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1. Introduction

Two of the key tools in 3-dimensional topology are hyperbolic geometry and gauge theory.
At present, almost no relations are known between the two topics. In this paper, we start to
explore whether topological field theory properties of one gauge-theoretic invariant, Heegaard Floer
homology, imply a relationship with convergence of geometric structures.

This paper is split in two parts. Firstly, Sections 2 and 3 could be used as a brief introduction
to bordered Heegaard Floer homology, and surgery on knots. Secondly, Section 4 describes an
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invariant for knots in S3, and carries out a computation which is central to understanding it any
further. We proceed to describe briefly the content of the following three sections.

Section 2. All of the material which appears here is classical, and of broad interest in the realm
of low-dimensional topology. The first three subsections build the machinery of Heegaard diagrams
which is used to provide a combinatorial description of 3-manifolds. The latter three subsections
go carefully through the construction of link surgery.

Section 3. Figuratively speaking, this part of our exposition could be treated as a crash course
in (a specific case of) bordered Heegaard Floer homology (see [7] for a detailed account of the
theory). For our purposes, it is important that a bird’s-eve view of the Heegaard Floer theories
is presented (Section 3.1), and the relation between the non-bordered and bordered cases becomes
clear (Theorem 3.2). The following two subsections aim to build the D type complex in the simple
case of torus boundary. Finally, we work through an example (Section 3.4) in order to clarify the
constructions we made earlier.

Section 4. Our aim in this section is to describe the constriction of an invariant for knots in S3.
This idea is inspired by W. Thurston’s Hyperbolic Surgery Theorem (quoted as 4.1), which suggests
a sense of stabilization for manifolds obtained by large surgeries on a fixed knot K. Section 4.2 is
devoted to transferring this contraption to the realm of bordered Heegaard Floer homology. In the
last subsection, we carry out an explicit computation central to any eventual further development.

1.1. Notation and conventions.

(1) The n-dimensional closed disk will be denoted by Dn.
(2) The 2-torus will be denoted by T = S1 × S1.
(3) Unless otherwise stated, all vector spaces will be over the field of two elements F2.
(4) Unless otherwise stated, all manifolds are assumed to be smooth and oriented.

2. Preliminaries

2.1. Bordered manifolds. Bordered manifolds are a refinement of manifolds with boundary.
They carry an extra bit of information which allows us to work with the boundary without am-
biguity. We give a motivating example before proceeding to the formal definition. Let M1 and
M2 be manifolds with diffeomorphic boundaries. The information such a diffeomorphism exists is
insufficient to glue them, hence we require an explicit such map f : ∂M1 → ∂M2. Bordered mani-
folds attempt to fix this issue by carrying parametrizations of their boundaries. Let n be a positive
integer, and suppose N is a (n − 1)-manifold. A bordered manifold with boundary N is a pair
(M,f), where M is an n-manifold with boundary, and f : N → ∂M is a diffeomorphism. We will
often refer to such an object by M alone, and if necessary, we may provide the parametrization f
separately. At first sight the choice of an arbitrary boundary manifold N might seem uninforming,
but in most cases we will have a set of models to choose from. For example, we will be primar-
ily interested in compact oriented bordered 3-manifolds in which case the boundary is a compact
oriented surface, and diffeomorphism classes of these are classified by the genus. Returning to our
motivating example, if (M1, f1) and (M2, f2) are bordered manifolds with boundaries N and −N ,
then there is a natural way to glue then, namely via f2 ◦ f

−1
1 : ∂M1 → ∂M2. Since we are working

with oriented manifolds, we have to take this into account when performing a gluing in order to
obtain another oriented manifold. This is the reason we asked for two copies of N with opposite
orientations in the previous construction.

Our discussion leads us to define the bordism categories Bordn for n ≥ 1. The objects of
Bordn are (n − 1)-dimensional manifolds. The morphisms between two objects N− and N+ are
5-tuples (M,∂M−, ∂M+, f−, f+) such that ∂M = ∂M− ⊔ ∂M+ is a decomposition of manifolds,
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and f− : N− → ∂M−, f+ : N+ → ∂M+ are diffeomorphisms. Where possible, we will refer to
such a morphism simply by M . The parametrizations of each piece of the boundary facilitate
compositions in the obvious manner.

2.2. Heegaard diagrams. As we already mentioned, 3-manifolds will play an important role in
our discussion. The aim of this section is to develop Heegaard diagrams which serve as combinatorial
descriptions for a subclass of these objects. We will first focus on closed oriented 3-manifolds, and
later expand to the bordered case.

Definition 2.1. A Heegaard diagram H is a triple (Σ,α,β) consisting of

• a closed orientable surface Σ of some genus g,
• two g-tuples α = {α1, . . . , αg} and β = {β1, . . . , βg} of pairwise-disjoint loops in Σ.

We further require the αi and βj to intersect transversally, and Σ \α, Σ \ β to be connected. The
integer g is called the genus of H. A pointed Heegaard diagram is a quadruple (Σ,α,β, z) where
the first three components satisfy the above conditions, and z is a point in Σ \ (α ∪ β). Note the
abuse of notation here – α and β refer both to the set of loops and the union of their images in Σ.

The condition that Σ \ α is connected is equivalent to the homological linear independence
of [αi] ∈ H1(Σ); this could be inferred from the Mayer-Vietoris sequence of the decomposition
Σ = (Σ \α) ∪α. An analogous statement could be made regarding Σ \ β and [βi] ∈ H1(Σ).

There is a canonical way to construct a 3-manifold MH from a Heegaard diagram H = (Σ,α,β).
There are two basic observations which guide the formal definition. Firstly, the idea is to “fill” the
orientable surface Σ on both of its “sides”; each of these fills amounts to constructing a 3-manifold
whose boundary is Σ. Secondly, such a 3-manifold is uniquely determined by a set of curves which
bound disks in it.

Let us focus on the α-curves for the sake of specificity. There are several ways to execute our
last remark; we proceed to outline one such procedure. Let us start by thickening Σ to a manifold
MΣ whose boundary is diffeomorphic to two copies of Σ. Pick one of these, in other words, that
is an embedding Σ →֒ ∂MΣ. We can now identify Σ with its image, and respectively the αi with
their images in ∂MΣ. It is always possible to pick tubular neighbourhoods of these curves in Σ, and
attach thickened disks along these neighbourhoods. The boundary of the resulting manifold is one
unmodified copy of Σ and a 2-sphere on the side we performed the handle attachments. Filling in
the latter with a copy of D3 yields the necessary manifold Mα – with boundary Σ such that all αi
bound disks in it. An analogous construction with the β-curves yields a manifold Mβ. Gluing Mα

and Mβ along their boundaries is unambiguous, and gives the closed 3-manifold MH we originally
mentioned.

