-adic setup . . . where “God” is man called Alexander Ostrowski.
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion), . . .

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni, Walsh-Fourier series in harmonic analysis, the setup used by Brydges, Evans and Imbrie which takes advantage of an additive group structure and Fourier analysis, . . .

the “God given” p-adic setup . . . where “God” is man called Alexander Ostrowski. Comes with a huge available knowledge base one can tap into . . .
Hierarchical models have a long history:

Dyson 1969, Wilson 1971 (the approximate recursion), . . .

But also Mandelbrot cascades (see 2013 IAS talk by Kupiainen), the branching Brownian motion used by Bramson and Zeitouni, Walsh-Fourier series in harmonic analysis, the setup used by Brydges, Evans and Imbrie which takes advantage of an additive group structure and Fourier analysis, . . .

the “God given” p-adic setup . . . where “God” is man called Alexander Ostrowski. Comes with a huge available knowledge base one can tap into . . . provided one has a gun to force number theorists to talk about $SO(d + 1, 1)$ instead of a general split reductive group over an arbitrary global field of characteristic zero.
The hierarchical continuum:

Let p be an integer >1 (in fact a prime number). Let $L_k, k \in \mathbb{Z}$, be the set of cubes $\prod_{d=1}^{d} [a_i^p k, (a_i+1)^p k]$ with $a_1, ..., a_d \in \mathbb{N}_0$. The cubes of L_k form a partition of the octant $[0, \infty)^d$. Hence $T = \bigcup_{k \in \mathbb{Z}} L_k$ naturally has the structure of a doubly infinite tree which is organized into layers or generations L_k:
The hierarchical continuum:

Let p be an integer > 1 (in fact a prime number).
The hierarchical continuum:

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k, $k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d} [a_ip^k, (a_i + 1)p^k)$ with $a_1, \ldots, a_d \in \mathbb{N}_0$. The cubes of \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.
The hierarchical continuum:

Let p be an integer > 1 (in fact a prime number).

Let \mathbb{L}_k, $k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}[a_i p^k, (a_i + 1)p^k)$ with $a_1, \ldots, a_d \in \mathbb{N}_0$. The cubes of \mathbb{L}_k form a partition of the octant $[0, \infty)^d$.

Hence $\mathcal{T} = \bigcup_{k \in \mathbb{Z}} \mathbb{L}_k$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_k:
Picture for $d = 1$, $p = 2$
Forget $[0, \infty)^d$ and \mathbb{R}^d and just keep the tree.
Define the hierarchical continuum $\mathbb{Q}^d_p :=$ leafs at infinity “$\mathbb{L}_{-\infty}$”.
Forget \([0, \infty)^d\) and \(\mathbb{R}^d\) and just keep the tree.
Define the hierarchical continuum \(\mathbb{Q}_p^d :=\) leafs at infinity “\(\mathbb{L}_{-\infty}\)”. This is where scaling limits of hierarchical models live.
Forget $[0, \infty)^d$ and \mathbb{R}^d and just keep the tree. Define the hierarchical continuum $\mathbb{Q}^d_p := \text{leaves at infinity}$$\ "L_{-\infty}\"$. This is where scaling limits of hierarchical models live. More precisely, these leaves at infinity are the infinite bottom-up paths in the tree.

A path representing an element $x \in \mathbb{Q}^d_p$
A point $x \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \ldots, p - 1\}^d$.

Let $0 \in \mathbb{Q}_p^d$ be the sequence with all digits equal to zero.
A point $x \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \ldots, p - 1\}^d$.
Let $0 \in \mathbb{Q}_p^d$ be the sequence with all digits equal to zero.

Caution! dangerous notation
a_n represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.
A point \(x \in \mathbb{Q}_p^d \) is encoded by a sequence \((a_n)_{n \in \mathbb{Z}}\), \(a_n \in \{0, 1, \ldots, p - 1\}^d \).

Let \(0 \in \mathbb{Q}_p^d \) be the sequence with all digits equal to zero.

Caution! dangerous notation

\(a_n \) represents the local coordinates for a cube of \(\mathbb{L}_{-n-1} \) inside a cube of \(\mathbb{L}_{-n} \).
Moreover, rescaling is defined as follows. If \(x = (a_n)_{n \in \mathbb{Z}} \) then \(px := (a_{n-1})_{n \in \mathbb{Z}} \), i.e., upward shift.
Moreover, rescaling is defined as follows. If \(x = (a_n)_{n \in \mathbb{Z}} \) then \(px := (a_{n-1})_{n \in \mathbb{Z}} \), i.e., upward shift.

Likewise \(p^{-1}x \) is downward shift, and so on for the definition of \(p^kx, k \in \mathbb{Z} \).
Distance:

If \(x, y \in \mathbb{Q}^d \), define their distance as
\[
| x - y |_p = p^k
\]
where \(k \) is the depth where the two paths merge.

Also let
\[
| x |_p = | x - 0 |_p.
\]

Because of the dangerous notation
\[
| px |_p = p - 1 | x |_p.
\]
Distance:

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.
Distance:

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.
Distance:

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

Also let $|x|_p := |x - 0|_p$.
Distance:

If $x, y \in \mathbb{Q}_p^d$, define their distance as $|x - y|_p := p^k$ where k is the depth where the two paths merge.

Also let $|x|_p := |x - 0|_p$. Because of the dangerous notation

$$|p^k x|_p = p^{-1} |x|_p$$
Closed balls Δ of radius p^k correspond to the nodes $x \in \mathbb{L}_k$
Closed balls Δ of radius p^k correspond to the nodes $x \in \mathbb{L}_k$
Lebesgue measure:

- Metric space \mathbb{Q}_d with the Borel σ-algebra.
- Lebesgue measure μ which gives a volume $\mu(k)$ to closed balls of radius k.

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p-1\})^N$ for $B(0, 1)$. Do the same for the other closed unit balls, and collate.

