
THE BIG PROBLEM
FALL 2008

MATH W4051 WITH R. LIPSHITZ

1. About the big problem

This assignment is a bit like a midterm paper. In undergraduate mathemat-
ics courses, one rarely gets to struggle with a problem for more than a week.
By contrast, when doing mathematics research one generally works on a given
problem for several years. This assignment will give you a small sense of what
that feels like. You will choose a problem (from a list of suggestions, below)
that is harder than what you see on problem sets. You’ll then go through
various stages of thinking about the problem at the end of which you’ll turn in
a complete, carefully written solution. (Your solution will probably be about
four pages.)

Don’t panic. I think most of you will be able to solve one of
these problems, perhaps with a nudge or two in the right direction. If, after
struggling, you can’t solve the one you chose, that’s fine. In that case, you’ll
write (a) an account of your struggles (what you tried, where you got stuck)
and (b) an exposition of a proof which you read somewhere (citing the sources
you use, of course). Learning to find, read, and write about mathematics is a
valuable skill, too.

Finally, this is an experiment. So it may be a disaster. But I’m optimistic
it won’t be—and that you’ll enjoy it.
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2. Time line

• September 2–9: Choose a problem. On September 9, turn in to me
your problem choice.
• September 9–16: Think about your problem in your spare moments.

Make sure you understand its statement. Try to understand why it’s
(a) true and (b) not completely obvious. If you’re having trouble with
this, switch problems (at most once). Talk about your problem with
your friends. Explain it to someone as far from mathematics as you
can.
• September 16–23: Write a strategy for solving your problem. This

should look something like: “If I knew A, I would have the solution.
It seems that B might imply A. I think B is true, or at least I can’t
think of a counterexample. Under the following hypothesis, I can prove
B. Maybe I can remove these hypothesis by doing C.” (If you’re stuck
at this stage, talk to me or Tom for help.) Look in the literature for
helpful lemmas (though preferably not for a solution to your particular
problem).
• September 23–30: Refine your strategy. Replace parts that turn out

to be false. Write proofs for the parts of your strategy which you can.
(If you’re stuck at this stage, talk to me or Tom for help.)
• September 30–October 7: Finish solving your problem, by filling-in the

rest of the steps in your strategy. (If you’re still stuck, do a literature
search (in the library) for the solution. You’ll write an exposition, in
your own words, of the proof you find—with complete citations, of
course.)
• October 7–21: Write up your solution. You will probably find some

serious holes in your argument. Keep track of them. Work to try to
fix them. Get help when you need it.
• October 21–28: Revise your draft. Read it once each for:

– Correctness.
– Style and readability.
– Grammar.

• October 28: Turn in the first draft of your solution.
• November 6: You’ll get back your first draft, with comments. Revise

thoroughly.
• November 13: Turn in the final draft of your solution.
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3. Problems to choose from

These problems are not all of similar difficulty. My feeling is that in order
of increasing difficulty they are Problem 6, 3, 4, 1, 5, and 2. Keep this in mind
when choosing one, but also try to choose one that catches your interest.

Problems 1 and 2 use a little real analysis, about approximating continuous
functions by smooth or piecewise-linear functions. This is not very hard (and
is discussed, say, in Rudin’s Principles of Mathematical Analysis), but if you
haven’t taken any real analysis, you might want to avoid them.

Problem 1. Let γ : S1 → R2 be a continuous map, and p ∈ R2 \ γ(S1) a
point not in the image of γ. Then γ has a well-defined winding number around
p, denoted W (γ, p) ∈ Z. Intuitively, this is the number of times γ winds
counterclockwise around p. Note that this number should be unchanged under
deformations of γ in the complement of p.

One way of defining W (γ, p) is in terms of the circulation of a certain vector
field around p. Make this precise. A suggested rough outline:

• Find a vector field on R2 \ {p} as described. (Hint: you want it to be
conservative... why?)
• Define the winding number for any smooth (infinitely differentiable)

curve in R2 \ {p}. (Why is this easier than doing it for any continuous
path?)
• Define the winding number in general, by approximating any continu-

ous path with a smooth path.

(A variant on this problem, if you’ve taken complex variables, is to use some
ideas from that for the first two steps.)

Problem 2. Intuitively, the winding number can also be defined as follows:
choose a ray R from p out to infinity (in any direction). Then, roughly speak-
ing, the winding number of γ around p is the number of times R intersects γ
(counted with sign).