Here is another way to carry out the previous construction. The main observation is the group
of diffeomorphisms of a surface Σ of genus g acts transitively on the set of g-tuples of homologically
linearly independent curves. In other words, for any two sets of curves such as α and β, there
is a diffeomorphism mapping one to the other. We can make a specific choice of a manifold M0

with boundary Σ, and a set of g curves γ0 in it bounding disks such as the ones shown on Figure
1. Choose two diffeomorphisms fα, fβ : Σ → Σ satisfying fα(γ0) = α, fβ(γ0) = β. The manifold

M0 ∪f−1
β

◦fα
M0, obtained by gluing two copies of M0 via the map f−1

β
◦ fα, satisfies analogous

properties as MH in the previous paragraph.
So far we have seen how to construct a closed 3-manifold MH corresponding to a Heegaard

diagram H. It is only natural to ask whether all such manifolds could be obtained in this manner.
One way to reverse the process by using Morse theory (see [9], [11]). Let M be a closed 3-manifold,
and pick a self-indexing Morse function f with a unique index points of index 0 and 3 (such a
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· · ·

Figure 1: The manifold M0 with the curves γ0 on the boundary

choice is always possible; see [11, Corollary 2.36]). We take Σ = f−1(3/2), α the intersection of the
ascending disks from the index 1 critical points with Σ, and β the intersection of the descending
disks from the index 2 critical points with Σ. The Heegaard diagramH = (Σ,α,β) yields a manifold
MH diffeomorphic to M (full details are given in [6, Section 2.2]). The Morse theory interpretation
we presented is also useful to answer another relevant question: when do two Heegaard diagrams
correspond to diffeomorphic 3-manifolds? It is not hard to see the following do not change the
resulting manifold.

Isotopies: replace some αi by an isotopic curve α′
i through isotopies which leave αj fixed for

j 6= i; or, analogously for the β-curves;
Handleslides: replace some αi by α

′
i for which there exists αj such that αi∪α

′
i∪αj bound a

pair of pants disjoint from the remaining αk where k 6= i, j; or, analogously for the β-curves;
(De)stabilizations: a stabilization replaces (Σ,α,β) with (Σ′,α′,β′), where Σ′ = Σ#T,

α′ = α ∪ {αg+1}, β
′ = β ∪ {βg+1} such that αg+1, βg+1 are a pair of curves in T meeting

transversally in a single point; a destabilization is the reverse procedure.

In fact, these three moves are sufficient (see [17] for proof).

Proposition 2.2. Two Heegaard diagrams correspond to diffeomorphic 3-manifolds if and only if
they are related by a sequence of isotopies, handleslides, and (de)stabilizations.

Figure 2 presents two examples of genus 1 Heegaard diagrams. It is not hard to see that H1

corresponds to the manifold S3. This is the usual decomposition of S3 as the union of two solid
tori – a tubular neighbourhood of an unknot in S3 and its exterior. The diagram H2 stands for
S1×S2 seen as two copies of a solid torus glued along the identity map between their boundaries.

H1 : H2 :

Figure 2: Two Heegaard diagrams: the α- and β-curves are shown respectively in red and blue.

Remark 2.3. The discussion of this section can be carried out using PL (piecewise-linear) 3-
manifolds as in [15], [16], and [4]. It turns out the two points of view are equivalent though
this is specific to 3-manifolds (see [10], [2]).

2.3. Bordered Heegaard diagrams. We have developed two significant concepts so far – bor-
dered manifolds, and Heegaard diagrams. The majority of Section 2.2 was devoted to describing
how Heegaard diagrams determine closed 3-manifolds. It is only logical to ask whether we could
augment Definition 2.1 to yield bordered Heegaard diagrams, objects which will correspond to bor-
dered oriented compact 3-manifolds. In what follows, we recall without proof the relevant concepts
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as in [7, Section 4.1], [6, Section 2.2]. Some details may be omitted since the development closely
resembles that of Section 2.2.

Definition 2.4. A bordered Heegaard diagram H is a triple (Σ,α,β) consisting of

• a compact, orientable surface Σ of some genus g with one boundary component,
• a g-tuple β = {β1, . . . , βg} of pairwise-disjoint loops in the interior of Σ,

• a (g+k)-tuple α of pairwise-disjoint curves in Σ, split into a (g−k)-tupleαc = {αc1, . . . , α
c
g−k}

of loops in the interior of Σ, and a 2k-tuple αa = {αa1 , . . . , α
a
2k} of arcs in Σ with boundary

in ∂Σ (and transverse to ∂Σ).

We also require the αa,ci and βj to intersect transversally, and Σ \ α, Σ \ β to be connected. The

integer g is called the genus of H. A pointed bordered Heegaard diagram is a quadruple (Σ,α,β, z)
where the first three components satisfy the above conditions, and z is a point in Σ \ (α ∪ β).

Again, the condition Σ \ β is connected is equivalent to the homological linear independence of
[βi] ∈ H1(Σ). Analogously, Σ \ α is connected if and only if [αc,ai ] ∈ H1(Σ, ∂Σ) are homologically
linearly independent.

Let us fix a bordered Heegaard diagram H and discuss how to construct a bordered 3-manifold
MH. The double of H, denoted 2H, is a Heegaard diagram obtained by gluing two copies of H
along their common boundary. There is a natural Z/2-action on 2H flipping from one copy of H to
the other. This ascends to a Z/2-action on the manifold M2H whose fixed set is a null-homologous
surface F splitting M2H into two parts. We define MH to be a fundamental domain for this action
with boundary F .

There is an alternative interpretation of F which demonstrates that MH is not only a manifold
with boundary, but is also bordered. Keeping track of Euler characteristics, one can deduce that
Σ\α is a planar surface with 2(g−k)+1 boundary components, only one of which meets ∂Σ. Let N
be the union of a collar neighbourhood of ∂Σ and a tubular neighbourhood of αa. Its boundary ∂N
consists of two connected components, one of which contains ∂Σ. Filling each of these components
to N ∪D2∪D2, we obtain a surface which could be identified with F as above. There is a canonical
(up to isotopy) identification of the obtained surface with a model surface of genus k, hence MH is
bordered.

As in the non-bordered case in the previous section, this construction is reversible – every bor-
dered 3-manifold M can be expressed as the induced manifold MH for some bordered Heegaard
diagram H. Once again, filling the complete details of the argument would require some analysis
and Morse theory, so we will be content with only an outline here.

Let M be a 3-manifold with a single boundary component, and consider a Riemannian metric g̃
on M , and a self-indexing Morse function f : M → R.

Definition 2.5. We say that g̃ and f are boundary compatible with M if

• the boundary of M is geodesic,
• ∇f |∂M is tangent to ∂M ,
• the unique index 0 and 2 critical points of f |∂M are respectively the unique index 0 and 3
index critical points of f on M ,
• the index 1 critical points of f |∂M are also index 1 critical points of f on M .