The hierarchical unit lattice:
- Truncate the tree at level zero and take $L := L_0$. Using the identification of nodes with balls, define the hierarchical distance as $d(x, y) = \inf \{ |x - y| : x, y \in \mathbb{Q}_d \}$.
Lebesgue measure:

Metric space $\mathbb{Q}_p^d \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^d x$ which gives a volume p^{dk} to closed balls of radius p^k.
Lebesgue measure:

Metric space $\mathbb{Q}^d_p \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^d x$ which gives a volume p^{dk} to closed balls of radius p^k.

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p - 1\}^d)^{\mathbb{N}_0}$ for $\overline{B}(0, 1)$. Do the same for the other closed unit balls, and collate.
Lebesgue measure:

Metric space $\mathbb{Q}_p^d \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^d x$ which gives a volume p^{dk} to closed balls of radius p^k.

Construction: take product of uniform probability measures on $(\{0, 1, \ldots, p - 1\}^d)^{\mathbb{N}_0}$ for $\overline{B}(0, 1)$. Do the same for the other closed unit balls, and collate.

The hierarchical unit lattice:
Truncate the tree at level zero and take $\mathbb{L} := \mathbb{L}_0$. Using the identification of nodes with balls, define the hierarchical distance as

$$d(x, y) = \inf\{|x - y|_p \mid x \in x, \ y \in y\}.$$
The massless Gaussian measure:

To every group of offsprings G of a vertex $z \in L_{k+1}$ associate a centered Gaussian random vector $(\zeta_x)_{x \in G}$ with $p \times p$ covariance matrix made of $1-p-d$'s on the diagonal and $-p-d$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent.

We have $\sum_{x \in G} \zeta_x = 0$ a.s.
The massless Gaussian measure:

To every group of offsprings G of a vertex $z \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $(\zeta_x)_{x \in G}$ with $p^d \times p^d$ covariance matrix made of $1 - p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent.
The massless Gaussian measure:

To every group of offsprings G of a vertex $z \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $(\zeta_x)_{x \in G}$ with $p^d \times p^d$ covariance matrix made of $1 - p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent. We have $\sum_{x \in G} \zeta_x = 0$ a.s.
The ancestor function: for $k < k'$, $x \in \mathbb{L}_k$, let $\text{anc}_{k'}(x)$ denote the ancestor in $\mathbb{L}_{k'}$.

The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{d_p}$ of scaling dimension $[\phi]$ is given by

$$
\phi(x) = \sum_{k \in \mathbb{Z}^{d_p}} [-k][\phi] \zeta_{\text{anc}_k}(x) \langle \phi(x) \phi(y) \rangle = c |x - y|^2[\phi]
$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions.
The ancestor function: for \(k < k' \), \(x \in \mathbb{L}_k \), let \(\text{anc}_{k'}(x) \) denote the ancestor in \(\mathbb{L}_{k'} \).
Ditto for \(\text{anc}_{k'}(x) \) when \(x \in \mathbb{Q}_p^d \).
The ancestor function: for $k < k'$, $x \in \mathbb{L}_k$, let $\text{anc}_{k'}(x)$ denote the ancestor in $\mathbb{L}_{k'}$.

Ditto for $\text{anc}_{k'}(x)$ when $x \in \mathbb{Q}_p^d$.

The massless Gaussian field $\phi(x)$, $x \in \mathbb{Q}_p^d$ of scaling dimension $[\phi]$ is given by

$$
\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text{anc}_k(x)}
$$

$$
\langle \phi(x) \phi(y) \rangle = \frac{c}{|x - y|^{2[\phi]}}
$$
The ancestor function: for \(k < k' \), \(x \in \mathbb{L}_k \), let \(\text{anc}_{k'}(x) \) denote the ancestor in \(\mathbb{L}_{k'} \).

Ditto for \(\text{anc}_{k'}(x) \) when \(x \in \mathbb{Q}_p^d \).

The massless Gaussian field \(\phi(x), x \in \mathbb{Q}_p^d \) of scaling dimension \([\phi]\) is given by

\[
\phi(x) = \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text{anc}_k(x)}
\]

\[
\langle \phi(x)\phi(y) \rangle = \frac{c}{|x - y|^{2[\phi]}}
\]

This is heuristic since \(\phi \) is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions.
Test functions:

$f: \mathbb{Q}^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}^d)$ as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on $S(\mathbb{Q}^d)$.

Distributions: $S'(\mathbb{Q}^d)$ is the dual space with strong topology (happens to be same as weak-\ast). $S(\mathbb{Q}^d) \cong \bigoplus \mathbb{R}$, thus $S'(\mathbb{Q}^d) \cong \mathbb{R}^N$ with product topology. $S'(\mathbb{Q}^d)$ is a Polish space.
Test functions:

\(f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \) is smooth if it is locally constant.
Test functions:

\(f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \) is smooth if it is locally constant.

Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions.
Test functions:

$f : \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}_p^d)$ as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on $S(\mathbb{Q}_p^d)$.
Test functions:

\(f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \) is smooth if it is locally constant.

Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on \(S(\mathbb{Q}_p^d) \).

Distributions:
Test functions:

\[f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \text{ is smooth} \] if it is locally constant.

Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on \(S(\mathbb{Q}_p^d) \).

Distributions:

\(S'(\mathbb{Q}_p^d) \) is the dual space with strong topology (happens to be same as weak-*)

Test functions:

\(f : \mathbb{Q}_p^d \to \mathbb{R} \) is smooth if it is locally constant.

Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on \(S(\mathbb{Q}_p^d) \).

Distributions:

\(S'(\mathbb{Q}_p^d) \) is the dual space with strong topology (happens to be same as weak-\(*\)).

\[
S(\mathbb{Q}_p^d) \simeq \bigoplus_{\mathbb{N}} \mathbb{R}
\]
Test functions:

\[f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \text{ is smooth if it is locally constant.} \]

Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on \(S(\mathbb{Q}_p^d) \).