• Think about what the problem means. What do I mean by “counted
with sign”? Why did I say “roughly speaking”? (Why is the number I
defined not well-defined?)
• Give a correct definition of the winding number for piecewise linear

curves (curves made of a finite number of line segments). Prove your
definition is well-defined. (You might want to add some additional
hypotheses on your paths.)
• Approximate an arbitrary curve by a piecewise-linear one, and use this

to define the winding number in general.

Problem 3. The Brouwer Fixed Point Theorem states: Let f : D2 → D2 be a
continuous map. Then there is some point p ∈ D2 such that f(p) = p. (Such
a point p is called a fixed point of f .)

The Brouwer Fixed Point Theorem can be deduced from Sperner’s Lemma,
which states: let T be a triangle, with vertices labeled R, G and B. Divide T
up into little triangles (each with three vertices on its boundary). Color each
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Figure 1. An illustration of Sperner’s lemma.

vertex in this triangulation either red, green or blue, with the requirement
that:

• R is red, G is green and B is blue.
• Every vertex along the edge of T between R to G is colored red or

green; every vertex along the edge of T between G to B is colored
green or blue; and every vertex along the edge of T between B to R is
colored blue or red.

Then there is a small (undivided) triangle with one vertex of each color.
(See Figure 1 for an illustration.)
In this problem, you should:

• Prove Sperner’s Lemma.
• Use Sperner’s Lemma to prove the Brouwer Fixed Point Theorem.

(Hint: D2 is homeomorphic to a triangle. If f : D2 → D2 and p ∈ D2,
and v is a vertex, either f(p) is closer to v than p or it isn’t.)
• Optional: can you generalize this to dimensions bigger than 1?
• Also optional: use Sperner’s lemma to prove the fundamental theorem

of algebra.

Remark. It’s easy to find the proofs from this problem on the web or in a
book. Please don’t do that before thinking hard about it for several weeks.

Problem 4. Let P be a polyhedron. That is, P is a space constructed by
gluing together a finite number of polygons along edges such that the result is
homeomorphic to the sphere S2. Let v be the number of vertices of P , e the
number of edges, and f the number of faces. Then v − e + f = 2. (This is
called Euler’s formula.) Prove this.

Suggestions:

• Formulate the statement in terms of graphs in the plane.
• Prove that if G and G′ are graphs in the plane, such that G′ is obtained

by subdividing G, then the statement is true for G′ if and only if it is
true for G.
• Prove that if G and G′ are any two planar graphs then there is a graph
G′′ which is a subdivision of both G and G′. Conclude the result.

If you like, formulate an analogous theorem for other surfaces, and prove
that if you can.
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Problem 5. The Jordan Curve Theorem states: Let γ : S1 → R2 be an injec-
tive, continuous map. Then R2\γ(S1) has exactly two connected components,
one bounded and the other unbounded.

(A map γ as in the statement of the theorem is often called a simple closed
curve or sometimes a Jordan curve.)

Prove the Jordan curve theorem under the assumption that γ is piecewise-
linear (made up of a finite number of line segments). (You might like to adapt
ideas from Problem 2 for this. Or you might not.)

Alternatively, prove the Jordan curve theorem under the assumption that γ
is smooth, using ideas from Problem 1.

Problem 6. This problem is about using several different ideas to prove var-
ious different spaces are not homeomorphic.

• Prove that R2 is not homeomorphic to S2. (Find a topological property
that distinguishes them.)
• Prove that R is not homeomorphic to R2. (What happens if you delete

a point?)
• Which letters of the alphabet are homeomorphic? (It depends on the

font a bit, maybe; choose one.)
• Intuitively, R has two “ends”. R2 has a single end. R2 \ {(0, 0)} has

two ends. (For argument, let’s say the half-open interval [0, 1) has just
one end, 1.) Make the notion of having one end precise, and use it to
prove that R2 is not homeomorphic to R2 \ {(0, 0)}. Make the notion
of an end of a topological space precise. (This is, by far, the hardest
part of the problem.)
• With your definition, can you find a subspace of the plane with infin-

itely many ends? Uncountably many ends?
• On a different note, how many homeomorphism types of open subsets

of R are there? How about open subsets of R2?
• Think of an interesting question along the lines of something in this

problem, and solve it, too.