We claim for every Riemannian 3-manifold with a single boundary component (M, g̃), there
exists a boundary compatible f . To find one, start with f with the desired properties on ∂M ,
then extend to a collar neighbourhood of ∂M . We proceed to extend arbitrarily to the interior of
M , and then perturb to make (g̃, f) a Morse-Smale pair, and f self-indexing. Then, we can take
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Σ = f−1(3/2), α the intersection of the ascending discs of the index 1 critical points of f with Σ,
and β the intersection of the descending disks of the index 2 critical points with Σ. The bordered
Heegaard diagram H = (Σ,α,β) corresponds toM . This is analogous to the construction from the
previous section. The only difference is we had to impose several technical conditions on f which
allow us to carry through despite the presence of a boundary component.

The previous paragraph disregarded the presence of a bordered structure. We note the given
procedure could extend a compatible f defined on the boundary ∂M to one on the entire manifold
M . This allows us to construct a bordered Heegaard diagram for any bordered 3-manifold. Once
again, there is a result analogous to Proposition 2.2.

Proposition 2.6. Two bordered Heegaard diagrams correspond to isomorphic bordered 3-manifolds
if and only if they are related by a sequence of isotopies, handleslides, and (de)stabilizations. The
only difference is that handleslides for α may only occur for αa over αc.

We refer to [7, Section 4.1] for a proof.

Remark 2.7. In many of the discussions which follow, one is typically interested in bordered pointed
Heegaard diagrams. We will provide pointed examples until the meaning of the extra marking
becomes clear later.

We have already seen the double of a bordered Heegaard diagram denoted 2H. This is a specific
case of a more general construction: consider two bordered diagrams H1 = (Σ1,α1,β1), H2 =
(Σ2,α2,β2), and an orientation reversing diffeomorphism f : ∂Σ1 → ∂Σ2, which pairs arcs from αa

1

and αa
2 via their endpoints. If H1 and H2 are pointed, we further require that f maps one marking

to the other. Under these assumptions, one can form the diagram H = H1 ∪f H2 by gluing H1 and
H2 along f . Going through the constructions of the associated bordered 3-manifolds, f naturally

induces a diffeomorphism f̃ : ∂MH1 → ∂MH2 such that MH =MH1 ∪f̃ MH2 .

To some extent, we can also interpret connect sums of bordered 3-manifolds in terms of their
Heegaard diagrams. Before doing so however, we make several general remarks. In the construction
of the connect sum of two manifolds, one deletes an open ball from each, and then identifies the
remaining pieces via an orientation preserving diffeomorphism of their boundaries. It is a subtle
but important point that for connected oriented manifolds without boundary the isomorphism type
of the end result does not depend on the open balls we choose, hence the unambiguous notation
−#−. A lengthly discussion of this topic can be found in [4, Chapter 3].

Even if our manifolds are connected and oriented, allowing boundary changes matters slightly.
We have the choice of either removing coordinate balls from the interior of the manifolds, or half-
balls which touch their boundaries (mixing the two options does not yield a sensible construction).
In the former case, referred to as connect sum, the isomorphism type does not depend on the
positions of the balls we choose. In the latter case, referred to as boundary connect sum, the
isomorphism type depends only on the boundary components touching the half-balls we select. For
example, suppose M1 and M2 are two manifolds each of which has a single boundary component.
The connect sum yields a manifold with two boundary components, whereas the boundary connect
sum yields a manifold with a single boundary component which is well-defined up to isomorphism.

This analogy does not extend as freely to the bordered case. Let H1 and H2 be bordered
Heegaard diagrams corresponding to the manifolds M1 and M2 respectively. Each of these has a
single boundary component. We are interested in taking a boundary connect sum, so the result
has a single boundary component too. The isomorphism type of the result however depends on the
position of the half-balls we choose. In a similar fashion, one can take an appropriate boundary
connect sum of the Heegaard diagrams H1 and H2 by removing half-disks near the boundary not
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touching any of the α1,2, β1,2, or the markings z1,2 if present. It is not hard to convince oneself that
the isomorphism class of H1#H2 depends only on the position of the half-balls relative to the arc
endpoints ∂α1,2. It is possible to interpret MH1#H2 as a certain boundary connect sum M1#M2,
and vice versa, but we will not go into more details with this discussion.

0 1 2
3

z

αa1

αa2

β1

0 1 2 3

z

αa1αa1 αa2

β1

A A

0

12

3
z

αa1 αa1

αa2

αa2

β1

Presentation 1 Presentation 2 Presentation 3

Figure 3: Three ways to visualize the same pointed bordered Heegaard diagram.

Before closing this section, we provide a simple example of the Heegaard diagram for a genus one
handlebody (topologically a solid torus). The first presentation in Figure 3 matches our construction
the closest. We have shown a punctured genus one surface Σ, two α-curves αa1, α

a
2 in red, and one

β-curve β1 in blue. The marking on ∂Σ has been denoted as the point z. For reasons which will
become clear, we are also interested in the connected components of Σ\α which have been marked
0 to 3 in the counterclockwise direction, 0 being the one containing z.

Presentation 2 could be read as a recipe for obtaining the former one. The two regions marked
A and Ainstruct us to remove their interiors, and glue the boundaries (alternatively glue a tube
between them). The preferred gluing orientation is indicated by both letters inside, and the solid
dot marking on the boundary. It is important to note the arc αa1 is shown in two fragments but
these are joined after the prescribed identification.

Finally, presentation 3 is obtained from the first one by cutting along the arcs αa1 and αa2. Arrows
along the cut regions serve as directions to reconstruct the original object, though these may be
omitted for the sake of saving space. If the bordered Heegaard diagram in question has 2k arcs,
then this presentation would be a polygon of 4k edges with chipped vertices. In practice, this is
only feasible for k = 1 as the number of gluings becomes too large to imagine easily. In conclusion,
the third presentation is preferred for the case k = 1, and the second for k > 1.

2.4. Knots and links. The aim of this section, among other things, is to provide rigorous answers
to the following two questions:

• What is a knot?
• What is an equivalence of knots?

Without further ado, we address the first one.

Definition 2.8. A knot K in a manifold M is an embedded submanifold diffeomorphic to S1. A
link with n components L in M is an embedded submanifold diffeomorphic to

⊔n
i=1 S

1.
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We will be working with knots in 2- and 3-manifolds, though the definition makes sense in general.
It is often more useful to think of knots or links as maps into M , hence the following equivalent
formulation.

Definition 2.9. A knot K in a manifold M is an embedding K : S1 →֒ M . Similarly, a link with
n components L is an embedding L :

⊔n
i=1 S

1 →֒M .

At this point, we can answer our second question. We will specialize to knots though all formu-
lations carry through using links as well.

Definition 2.10. Let K,K ′ : S1 →֒M be two knots inM . In increasing strength, we present three
notions of knot isomorphisms.

(Map) equivalence: There exists a diffeomorphism h : M →M such that h ◦K = K ′.
Oriented equivalence: Same as above, but we require h to be orientation preserving.
(Ambient) isotopy: There exists a homotopy ht for 0 ≤ t ≤ 1 such that all ht : M →M are

diffeomorphisms, h0 is the identity map on M , and h1 = h satisfies h ◦K = K ′.