Distributions:

\(S'(\mathbb{Q}_p^d) \) is the dual space with strong topology (happens to be same as weak-\(\ast \)).

\[
S(\mathbb{Q}_p^d) \cong \bigoplus_{N} \mathbb{R}
\]

Thus

\[
S'(\mathbb{Q}_p^d) \cong \mathbb{R}^N
\]

with product topology.
Test functions:

\(f : \mathbb{Q}_p^d \rightarrow \mathbb{R} \) is smooth if it is locally constant.
Define \(S(\mathbb{Q}_p^d) \) as the space of compactly supported smooth functions. Take locally convex topology generated by the set of all semi-norms on \(S(\mathbb{Q}_p^d) \).

Distributions:

\(S'(\mathbb{Q}_p^d) \) is the dual space with strong topology (happens to be same as weak-\(\ast \)).

\[S(\mathbb{Q}_p^d) \cong \bigoplus \mathbb{R} \]

Thus

\[S'(\mathbb{Q}_p^d) \cong \mathbb{R}^\mathbb{N} \]

with product topology. \(S'(\mathbb{Q}_p^d) \) is a Polish space.
The p-adic CFT toy model:
The p-adic CFT toy model:

\[d = 3, \ [\phi] = \frac{3 - \epsilon}{4}, \]
The p-adic CFT toy model:

$$d = 3, \ [\phi] = \frac{3-\epsilon}{4}, \ L = p^\ell \text{ zooming-out factor}$$
The p-adic CFT toy model:

$d = 3$, $[\phi] = \frac{3-\epsilon}{4}$, $L = p^\ell$ zooming-out factor

$r \in \mathbb{Z}$ UV cut-off, $r \to -\infty$
The p-adic CFT toy model:

\[d = 3, \ [\phi] = \frac{3-\epsilon}{4}, \ L = p^\ell \] zooming-out factor

\[r \in \mathbb{Z} \] UV cut-off, \(r \rightarrow -\infty \)

\[s \in \mathbb{Z} \] IR cut-off, \(s \rightarrow \infty \)
The p-adic CFT toy model:

\[d = 3, \ [\phi] = \frac{3 - \epsilon}{4}, \ L = p^\ell \text{ zooming-out factor} \]

\[r \in \mathbb{Z} \text{ UV cut-off, } r \to -\infty \]

\[s \in \mathbb{Z} \text{ IR cut-off, } s \to \infty \]

The regularized Gaussian measure \(\mu_{C_r} \) is the law of

\[\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\text{anc}_k}(x) \]
The p-adic CFT toy model:

$d = 3$, $[\phi] = \frac{3-\epsilon}{4}$, $L = p^\ell$ zooming-out factor

$r \in \mathbb{Z}$ UV cut-off, $r \to -\infty$

$s \in \mathbb{Z}$ IR cut-off, $s \to \infty$

The regularized Gaussian measure μ_{C_r} is the law of

$$\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\text{anc}_k}(x)$$

Sample fields are true functions that are locally constant on scale L^r. These measures are scaled copies of each other.
The p-adic CFT toy model:

\[d = 3, \, [\phi] = \frac{3-\epsilon}{4}, \, L = p^\ell \text{ zooming-out factor} \]

\[r \in \mathbb{Z} \text{ UV cut-off, } r \to -\infty \]

\[s \in \mathbb{Z} \text{ IR cut-off, } s \to \infty \]

The regularized Gaussian measure \(\mu_{C_r} \) is the law of

\[
\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\text{anc}_k}(x)
\]

Sample fields are true fonctions that are locally constant on scale \(L^r \). These measures are scaled copies of each other.

If the law of \(\phi(\cdot) \) is \(\mu_{C_0} \), then that of \(L^{-r[\phi]} \phi(L^r \cdot) \) is \(\mu_{C_r} \).
Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])} g$ and $\mu_r = L^{-(3-2[\phi])} \mu$.
Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])} r g$ and $
ur = L^{-(3-2[\phi])} r \mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice.
Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])}g$ and $
 r = L^{-(3-2[\phi])}\mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice.

Let $\Lambda_s = \overline{B}(0, L^s)$, IR (or volume) cut-off.
Fix the parameters g, μ and let $g_r = L^{-(3-4[\phi])}g$ and
$\mu_r = L^{-(3-2[\phi])}\mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice.

Let $\Lambda_s = \overline{B}(0, L^s)$, IR (or volume) cut-off.

Let

$$V_{r,s}(\phi) = \int_{\Lambda_s} \{ g_r : \phi^4 : c_r(x) + \mu_r : \phi^2 : c_r(x) \} d^3x$$

and define the probability measure

$$d\nu_{r,s}(\phi) = \frac{1}{Z_{r,s}} e^{-V_{r,s}(\phi)} d\mu c_r(\phi)$$
Let $\phi_{r,s}$ be the random distribution in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define the squared field $N_r[\phi_{r,s}^2]$ which is a deterministic function(al) of $\phi_{r,s}$, with values in $S'(\mathbb{Q}_p^3)$, given by

$$N_r[\phi_{r,s}^2](j) = (Z_2)^r \int_{\mathbb{Q}_p^3} \{ Y_2 : \phi_{r,s}^2 : c_r (x) - Y_0 L^{-2r[\phi]} \} j(x) \, d^3 x$$

for suitable parameters Z_2, Y_0, Y_2.
Let $\phi_{r,s}$ be the random distribution in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define the squared field $N_r[\phi_{r,s}^2]$ which is a deterministic function(al) of $\phi_{r,s}$, with values in $S'(\mathbb{Q}_p^3)$, given by

$$N_r[\phi_{r,s}^2](j) = (Z_2)^r \int_{\mathbb{Q}_p^3} \{ Y_2 : \phi_{r,s}^2 : c_r(x) - Y_0 L^{-2r[\phi]} \} j(x) \, d^3x$$

for suitable parameters Z_2, Y_0, Y_2.