In practice, we will most often be interested in knots up to ambient isotopy.

2.5. Facts about tori and solid tori. In this section, we recall (without proof) several basic
results which lead to the rigorous formulation of knot surgery as presented in Section 2.6. Our
exposition follows several sections from [16, Chapter 2].

We start by answering two questions:

• What are the isotopy types of knots in T?
• What is the mapping class group of T?

Recall the torus is T = S1 × S1, so π1(T) = π1(S
1) × π1(S

1) ∼= Z2. Without loss of generality,
we identify these two groups, so we will denote elements of π1(T) by pairs of integers (a, b). The
former question is handled by the following result (see [16, Chapter 2.C] for a proof).

Theorem 2.11. A map S1 → T is homotopic to a knot (an embedding) if and only if its class
(a, b) ∈ π1(T) satisfies a = b = 0, or gcd(a, b) = 1. Conversely, two knots K,K ′ : S1 →֒ T are
isotopic if and only if [K] = ±[K ′] as elements of π1(T).

Before answering the second question, we have to clarify one of the terms.

Definition 2.12. For any smooth manifoldM , its self-diffeomorphisms form a group Aut(M) with
binary operation composition of maps. The identity element is the identity map idM : M → M .
The diffeomorphisms smoothly isotopic (homotopic through diffeomorphisms) to idM form a normal
subgroup Aut0(M). The mapping class group of M is the quotient Mod(M) = Aut(M)/Aut0(M).

Remark 2.13. The mapping class group can be constructed in the category of topological spaces
and continuous maps, but we will focus our attention to the smooth case. One can also work with
pointed topological spaces or pointed smooth manifolds, and define the based mapping class group.

There is an action of Aut(M) on M by evaluation. If we assume that M is connected, this
action becomes transitive. In order to avoid some technical details, we will make this assumption
for the remainder of this section. For the sake of mathematical correctness, we fix a basepoint in
x0 ∈M , and denote π1(M) = π1(M,x0). Any diffeomorphism f : M →M induces an isomorphism
f∗ : π1(M) → π1(M) which is well-defined up to conjugation, that is, [f∗] is an element of the
group of outer automorphisms Out(π1(M)) = Aut(π1(M))/ Inn(π1(M)). Therefore, we have a

homomorphism Φ̃M : Aut(M)→ Out(π1(M)) given by f 7→ [f∗]. It turns out Aut0(M) is contained
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in the kernel of Φ̃M , hence there is an induced homomorphism ΦM : Mod(M) → Out(π1(M)). In
the case of M = T, we know that π1(T) ∼= Z2 is abelian, so

Out(π1(T)) ∼= Aut(π1(T)) ∼= Aut(Z2) = GL(2,Z).

Theorem 2.14. The map ΦT : Mod(T)→ GL(2,Z) is an isomorphism.

Given an element A ∈ GL(2,Z), it is easy to write a diffeomorphism fA : T → T such that
ΦT([fA]) = A. First, we treat A as an element of GL(2,R), hence there is an induced isomorphism

f̃A : R
2 → R2. Recalling that A has integer entries, it follows that f̃A restricts to a bijection

Z2 → Z2, therefore there is an induced isomorphism of Lie groups fA : R
2/Z2 → R2/Z2. Noting

that R2/Z2 and T are diffeomorphic completes the necessary construction.
A pair of knots (K,K ′) in T is called complimentary if their homology classes span H1(T), and

they intersect transversally in a single point. We could have equivalently required the homotopy
classes to span π1(T). When talking about the homology or homotopy class of a knot, there is a
choice of orientation involved, yet that is unambiguous when we treat the element as a generator.
The statement below follows from the Theorems 2.11, 2.14, and the remark above.

Corollary 2.15. For any two pairs of complimentary knots, there exists a diffeomorphism T→ T
sending one pair to the other.

This corollary is often useful when combined with the fact that for any knot K in T, there exist
a complimentary one K ′.

“Instead of just the frosting, now consider the whole doughnut.” [16]

Definition 2.16. A solid torus is a space P diffeomorphic to S1×D2. A framing of P is an explicit
diffeomorphism h : S1 ×D2 → P .

Let us fix a solid torus P .

Proposition 2.17. For an embedded non-contractible curve µ in ∂P , the following are equivalent:

(1) µ is homologically trivial in P ,
(2) µ is homotopically trivial in P ,
(3) µ bounds a disk in P ,
(4) for some framing h : S1 ×D2 → P , we have µ = h({1} × ∂D2).

A curve µ satisfying any of the given conditions is called a meridian of P .

Proposition 2.18. For an embedded non-contractible curve λ in ∂P , the following are equivalent:

(1) λ represents a generator of H1(P ) ∼= π1(P ) ∼= Z,
(2) λ intersects some meridian µ of P transversally in a single point,
(3) for some framing h : S1 ×D2 → P , we have λ = h(S1 × {1}).

A curve λ satisfying any of the given conditions is called a longitude of P .

One is typically interested in the isotopy type of meridians and longitudes in ∂P . The following
result sheds some light on this question.

Proposition 2.19. Any two meridians in P are isotopic to each other. Any two longitudes of P
are equivalent via a diffeomorphism of P , through they need not be isotopic.

Consider an embedding of P in S3, and let Q = S3 \ int(P ). It turns out that the homology of
Q is isomorphic to the homology of a solid torus, yet they may not be diffeomorphic. The Mayer-
Vietoris sequence of the decomposition S3 = P ∪ Q implies a meridian of P always represents a



10 ATANAS ATANASOV

generator of H1(Q) ∼= Z. This homology group is even more interesting for the following fact: there
is a unique isotopy type of a longitude which represents the zero cycle in H1(Q). Furthermore, there
is also a unique (up to isotopy) framing h : S1×D2 → P such that h(S1×{1}) is the zero cycle in
H1(Q). This is called the preferred framing. In conclusion, the isotopy type of the meridian µ is a
feature inherent to P . There are however infinitely many longitudes. If one chooses an embedding
P →֒ S3, then there is a preferred longitude λ.

Consider a knot K : S1 →M . There is an essentially unique choice of a tubular neighbourhood
P for K in M . We define the meridian of K to be the meridian for the solid torus P . Similarly,
the longitude of K is defined as a longitude for P . If M = S3, then the (preferred) longitude of K
(note the definite article) is the preferred longitude of P .

2.6. Surgery on links in 3-manifolds. Let M be a 3-manifold, perhaps with boundary, or even
bordered, and let L =

⊔n
i=1 Li be a link with n components in M . Furthermore, suppose we are

given:

(1) disjoint closed tubular neighbourhoods Ni of the Li in the interior int(M) ⊂M ,
(2) a non-contractible simple closed curve ηi in each boundary ∂Ni.

By Corollary 2.15, there always exists a diffeomorphism hi : ∂Ni → ∂Ni which send the meridian
curve µi of Li to ηi. Let h be the union of all hi, that is, a map h :

⊔n
i=1 ∂Ni →

⊔n
i=1 ∂Ni.

Definition 2.20. The (Dehn) surgery on M along L with instructions (1) and (2) is the manifold
M ′ given by

M ′ =

(
M \

n⋃

i=1

int(Ni)

)
∪h

(
n⋃

i=1

Ni

)
.

Since regular neighbourhoods are essentially unique, M ′ does not depend on the choice of Ni.
Furthermore, it is not hard to see the diffeomorphism class of M ′ depends only on the homotopy
type of the curves ηi. As a matter of fact, the meridians µi are also well-defined only up to
homotopy.

We can now restrict our attention to the case M = S3. Consider an oriented link L with
components Li in S2. For each Li there are essentially unique choices for a meridian µi, and a
preferred longitude λi. We can decompose each curve νi in terms of the basis [µi], [λi] for π1(T),
say

h∗([µi]) = [ηi] = ai[λi] + bi[µi],

where ai, bi ∈ Z. Depending on the orientation of ηi, there is a sign ambiguity in the expres-
sion above. Theorem 2.11 implies gcd(ai, bi) = 1 (we drop the case ai = bi = 0 since ηi is not
contractible). Therefore, we can dismiss the sign ambiguity without losing any information by
defining

ri =
bi
ai

if ai 6= 0, and ri = ∞ if ai = 0, bi = ±1. The number ri ∈ Q̃ = Q ∪ {∞} is called the surgery
coefficient associated to the component Li. It is not hard to see ri is also independent of the
orientation of Li. The only subtle assumption we are making is that S3 is endowed with a fixed
orientation – reversing that would reverse the signs of all surgery coefficients.

Remark 2.21. Let L be a link in S3 with rational numbers (in Q̃) assigned to each of its components.
We can form the link L′ by dropping all components marked with ∞, and copying the rest of the
surgery coefficients to L′. It turns our that performing surgeries on L and L′ yields the same
manifold. Therefore, we may drop ∞ as a surgery coefficient.
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In conclusion, any link in S3 with a rational number assigned to each of its components specifies
unambiguously surgery instructions, hence a closed oriented 3-manifold. In fact, the converse is

also true (see [5, Chapter 12] for a proof). If K is a knot in S3, and r ∈ Q̃, we will denote by S3
r (K)

the surgery on K with coefficient r.

Theorem 2.22 (Lickorish-Wallace). Any closed oriented 3-manifold may be obtained by a surgery
on a link in S3. In fact, all surgery coefficients can be chosen to be ±1.

Before closing our discussion of surgery on 3-manifolds, it is important to make a remark about
its relation to 4-manifolds. Consider a 4-manifold N with boundary. Attaching 2-handle to N
is the operation of gluing a copy of D2 × D2 along S1 × D2 to ∂N . It is not hard to see that
a 2-handle attachment changes the boundary of N by a surgery on a knot. Similarly, attaching
several 2-handles has the effect of a surgery on a link on the boundary. Hence the following result.

Corollary 2.23. Any closed oriented 3-manifold is the boundary of some oriented 4-manifold.

Equally interesting is the following operation: given a closed oriented 3-manifold M , we may
thicken it to M × I, and perform 2-handle attachments on one side of its boundary. The resulting
4-manifold is a cobordism between M and the result of the surgery corresponding to the handle
attachments. It follows from Theorem 2.22 that any two closed oriented 3-manifolds may be
connected via a bordism. In other words, the graph associated to the category Bord4 is connected.

3. Bordered Heegaard Floer homology

Heegaard Floer homology is a collective title for several related topological invariants for 3-
manifolds which were defined and developed by P. Ozsvàth and Z. Szabò in a series of papers (the
first of these is [13]). In [14], these ideas were further extended to functor-like objects emanating
fromBord4 (there are a few details about gluing of spinc structures which require careful handling).
Similar methods were adapted to provide invariants for knots in 3-manifolds as explained in [12].
More recent work extends the theory to bordered objects [6], [7].

3.1. The conceptual picture. The aim of this section is to provide a brief high-level picture of
the bordered Heegaard Floer package without elaborating on any details (see [7] for a thorough
treatment).

LetM be a compact oriented 3-manifold. The Heegaard Floer invariants HF−(M, s), HF∞(M, s),

HF+(M, s), ĤF(M, s) are defined by taking homology of the complexes CF−(M, s), CF∞(M, s),

CF+(M, s), ĈF(M, s) coming from the data of a Heegaard diagram forM . The following result is a
statement of independence from several choices made along the way, one of them being a Heegaard
diagram.

Theorem 3.1 (result 11.1 in [13]). The relatively Z/n-graded modules HF−(M, s), HF∞(M, s),

HF+(M, s), and ĤF(M, s) are topological invariants of the underlying 3-manifold M and its spinc

structure s. The integer n ≥ 0 is given by the divisibility of the first Chern class of s.

An exposition of the bordered theory should start with an assignment of a differential graded
algebra A(F ) to each oriented surface F . In Section 3.2, we will give an explicit construction of
this algebra in the case F = T. For each manifold M with parametrized boundary F , there are two

invariants – type A denoted by ĈFA(M), and type D denoted by ĈFD(M). The former is a right
(A∞-) A(F )-module, and the latter is a left A(F )-module. The following result draws a connection
between the bordered and non-bordered theories.
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Theorem 3.2 (Pairing Theorem, result 1.3 in [7]). LetM1 andM2 be two compact oriented bordered
3-manifolds with boundaries ∂M1 = F = −∂M2, and let M be the closed 3-manifold obtained by

gluingM1 andM2 along F . Then ĈF(M) is quasi-isomorphic to the A∞ tensor product of ĈFA(M1)

and ĈFD(M2). In particular,

ĤF(M) ∼= H∗

(
ĈFA(M1)⊗̃A(F )ĈFD(M2)

)
.

There are several points worth clarifying.

Remark 3.3 (On tensor products). The A∞ tensor product used above is a fancy extension of
the typical version which attempts to capture additional derived information. Fleshing out the
construction would require us to go into details about A∞ structures and homological algebra.
This is not necessary for our needs, hence, without loss of generality, one may imagine ⊗̃ to be ⊗
throughout.

Remark 3.4 (On gradings). Even in the non-bordered case (for example, Theorem 3.1), one is
already using a relative Z-grading. Transitioning to the bordered theory, one has to replace Z by
a non-commutative group which depends on F (see [7] for complete details).

3.2. The torus algebra. We start by recalling the structure of the torus algebra A(T) = A(T, 0)
as in [7, Section 10.1]. There is a subalgebra of idempotents I(T) ⊂ A(T) generated by ι0 and ι1,
and the unit is 1 = ι0 + ι1. More precisely, I(T) = F2〈ι0, ι2〉 as a vector space, and the generators
satisfy relations

ι20 = ι0, ι21 = ι1, ι0ι1 = ι1ι0 = 0.