Our main result concerns the limit law of the pair $(\phi_{r,s}, N_r[\phi_{r,s}^2])$ in $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ when $r \to -\infty$, $s \to \infty$ (in any order). For the precise statement we need the approximate fixed point value

$$\bar{g}^* = \frac{p^\epsilon - 1}{36 L^\epsilon (1 - p^{-3})}$$
Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

\[\exists \rho > 0, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon \in (0, \epsilon_0], \exists [\phi_2] > 2[\phi], \exists \text{fonctions } \mu(g), Y_0(g), Y_2(g) \text{ on } (\bar{g}^* - \rho \epsilon_0, \bar{g}^* + \rho \epsilon_0) \text{ such that if one lets } \mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g) \text{ and } Z_2 = L - (\phi_2 - 2\phi), \text{ then the joint law of } \left(\phi_r, s, N_r[\phi_2], s \right) \text{ converge weakly and in the sense of moments to that of a pair } \left(\phi, N[\phi_2] \right) \text{ such that:}

1. \[\forall k \in \mathbb{Z}, \left(L - k[\phi], L - k[\phi]^2 \right) = (\phi, N[\phi_2]) \]

2. \[\langle \phi(1_{\mathbb{Z}^3}), \phi(1_{\mathbb{Z}^3}), \phi(1_{\mathbb{Z}^3}), \phi(1_{\mathbb{Z}^3}) \rangle_T < 0 \text{ i.e., } \phi \text{ is non-Gaussian. Here, } 1_{\mathbb{Z}^3} \text{ denotes the indicator function of } B(0, 1). \]

3. \[\langle N[\phi_2](1_{\mathbb{Z}^3}), N[\phi_2](1_{\mathbb{Z}^3}) \rangle_T = 1. \]
Theorem 1: A.A.-Chandra-Guadagni 2013

\[\exists \rho > 0, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon \in (0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists \text{fonctions } \mu(g), Y_0(g), Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such that if one lets } \mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g) \text{ and } Z_2 = L^{-(\phi^2 - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi_{r,s}]) \text{ converge weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \text{ such that:} \]
Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

\[\exists \rho > 0, \ \exists L_0, \ \forall L \geq L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \ \exists \text{fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^3, \bar{g}_* + \rho \epsilon^3) \text{ such that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (\phi_r, s, N_r[\phi^2]) \text{ converge weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \text{ such that:} \]

1. \[\forall k \in \mathbb{Z}, \ (L^{-k[\phi]} \phi(L^k \cdot), L^{-k[\phi^2]} N[\phi^2](L^k \cdot)) \overset{d}{=} (\phi, N[\phi^2]). \]
Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

\[\exists \rho > 0, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon \in (0, \epsilon_0], \exists [\phi^2] > 2[\phi], \exists \text{fonctions } \mu(g), Y_0(g), Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^2, \bar{g}_* + \rho \epsilon^2) \text{ such that if one lets } \mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g) \text{ and } Z_2 = L^{-(\phi^2 - 2[\phi])} \text{ then the joint law of } (\phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \text{ such that:} \]

1. \[\forall k \in \mathbb{Z}, (L^{-k[\phi]} \phi(L^k \cdot), L^{-k[\phi^2]} N[\phi^2](L^k \cdot)) \overset{d}{=} (\phi, N[\phi^2]). \]
2. \[\langle \phi(1\mathbb{Z}_p^3), \phi(1\mathbb{Z}_p^3), \phi(1\mathbb{Z}_p^3), \phi(1\mathbb{Z}_p^3) \rangle^T < 0 \text{ i.e., } \phi \text{ is non-Gaussian.} \text{ Here, } 1\mathbb{Z}_p^3 \text{ denotes the indicator function of } \overline{B}(0, 1). \]
Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

\[\exists \rho > 0, \exists L_0, \forall L \geq L_0, \exists \epsilon_0 > 0, \forall \epsilon \in (0, \epsilon_0], \exists [\phi^2] > 2[\phi], \]

\[\exists \text{fonctions } \mu(g), Y_0(g), Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^2, \bar{g}_* + \rho \epsilon^2) \] such that if one lets \(\mu = \mu(g), Y_0 = Y_0(g), Y_2 = Y_2(g) \) and \(Z_2 = L^{-([\phi^2] - 2[\phi])} \) then the joint law of \((\phi_{r,s}, N_r[\phi^2_{r,s}])\) converge weakly and in the sense of moments to that of a pair \((\phi, N[\phi^2])\) such that:

1. \(\forall k \in \mathbb{Z}, (L^{-k[\phi]} \phi(L^k \cdot), L^{-k[\phi^2]} N[\phi^2](L^k \cdot)) \overset{d}{=} (\phi, N[\phi^2]). \)
2. \(\langle \phi(1_{\mathbb{Z}_p^3}), \phi(1_{\mathbb{Z}_p^3}), \phi(1_{\mathbb{Z}_p^3}), \phi(1_{\mathbb{Z}_p^3}) \rangle^T < 0 \) i.e., \(\phi \) is non-Gaussian. Here, \(1_{\mathbb{Z}_p^3} \) denotes the indicator function of \(\overline{B}(0, 1) \).
3. \(\langle N[\phi^2](1_{\mathbb{Z}_p^3}), N[\phi^2](1_{\mathbb{Z}_p^3}) \rangle^T = 1. \)
The mixed correlation functions satisfy, in the sense of distributions,

\[
\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle = L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle
\]
The mixed correlation functions satisfy, in the sense of distributions,

\[\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle \]

\[= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n)N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle \]

For our hierarchical version of the 3D fractional \(\phi^4 \) model we also proved \([\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon) \).
The mixed correlation functions satisfy, in the sense of distributions,

\[\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n)N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle \]

\[= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n)N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle \]

For our hierarchical version of the 3D fractional \(\phi^4 \) model we also proved \([\phi^2] = 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)\).

This was predicted by Wilson in “Renormalization of a scalar field theory in strong coupling”, PRD 1972.
The mixed correlation functions satisfy, in the sense of distributions,

\[
\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle

= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle
\]

For our hierarchical version of the 3D fractional ϕ^4 model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3} \epsilon + o(\epsilon)$.

This was predicted by Wilson in “Renormalization of a scalar field theory in strong coupling”, PRD 1972.

This is also what is expected for the Euclidean model on \mathbb{R}^3.
The mixed correlation functions satisfy, in the sense of distributions,

\[\langle \phi(L^{-k}x_1) \cdots \phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1) \cdots N[\phi^2](L^{-k}y_m) \rangle \]

\[= L^{-n[\phi]+m[\phi^2]} k \langle \phi(x_1) \cdots \phi(x_n) N[\phi^2](y_1) \cdots N[\phi^2](y_m) \rangle \]

For our hierarchical version of the 3D fractional ϕ^4 model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3} \epsilon + o(\epsilon)$.

This was predicted by Wilson in “Renormalization of a scalar field theory in strong coupling”, PRD 1972.

This is also what is expected for the Euclidean model on \mathbb{R}^3.

Not too far, if one boldly extrapolates to $\epsilon = 1$, from the most precise available estimates concerning the short range 3D Ising model: $[\phi^2] - 2[\phi] = 0.376327 \ldots$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).
We also proved the law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$, up to multiplying ϕ by a constant, is independent of g in the interval $(\bar{g}_* - \rho \varepsilon^2, \bar{g}_* + \rho \varepsilon^2)$.

We also proved the law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$, up to multiplying ϕ by a constant, is independent of g in the interval $(\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}})$. This also holds trivially if one also adds ϕ^6, ϕ^8, ... terms in the potential, with small couplings.
We also proved the law $\nu_{\phi\times\phi^2}$ of $(\phi, N[\phi^2])$, up to multiplying ϕ by a constant, is independent of g in the interval $(\bar{g}_* - \rho \epsilon^2, \bar{g}_* + \rho \epsilon^2)$. This also holds trivially if one also adds ϕ^6, ϕ^8, \ldots terms in the potential, with small couplings.

We proved local universality for a non-Gaussian scaling limit.
We also proved the law $\nu_{\phi\times\phi^2}$ of $(\phi, N[\phi^2])$, up to multiplying ϕ by a constant, is independent of g in the interval $(\bar{g}_* - \rho\epsilon^{3/2}, \bar{g}_* + \rho\epsilon^{3/2})$. This also holds trivially if one also adds ϕ^6, ϕ^8, \ldots terms in the potential, with small couplings.

We proved local universality for a non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi\times\phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^\mathbb{Z}$ instead of the subgroup $L^\mathbb{Z}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.
We also proved the law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$, up to multiplying ϕ by a constant, is independent of g in the interval $(\bar{g}_*-\rho\epsilon^2/3, \bar{g}_*+\rho\epsilon^2/3)$. This also holds trivially if one also adds ϕ^6, ϕ^8, \ldots terms in the potential, with small couplings.

We proved local universality for a non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p\mathbb{Z}$ instead of the subgroup $L\mathbb{Z}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$\langle \phi(x)\phi(y) \rangle = \frac{c_1}{|x-y|^{2[\phi]}}$$

$$\langle N[\phi^2](x) N[\phi^2](y) \rangle = \frac{c_2}{|x-y|^{2[\phi^2]}}$$
Note that \(2[\phi^2] = 3 - \frac{1}{3} \epsilon + o(\epsilon) \rightarrow \text{still } L^{1,\text{loc}} \! \)
Note that $2[φ^2] = 3 - \frac{1}{3}ε + o(ε) →$ still $L^{1,loc}$!

Theorem 3: A.A., May 2015

Use $ψ_i$ to denote the scaling limits $φ$ or $N[φ^2]$. Then, for all mixed correlation $∃$ a smooth function $⟨ψ_1(z_1)\cdotsψ_n(z_n)⟩$ on $(Q^3_p)^n\setminus{\text{Diag}}$ which is locally integrable (on the big diagonal Diag) and such that

$$E \, ψ_1(f_1)\cdotsψ_n(f_n) =$$

$$\int_{(Q^3_p)^n\setminus{\text{Diag}}} ⟨ψ_1(z_1)\cdotsψ_n(z_n)⟩ \, f_1(z_1)\cdots f_n(z_n) \, d^3z_1\cdots d^3z_n$$

for all test functions $f_1,\ldots,f_n \in S(Q^3_p)$.
This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of (A2016):

\[| \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle | \leq O(1) \times \prod_{i=1}^{n} \frac{1}{|x_i - \text{n.n.}|[\psi_i]} \]

when \(z_1, \ldots, z_n \) are confined to a compact set.
This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of (A2016):

\[| \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle \leq O(1) \times \prod_{i=1}^{n} \frac{1}{|x_i - \text{n.n.}|[\psi_i]} \]

when \(z_1, \ldots, z_n \) are confined to a compact set.

This follows from the use of the SDRG to derive an explicit representation of pointwise correlations in terms of very close analogues of Witten diagrams.
This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of (A2016):

\[| \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle | \leq O(1) \times \prod_{i=1}^{n} \frac{1}{|x_i - \text{n.n.}|[\psi_i]} \]

when \(z_1, \ldots, z_n \) are confined to a compact set.

This follows from the use of the SDRG to derive an explicit representation of pointwise correlations in terms of very close analogues of Witten diagrams.