The algebra A(T) is generated by elements ρ1, ρ2, ρ3, ρ12, ρ23, ρ123 over I(T) satisfying the relations

ρ1ρ2 = ρ12, ρ2ρ3 = ρ23, ρ12ρ3 = ρ123, ρ1ρ23 = ρ123,

and all other products of generators are zero. The compatibility conditions with the idempotents
are

ρ1 = ι0ρ1ι1, ρ2 = ι1ρ2ι0, ρ3 = ι0ρ3ι1,

ρ12 = ι0ρ12ι0, ρ23 = ι1ρ23ι1, ρ123 = ι0ρ123ι1.

We will adopt the notation Aj = A(T)ιj for j = 0, 1.

3.3. A definition. An understanding of the type D modules in the torus boundary case suffices

for our purposes. We will briefly outline the construction of ĈFD in this specific case, and then
work through an example in the following section.

Let M be a compact oriented bordered 3-manifold with torus boundary, and H = (Σ,α,β, z) a

pointed bordered Heegaard diagram for it. By construction, ĈFD(M) = ĈFD(H) is well-defined up
to quasi-isomorphism. We will focus on the case in which H has genus one, whenM is a solid torus,
and Σ is a punctured torus as in Figure 3. More specifically, we imagine cutting H along the arcs
αa1, α

a
2 as in Figure 3, Presentation 3. We will not make further restraining assumptions regarding

the curve β1. Consider the intersection points α ∩ β which partition as (αa1 ∩ β1) ⊔ (αa2 ∩ β1). Let

αa1 ∩ β1 = {a1, . . . , as} and αa2 ∩ β1 = {b1, . . . , bt}

for two integers s, t ≥ 0. As a left A(T)-module, we set

ĈFD(H) = A0〈a1, . . . , as〉 ⊕ A1〈b1, . . . , bt〉.
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To flesh out the differential ∂ : ĈFD(H)→ ĈFD(H), it suffices to define it on the generators α∩β,
and extend by linearity. For any x ∈ α ∩ β, we have ∂x =

∑
y∈α∩β cx,yy for some cx,y ∈ A. The

coefficient cx,y is a weighted count of the holomorphic disks joining x and y.

x

y

α β →

a1a1

asas

b1

b1

bt

bt

· · ·

· · ·

...
...

z
0

12

3

· · ·

Figure 4: A holomorphic disk, pictorially.

At this point, we elaborate on the specific meaning of holomorphic disks for the genus 1 case,
and describe the associated weights. For the sake of specificity, we realize the 2-disk as D2 = {z ∈
C | |z| ≤ 1}. At its heart, a holomorphic disk from x to y is a map ϕ : D2 → Σ which satisfies
several properties as suggested by Figure 4:

(1) ϕ(i) = x,
(2) ϕ(−i) = y,
(3) ϕ(∂D2 ∩ {z | Re(z) < 0}) ⊂ α ∪ (∂Σ \ {z}),
(4) ϕ(∂D2 ∩ {z | Re(z) > 0}) ⊂ β,
(5) ϕ is holomorphic.

Items (1) and (2) merely say that the image of ϕ should join x and y. Condition (3) requires
the left arc between i and −i (red in Figure 4) to map along the union of the α-arcs, and the
punctured boundary of Σ, that is ∂Σ \ {z}. Condition (4) is a restatement of (3) for the right arc
which should map to the β-curve (equivalently, we could have added ∂Σ \ {z}). Finally, (5) forces
ϕ to be orientation preserving, and imposes a type of rigidity requirement. Recall that we split
∂Σ \ {z} into four regions labelled 0 to 3 in Figure 4. Suppose the right arc in going from i to −i
touches regions with labels i1, . . . , ik in that order for some k ≥ 0. Then the weight of ϕ is given by∏k
j=1 ρij ∈ A(T), whereas cx,y is the sum over the weights of all holomorphic disks joining x and y.

3.4. An example. Now that we have described all ingredients that go into the D type module

ĈFD(H), we proceed to work through an example. Consider the bordered pointed Heegaard dia-

gram H shown in Figure 5 (a). The associated D type module is ĈFD(H) = A0a⊕A1b1 ⊕A1b2.
It remains to compute its differential ∂ by counting holomorphic disks. There is a unique disk
from a to b1 shown in (b) whose weight is ρ3. Considering a and b1, there are two disks shown
in (b) and (c). The former one has weight ρ1, and the latter ρ3ρ2ρ3 = 0. To read properly the
disk shown in (c), we should recall that the red edges are identified in pairs, and note that the
darker shade indicates an overlap. Finally, there is a unique disk joining b1 and b2 shown in (e)
with weight ρ2ρ3 = ρ23. A moment of thought would show there are no other holomorphic disks
present. Putting this information together, we obtain

∂a = ρ3b1 + ρ1b2, ∂b1 = ρ23b2, ∂b2 = 0.
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a a

b1

b1

b2

b2

z 0

12

3

a a

b1

b1

b2

b2

z 0

12

3

a a

b1

b1

b2

b2

z 0

12

3

a a

b1

b1

b2

b2

z 0

12

3

a a

b1

b1

b2

b2

z 0

12

3

(a) (b) (c) (d) (e)

Figure 5: A bordered pointed Heegaard diagram H, and all relevant holomorphic disks.

Note that using the notation from Section 4.2, we have H = H−2. One can specialize the general
computation to our results here.

4. Knots in S3

Our aim in this section is to outline a potentially interesting invariant for knots in S3. Directions
for future investigation are presented in Section 5. Our ideas draw inspiration from a result by W.
Thurston (Theorem 4.1), and we will start by describing this.

4.1. Hyperbolic surgery and Gromov-Hausdorff convergence. Let M be a complete Rie-
mannian manifold. We callM hyperbolic if it has constant sectional curvature−1. As a consequence
of Mostow’s Rigidity Theorem [1, Chapter C], if a smooth 3-manifold has a hyperbolic structure, it
is essentially unique (generally, this holds in dimension n ≥ 3). Therefore, it makes sense to call a
3-manifold hyperbolic if it is possible to endow it with a hyperbolic structure but without a refer-
ence to a specific such structure. Recall that Riemannian manifolds, in particular hyperbolic ones,
are naturally metric spaces. Therefore, one can endow a suitable class of hyperbolic 3-manifolds
with the pointed Gromov-Hausdorff metric [3]. Convergence in this metric space is referred to as
Gromov-Hausdorff convergence.

A knot K in S3 is called hyperbolic if its compliment S3 \ K is a hyperbolic 3-manifold. It
turns our that for a hyperbolic knot K, all but finitely many of the manifolds S3

r (K) for r ∈ Q are
hyperbolic. The following is a very intriguing result (see [1, Chapter E] for a proof).

Theorem 4.1 (W. Thurston’s Hyperbolic Surgery Theorem). Let K be a hyperbolic knot in S3,
and consider a sequence of rational numbers pi/qi ∈ Q for i ≥ 0. If p2i + q

2
i →∞, then the sequence

of manifolds S3
pi/qi

(K) converge to S3 \K in the Gromov-Hausdorff sense.

Remark 4.2. The result above could be suitably formulated in greater generality – it holds for a
link L in a 3-manifold M provided M \ L is hyperbolic.

Informally, the collection of surgeries with “large” coefficients encodes topological information
about K ⊂ S3. In what follows, we will attempt to extract such information via the Heegaard
Floer package.

4.2. A bordered interpretation of surgery. Let K be a knot in S3. Fix a tubular neighbour-
hood M∞ of K, and let N be the closure of the complement S3 \M∞. We can treat both N and
M∞ as bordered 3-manifolds with boundary T such that the meridian and preferred longitude of
the boundary torus T are respectively a meridian and preferred longitude for K. Fix a bordered
Heegaard diagram HN for N , and similarly H∞ forM∞. Without loss of generality, we may assume
H∞ is as shown in the left side of Figure 6. Similarly, for any r ∈ Q, we can construct a diagram
Hr in which the curve β1 has slope r relative to the coordinate system induced by the arcs αa1 and
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αa2. These observations are interesting since for any r ∈ Q, we have S3
r (K) = N ∪T Mr, where Mr

0

12

3 zr

r

0

12

3 z· · ·

· · ·

· · · anan

bn1

bn1

bn2

bn2

bnn−1

bnn−1

bnn

bnn

Figure 6: The bordered Heegaard diagrams H∞, and H−n for n ≥ 0.

corresponds to the bordered Heegaard diagram Hr. The Pairing Theorem (3.2) then implies that

ĈF(S3(K)) is quasi-isomorphic to ĈFA(HN )⊗̃A(T)ĈFD(Hr).
We can specialize to the case when the surgery coefficient is a negative integer. Recall our

discussion on the relation between surgery on 3-manifolds and attaching handles on 4-manifolds
(Section 2.6). It follows that for each n > 0, there is a bordism from S3

−n(K) to S3
−(n−1). This

induces a morphism of graded differential modules Ψn : ĈF(S
3
−n(K)) → ĈF(S3

−(n−1)(K)). An

analogous Pairing Theorem for bordisms implies there exists a commutative diagram

ĈF(S3
−n(K))

Ψn //

∼=
��

ĈF(S3
−(n−1)(K))

∼=
��

ĈFA(HN )⊗̃A(T)ĈFD(H−n)
id

ĈFA(HN )
⊗ψn

// ĈFA(HN )⊗̃A(T)ĈFD(H−(n−1))

in which both vertical arrows are quasi-isomorphisms, and ψn : ĈFD(H−n) → ĈFD(H−(n−1)) is a
morphism of differential left A(T)-modules. The maps Ψn fit into an inverse system

· · · // ĈF(S3
−n)

Ψn // ĈF(S3
−(n−1)(K)) // · · · // ĈF(S3

−1(K))
Ψ1 // ĈF(S3

0(K)),

whose limit CK = lim
←−

ĈF(S3
−n(K)) is an object of interest. A priori, it seems we need to compute

ĈF(S3
−n(K)) for all n > 0 in order to gain some knowledge about CK . One can however reduce

this to two calculations – that of ĈFA(HN ) which depends on the knot K, and a second one which
is independent of K. Let us consider the inverse system

· · · // ĈFD(H−n)
ψn // ĈFD(H−(n−1))

// · · · // ĈFD(H−1)
ψ1 // ĈFD(H0)

with limit C = lim
←−

ĈFD(H−n). Since the module ĈFA(HN ) is finitely generated, some formal

observations about algebra (see Appendix) imply that

CK ∼= ĈFA(HN )⊗̃A(T)C.

Our next goal is to compute the module C.
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4.3. The inverse limit of ĈFD(H−n). Let us start by describing ĈFD(H∞), and ĈFD(H−n)

for n ≥ 0 (see Figure 6 for the relevant bordered Heegaard diagrams). The module ĈFD(H∞)

is generated by r satisfying ∂r = ρ23r. We have rι1 = r, so ĈFD(H∞) = A1〈r〉. Similarly, the

complex ĈFD(H−n) is generated by an, bn1 , . . . , b
n
n and these satisfy

(4.3) ∂an = ρ3b
n
1 + ρ1b

n
n, ∂bn1 = ρ23b

n
2 , . . . ∂bnn−1 = ρ23b

n
n, ∂bnn = 0,

when n > 0. The remaining case n = 0 is degenerate in the sense that ∂a0 = ρ12a0. For all n ≥ 0,

we have anι0 = an and bni ι1 = bni , so ĈFD(H−n) = A0〈a
n〉 ⊕ A1〈b

n
1 , . . . , b

n
n〉.

The following summarizes our claim, and the remainder of this section is devoted to its proof.

Proposition 4.4. Let C = lim
←−

ĈFD(H−n). There is an isomorphism of A(T)-modules

Φ: C → A0 ×
∏

n≥1

A1.

Remark 4.5. Although A0×
∏
n≥1A1 is not a differential module naturally, the morphism Φ induced

a differential structure on it. This is explicitly given by Equations 4.11.

We start by constructing the aforementioned inverse system. For each n > 0, there is an exact
sequence

0 // ĈFD(H∞)
ϕn // ĈFD(H−n)

ψn // ĈFD(H−(n−1))
// 0,

where the maps ϕn, ψn are given by

(4.6) ϕn(r) =

n∑

i=1

bni + ρ2a
n,

and

(4.7)
ψn(a

n) = an−1, ψn(b
n
1 ) = bn−1

1 + ρ2a
n−1,

ψn(b
n
i ) = bn−1

i−1 + bn−1
i for 2 ≤ i ≤ n− 1, ψn(b

n
n) = bn−1

n−1.

These expressions are derived by counting triangles in the certain bordered Heegaard diagrams
as in [7, Section 10.2]. It is easy to verify these maps fit into a short exact sequence as already
indicated. This completes the construction of the speculated inverse system.

Remark 4.8. Applying the homology functor to the short exact sequence above yields the corre-
sponding surgery exact triangle (see [7, Section 10.2]).

By definition C = lim
←−

ĈFD(H−n) is a submodule of

C ′ =
∏

n≥0

ĈFD(H−n) =
∏

n≥0

(
A0a

n ⊕

n⊕

i=1

A1b
n
i

)
=


∏

n≥0

A0a
n


×


 ∏

1≤i≤n

A1b
n
i


 .