Hence, the emergent connection to the AdS/CFT correspondence.
1 Introduction

2 The hierarchical continuum

3 The rigorous hierarchical space-dependent renormalization group
The renormalization group idea in a nutshell:

- Want to study feature $Z(\vec{V})$ of some object $\vec{V} \in E$ but too hard!
- Find "simplifying" transformation $RG: E \rightarrow E$, such that $Z(RG(\vec{V})) = Z(\vec{V})$, and $\lim_{n \rightarrow \infty} RG^n(\vec{V}) = \vec{V}^\ast$ with $Z(\vec{V}^\ast)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in E = (0, \infty)^2$

$$Z(\vec{V}) = \int_0^{\pi/2} d\theta \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$$

Take $RG(a, b) = \left(\frac{a+b}{2}, \sqrt{ab}\right)$.
The renormalization group idea in a nutshell:
Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but
The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Example (Landen-Gauss):

$\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$\mathcal{Z}(\vec{V}) = \int_{\pi/2}^0 d\theta \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}$

Take $\text{RG}(a, b) = \left(\frac{a + b}{2}, \sqrt{ab}\right)$.
The renormalization group idea in a nutshell:

Want to study feature $Z(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find “simplifying” transformation $RG : \mathcal{E} \rightarrow \mathcal{E}$, such that $Z(RG(\vec{V})) = Z(\vec{V})$, and $\lim_{n \rightarrow \infty} RG^n(\vec{V}) = \vec{V}_*$ with $Z(\vec{V}_*)$ easy.
The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find “simplifying” transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n \to \infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$
The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find “simplifying” transformation $RG : \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n \rightarrow \infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$$\mathcal{Z}(\vec{V}) = \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}}$$
The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find “simplifying” transformation $\mathcal{R}G : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(\mathcal{R}G(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n \to \infty} \mathcal{R}G^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example (Landen-Gauss): $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$$\mathcal{Z}(\vec{V}) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta}}$$

Take $\mathcal{R}G(a, b) = \left(\frac{a+b}{2}, \sqrt{ab}\right)$.
1st step: switch to unit lattice/cut-off

\[S_{r,s}^T(f) := \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \]

\[\int d\mu_{C_r}(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r \} dx + \int \phi(x) f(x) dx \right) \]

\[\int d\mu_{C_r}(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r \} dx \right) \]
1st step: switch to unit lattice/cut-off

\[S_{r,s}^T(f) := \log \mathbb{E}_{\nu_{r,s}} e^{i\phi(f)} = \log \]

\[\frac{\int d\mu_{C_r}(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 : r (x) + \mu_r : \phi^2 : r \} dx + \int \phi(x)f(x)dx \right)}{\int d\mu_{C_r}(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 : r (x) + \mu_r : \phi^2 : r \} dx \right)} \]

\[= \log \frac{\int d\mu_{C_0}(\phi) I^{(r,r)}[f](\phi)}{\int d\mu_{C_0}(\phi) I^{(r,r)}[0](\phi)} \]
1st step: switch to unit lattice/cut-off

\[S_{r,s}^T(f) := \log \mathbb{E}_{\nu_{r,s}} e^{i \phi(f)} = \log \]

\[\int d\mu_C(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r \} dx + \int \phi(x) f(x) dx \right) \]

\[\int d\mu_C(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r \} dx \right) \]

\[= \log \frac{\int d\mu_C(\phi) \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_C(\phi) \mathcal{I}^{(r,r)}[0](\phi)} =: \log \frac{\mathcal{Z}(\mathcal{V}^{(r,r)}[f])}{\mathcal{Z}(\mathcal{V}^{(r,r)}[0])} \]
1st step: switch to unit lattice/cut-off

\[
S^T_{r,s}(f) := \log \mathbb{E}_{\nu,r,s} e^{i\phi(f)} = \log \frac{\int d\mu_C(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 : r \ (x) + \mu_r : \phi^2 : r \} dx + \int \phi(x)f(x) dx \right) \int d\mu_C(\phi) \exp \left(- \int_{\Lambda_s} \{ g_r : \phi^4 : r \ (x) + \mu_r : \phi^2 : r \} dx \right)}{\int d\mu_C(\phi) \mathcal{I}^{(r,r)}[f](\phi)} =: \log \frac{\mathcal{Z}(\vec{V}^{(r,r)}[f])}{\mathcal{Z}(\vec{V}^{(r,r)}[0])}
\]

with

\[
\mathcal{I}^{(r,r)}[f](\phi) = \exp \left(- \int_{\Lambda_{s-r}} \{ g : \phi^4 : 0 \ (x) + \mu : \phi^2 : 0 \} d^3x \right. \\
\left. + L^{(3-\phi)} r \int \phi(x)f(L^{-r} x) d^3x \right)
\]
2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma := C_0 - C_1$.

Associated Gaussian measure is the law of the fluctuation field

$$\zeta(x) = \sum_{0 \leq k < \ell} p^{-k[\phi]} \zeta_{\text{anc}_k}(x)$$

L-blocks (closed balls of radius L) are independent. Hence
2nd step: define inhomogeneous RG
Fluctuation covariance \(\Gamma := C_0 - C_1 \).
Associated Gaussian measure is the law of the fluctuation field

\[
\zeta(x) = \sum_{0 \leq k < \ell} p^{-k[\phi]} \zeta_{\text{anc}k}(x)
\]

\(L \)-blocks (closed balls of radius \(L \)) are independent. Hence

\[
\int I^{(r,r)}[f](\phi) \; d\mu_{C_0}(\phi) = \int \int I^{(r,r)}[f](\zeta + \psi) \; d\mu_{\Gamma}(\zeta) d\mu_{C_1}(\psi)
\]

\[
= \int I^{(r,r+1)}[f](\phi) \; d\mu_{C_0}(\phi)
\]

with new integrand

\[
I^{(r,r+1)}[f](\phi) = \int I^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \; d\mu_{\Gamma}(\zeta)
\]
Need to extract vacuum renormalization → better definition is

\[\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]} \phi(L \cdot)) \, d\mu_\Gamma(\zeta) \]

so that

\[\int \mathcal{I}^{(r,r)}[f](\phi) \, d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \, d\mu_{C_0}(\phi) \]
Need to extract vacuum renormalization → better definition is

\[I^{(r,r+1)}[f](\phi) = e^{-\delta b(I^{(r,r)}[f])} \int I^{(r,r)}[f](\zeta + L^{-}[\phi] \phi(L \cdot)) \ d\mu_{\Gamma}(\zeta) \]

so that

\[\int I^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = e^{\delta b(I^{(r,r)}[f])} \int I^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi) \]