Therefore, any element c ∈ C ′ can be written as c = (cn)n≥0, where c
n ∈ ĈFD(H−n). If cn =

(cni )0≤i≤n, then c = (cni )0≤i≤n, where cn0 ∈ A0 are the coefficients of an, and cni ∈ A1 are the
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coefficients of bni . One can also use an infinite upper-triangular matrix

c =




c00 c10 c20 c30 · · ·

c11 c21 c31 · · ·

c22 c32 · · ·

c33 · · ·

. . .




whose columns correspond to cn ∈ ĈFD(H−n). By construction, an element c = (cn)n ∈ C
′ lies in

C if and only if ψn(c
n) = cn−1 for every n > 0. The following diagram illustrates element c and

the maps ψn going left between adjacent columns.

c00 c10
oo c20

oo c30
oo · · ·oo

c11

ρ2

^^=
=

=

=

=

=

=

=

c21
oo

ρ2

^^=
=

=

=

=

=

=

=

c31
oo

ρ2

^^=
=

=

=

=

=

=

=

· · ·oo

ρ2

__>
>

>

>

>

>

>

>

c22

^^=
=

=

=

=

=

=

=

c32
oo

^^=
=

=

=

=

=

=

=

· · ·oo

__>
>

>

>

>

>

>

>

c33

^^=
=

=

=

=

=

=

=

· · ·oo

__>
>

>

>

>

>

>

>

. . .

^^=
=

=

=

=

=

=

Labels along arrows indicate multiplicative coefficients; the absence thereof means the coefficient
is 1. In other words, c ∈ C if and only if

(4.9) cn0 = cn+1
0 + ρ2c

n+1
1 , cni = cn+1

i + cn+1
i+1

for all n ≥ 0 and 1 ≤ i ≤ n.
Define the map

Φ: C → A0 ×
∏

n≥1

A1

by c = (cni )n,i 7→ (cnn)n which diagrammatically corresponds to filtering out the coefficients along
the main diagonal. We proceed to verify this is an isomorphism. This amounts to showing the
diagonal entries cnn determine all entries above the diagonal cni for 0 ≤ i < n. Suppose we are given
an arbitrary d = (dn) ∈ A0 ×

∏
n≥1A1, and we would like to construct some c = (cni )n,i ∈ C such

that cnn = dn for all n ≥ 0. The choices

(4.10)

cn0 = d0 + ρ2

n∑

j=1

(−1)j
(
n

j

)
dj for n ≥ 0,

cni =

n−i∑

j=0

(−1)j
(
n− i

j

)
di+j for 1 ≤ i ≤ n
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satisfy Equations 4.9. Furthermore, proceeding by induction on n−i it is not hard to see Equations
4.9 uniquely determine all cni . This proves the map Φ is an isomorphism as claimed.

Each of the modules ĈFD(H−n) has a differential which commutes with the maps ψn, so C
inherits one too. The isomorphism Φ induces a differential on its codomain. We proceed to give an
explicit description of it. Suppose ∂(dn)n = (d′n)n and (dn)n = Φ((cni )n,i). It follows from Equation
4.3 that

(4.11)

d′0 = ρ12d0,

d′1 = (ρ1 + ρ3)c
1
0 = (ρ1 + ρ3)d0 − ρ12d1,

d′n = ρ1c
n
0 + ρ23c

n
n−1 = ρ1d0 + ρ12

n∑

j=1

(−1)j
(
n

j

)
dj + ρ23(dn−1 − dn) for n > 1.

This completes the proof of Proposition 4.4.

5. Final remarks

There are numerous directions one can proceed to from Section 4. The aim of this section is to
outline a few of these, and describe some of the existing shortcomings.

For once, using negative integral surgery coefficients might have seemed rather unmotivated. Of
course, there are infinitely many sequences of surgery coefficients we could have used to produce
a direct or inverse system. The only other case we investigated is that of using positive integral
coefficients – it yields a direct system, whose limit is trivial. Testing other such sequences could be
one direction of potential future development.

We briefly mentioned the presence of a delicate non-commutative grading in the case of bordered
Heegaard Floer homology, but this discussion was not continued in Section 4.2. The reason for

this arrangement is different ĈFD(H−n) have slightly different gradings, and the maps ψn are not
compatible with these in any understood manner. Hence, there is no sensible way to assign a
grading to the inverse limit C. There are however some relations between the various gradings,
and exploring these further could be another way to advance this project.

Recently (in [7, Appendix], and [8]), bordered Heegaard Floer homology has been extended to
manifolds with two boundary components in which case the result is a bimodule (one has to choose
a type A or D for each boundary component). In the spirit of Section 4.2, it is possible to interpret
knot surgery as a succession of gluings, all intermediate pieces being bordered manifolds with two
boundary components, and the beginning and end, manifolds with a single boundary component.

An analogous Pairing Theorem in the bimodule setting enables us to write the module ĈFD(H−n)
as the tensor product of the n-th tensor power of a “twist” bimodule, and CFD(H∞). Studying
stabilization properties of increasingly large tensor powers could be another way to approach the
module C we discussed.

Comparing Sections 4.1 and 4.2, we note the hyperbolic hypothesis on the knot K has been
dropped out. This could be treated as an advantage of the Heegaard Floer approach in comparison
to Thurston’s Hyperbolic Surgery Theorem (result 4.1).

Appendix: Tensor products

Let A be a ring, M a right A-module, and Ni a collection of left A-modules indexed by i ∈ I.
We are interested in the objects

M ⊗A
∏

i∈I

Ni and
∏

i∈I

(M ⊗A Ni).
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With the present setup, these are abelian groups. If however, we require M to be an A-bimodule,
then they would also inherit the structure of left A-modules. Similarly, if we require all Ni to be
A-bimodules, we will have right A-modules.

There always exists a map Φ given by m⊗ (ni)i 7→ (m⊗ ni)i as shown in the diagram below.

M ⊗A
∏
i∈I Ni

Φ // ∏
i∈I(M ⊗A Ni)

Ψ
oo_ _ _ _ _ _

If we assumeM is finitely generated, then there exists an inverse Ψ. Letm1, . . . ,mk be a generating

set for M , and consider an element ((
∑k

j=1mjaij) ⊗ ni)i where aij ∈ A. Letting nij = aijni, we
can rewrite this as





k∑

j=1

mjaij


⊗ ni



i

=




k∑

j=1

(mjaij)⊗ ni



i

=




k∑

j=1

mj ⊗ (aijni)



i

=




k∑

j=1

mj ⊗ nij



i

=

k∑

j=1

(mj ⊗ nij)i,

so it is reasonable to map this element to
∑k

j=1mj ⊗ (nij)i via Ψ. It is not hard to see the so
defined maps Φ and Ψ are morphisms of abelian groups and inverses of each other.

Let us further assume we are given a small category I with set of objects I, and a functor
D : I → A-mod satisfying D(i) = Ni for all i ∈ I (here A-mod stands for the category of left
A-modules). There is an induced functor M ⊗D : I → Ab given by (M ⊗D)(i) = M ⊗ Ni and
(M ⊗D)(f) = idM ⊗AD(f) for f ∈ MorI(i, j), i, j ∈ I. The limits of D and M ⊗D are naturally
constructed as subgroups of

∏
iNi and

∏
i(M ⊗Ni). It is not hard to see the maps Φ and Ψ above

restrict to isomorphisms

M ⊗A (limD)
Φ //

lim(M ⊗D).
Ψ

oo

As before, had the module M not been finitely generated, we would only be able to provide an
inclusion Φ.
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