Repeat: \(I^{(r,r)} \rightarrow I^{(r,r+1)} \rightarrow I^{(r,r+2)} \rightarrow \ldots \rightarrow I^{(r,s)} \)
Need to extract vacuum renormalization → better definition is

\[\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-\phi}[\phi(L\cdot)]) \, d\mu_\Gamma(\zeta) \]

so that

\[\int \mathcal{I}^{(r,r)}[f](\phi) \, d\mu_c(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \, d\mu_c(\phi) \]

Repeat: \(\mathcal{I}^{(r,r)} \rightarrow \mathcal{I}^{(r,r+1)} \rightarrow \mathcal{I}^{(r,r+2)} \rightarrow \ldots \rightarrow \mathcal{I}^{(r,s)} \)

One must control

\[S_T(f) = \lim_{r \to -\infty} \sum_{\substack{s \to \infty \quad r \leq q < s}} \left(\delta b(\mathcal{I}^{(r,q)}[f]) - \delta b(\mathcal{I}^{(r,q)}[0]) \right) \]

limit of logarithms of characteristic functions.
Use a Brydges-Yau lift

\[\vec{V}(r, q) \xrightarrow{\text{RG}_{\text{inhom}}} \vec{V}(r, q+1) \]

\[I(r, q) \xrightarrow{\text{RG}_{\text{inhom}}} I(r, q+1) \]
Use a Brydges-Yau lift

\[\mathbf{V}(r,q) \xrightarrow{RG_{inhom}} \mathbf{V}(r,q+1) \]

\[\mathcal{I}(r,q) \xrightarrow{\downarrow} \mathcal{I}(r,q+1) \]

\[\mathcal{I}(r,q)(\phi) = \prod_{\Delta \in L_0} \left[e^{f \Delta \phi \Delta} \times \right. \]

\[\left\{ \exp \left(-\beta_{4,\Delta} : \phi_\Delta^4 : c_0 - \beta_{3,\Delta} : \phi_\Delta^3 : c_0 - \beta_{2,\Delta} : \phi_\Delta^2 : c_0 - \beta_{1,\Delta} : \phi_\Delta^1 : c_0 \right) \right. \]

\[\left. \times \left(1 + W_{5,\Delta} : \phi_\Delta^5 : c_0 + W_{6,\Delta} : \phi_\Delta^6 : c_0 \right) \right. \]

\[\left. + R_\Delta(\phi_\Delta) \right\} \]
Use a Brydges-Yau lift

\[\vec{V}(r,q) \xrightarrow{\text{RG}_{\text{inhom}}} \vec{V}(r,q+1) \]

\[I(r,q) \xrightarrow{\text{RG}_{\text{inhom}}} I(r,q+1) \]

\[I^{(r,q)}(\phi) = \prod_{\Delta \in \mathbb{L}_0} \left[e^{f_{\Delta}\phi_{\Delta}} \times \{ \exp \left(-\beta_{4,\Delta} : \phi^4_{\Delta} : c_0 - \beta_{3,\Delta} : \phi^3_{\Delta} : c_0 - \beta_{2,\Delta} : \phi^2_{\Delta} : c_0 - \beta_{1,\Delta} : \phi^1_{\Delta} : c_0 \right) \times (1 + W_{5,\Delta} : \phi^5_{\Delta} : c_0 + W_{6,\Delta} : \phi^6_{\Delta} : c_0) \right] \]

\[+ R_{\Delta}(\phi_{\Delta}) \} \]

Dynamical variable is \(\vec{V} = (V_{\Delta})_{\Delta \in \mathbb{L}_0} \) with

\[V_{\Delta} = (\beta_{4,\Delta}, \beta_{3,\Delta}, \beta_{2,\Delta}, \beta_{1,\Delta}, W_{5,\Delta}, W_{6,\Delta}, f_{\Delta}, R_{\Delta}) \]
$R G_{\text{inhom}}$ acts on E_{inhom}, essentially,

$$\prod_{\Delta \in \mathcal{L}_0} \{ C^7 \times C^9(\mathbb{R}, \mathbb{C}) \}$$
$R G_{\text{inhom}}$ acts on E_{inhom}, essentially,

\[
\prod_{\Delta \in L_0} \{ \mathbb{C}^7 \times C^9(\mathbb{R}, \mathbb{C}) \}
\]

Stable subspaces

$E_{\text{hom}} \subset E_{\text{inhom}}$: spatially constant data.

$E \subset E_{\text{hom}}$: even potential, i.e., g, μ’s only and R even function.

Let RG be induced action of RG_{inhom} on E.
3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \bar{V}(r,q)[0]$ exists, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\bar{V}(r,r)[0] \right)$$

exists.
3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}, \lim_{r \to -\infty} \vec{V}(r, q)[0]$ exists, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}(r, r) [0] \right)$$

exists.

$$RG \begin{cases}
 g' &= L^\epsilon g - A_1 g^2 + \cdots \\
 \mu' &= L^{\frac{3+\epsilon}{2}} \mu - A_2 g^2 - A_3 g \mu + \cdots \\
 R' &= L^{(g, \mu)}(R) + \cdots
\end{cases}$$

Tadpole graph with mass insertion

$A_3 = 12 L_3 - \frac{2}{5} \phi \int Q^3 p \Gamma(0, x) d^3 x$ is main culprit for anomalous scaling $\phi^2 - 2\phi > 0.$
3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}, \lim_{r \to -\infty} \vec{V}(r, q)[0]$ exists, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}(r, r)[0] \right)$$

exists.

$$\begin{cases}
 g' = L^\epsilon g - A_1 g^2 + \cdots \\
 \mu' = L^{\frac{3+\epsilon}{2}} \mu - A_2 g^2 - A_3 g \mu + \cdots \\
 R' = \mathcal{L}^{(g, \mu)}(R) + \cdots
\end{cases}$$

Tadpole graph with mass insertion

$$A_3 = 12 L^{3-2[\phi]} \int_{\mathbb{Q}_p^3} \Gamma(0, x)^2 \, d^3 x$$

is main culprit for anomalous scaling $[\phi^2] - 2[\phi] > 0$.
Irwin’s proof \(\rightarrow\) stable manifold \(W^s\)
Irwin’s proof → stable manifold \(W^s \)

Restriction to \(W^s \) → contraction → IR fixed point \(v_* \).
Irwin’s proof → stable manifold W^s
Restriction to W^s → contraction → IR fixed point v_*.
Construct unstable manifold W^u, intersect with W^s, transverse at v_*.
Irwin’s proof → stable manifold W^s
Restriction to W^s → contraction → IR fixed point v_*.
Construct unstable manifold W^u, intersect with W^s, transverse at v_*.
Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice.
Irwin’s proof \rightarrow stable manifold W^s
Restriction to W^s \rightarrow contraction \rightarrow IR fixed point v_*.
Construct unstable manifold W^u, intersect with W^s, transverse at v_*.
Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice. (We can also do the Gaussian to non-Gaussian crossover continuum limit).
Irwin’s proof → stable manifold W^s
Restriction to W^s → contraction → IR fixed point v_*.
Construct unstable manifold W^u, intersect with W^s, transverse at v_*.
Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice. (We can also do the Gaussian to non-Gaussian crossover continuum limit).
$\vec{V}^{(r,r)}[0]$ must be chosen in $W^s \rightarrow \mu(g)$ critical mass.
Irwin’s proof \rightarrow stable manifold W^s
Restriction to W^s \rightarrow contraction \rightarrow IR fixed point v_*.
Construct unstable manifold W^u, intersect with W^s, transverse at v_*.
Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice. (We can also do the Gaussian to non-Gaussian crossover continuum limit). $\vec{V}^{(r,r)}[0]$ must be chosen in $W^s \rightarrow \mu(g)$ critical mass. Thus
\[\forall q \in \mathbb{Z}, \lim_{r \to -\infty} \vec{V}^{(r,q)}[0] = v_* \]
Tangent spaces at fixed point: E^s and E^u. $E^u = C e_u$, with e_u eigenvector of $D_{v_*} RG$ for eigenvalue $\alpha_u = L^{3-2[\phi]} \times \mathbb{Z}_2 =: L^{3-[\phi^2]}$.

4th step: control deviation from homogeneous evolution
\(\mathbf{V}(r,q)[f] - \mathbf{V}(r,q)[0] \), for all effective scale \(q \), uniformly in \(r \).
4th step: control deviation from homogeneous evolution
\(\vec{V}(r,q)[f] - \vec{V}(r,q)[0] \), for all effective scale \(q \), uniformly in \(r \).

1) \(\sum_{x \in G} \zeta_x = 0 \) a.s. \(\rightarrow \) deviation is 0 for \(q < \) local constancy scale of test function \(f \).
4th step: control deviation from homogeneous evolution
\(\vec{V}(r,q)[f] - \vec{V}(r,q)[0] \), for all effective scale \(q \), uniformly in \(r \).

1) \(\sum_{x \in G} \zeta_x = 0 \) a.s. \(\rightarrow \) deviation is 0 for \(q \) < local constancy scale of test function \(f \).

2) Deviation resides in closed unit ball containing origin for \(q \) > radius of support of \(f \) \(\rightarrow \) exponential decay for large \(q \).
4th step: control deviation from homogeneous evolution
\(\vec{V}(r,q)[f] - \vec{V}(r,q)[0] \), for all effective scale \(q \), uniformly in \(r \).

1) \(\sum_{x \in G} \zeta_x = 0 \) a.s. \(\rightarrow \) deviation is 0 for \(q < \) local constancy scale of test function \(f \).

2) Deviation resides in closed unit ball containing origin for \(q > \) radius of support of \(f \) \(\rightarrow \) exponential decay for large \(q \).

For source term with \(\phi^2 \) add

\[
Y_2 Z_2^r \int : \phi^2 : c_r (x) j(x) d^3x
\]

to potential. \(S_{r,s}'(f,j) \) now involves two test functions. After rescaling to unit lattice/cut-off

\[
Y_2 \alpha_u' \int : \phi^2 : c_0 (x) j(L^{-r} x) d^3x
\]

to be combined with \(\mu \) into \((\beta_{2,\Delta})_{\Delta \in \mathbb{L}_0} \) space-dependent mass.
5th step: partial linearization
5th step: partial linearization

In order to replay same sequence of moves with j present,
5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$\Psi(v, w) = \lim_{n \to \infty} RG^n(v + \alpha_u^{-n}w)$$

for $v \in W^s$ and all direction w (especially $\int : \phi^2 :$).
5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$\Psi(v, w) = \lim_{n \to \infty} RG^n(v + \alpha_u^{-n}w)$$

for $v \in W^s$ and all direction w (especially $\int : \phi^2 :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^u satisfying $\Psi(v, \alpha_u w) = RG(\Psi(v, w))$.
5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w) = \lim_{n \to \infty} RG^n(v + \alpha_u^{-n}w)
$$

for $v \in W^s$ and all direction w (especially $\int : \phi^2 :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^u satisfying $\Psi(v, \alpha_u w) = RG(\Psi(v, w))$.

If there were no W^s directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.
5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$\Psi(v, w) = \lim_{n \to \infty} RG^n(v + \alpha_u^{-n}w)$$

for $v \in W^s$ and all direction w (especially $\int : \phi^2 :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^u satisfying $\Psi(v, \alpha_u w) = RG(\Psi(v, w))$.

If there were no W^s directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

$\Psi(v, w)$ is holomorphic in v and w.

This is essential for probabilistic interpretation of $\langle \phi, N[\phi^2] \rangle$ as pair of random variables in $S'(Q_p^3)$.
Thank you for your attention.