MATH W4051 PROBLEM SET 3 DUE SEPTEMBER 23, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Let $v, e, f \in \mathbb{N}$ with v e + f = 2. Construct a CW complex homeomorphic to S^2 with exactly v 0-cells, e 1-cells and f 2-cells.
- (2) Let X be a topological space, $A \subset X$. Define the boundary of A to be $\partial A = A \setminus \text{Int}(A)$. Prove: if $A \subset X$ and $B \subset Y$ then $\partial(A \times B)$ in $X \times Y$ is $[(\partial A) \times B] \cup [A \times (\partial B)]$. (This fact partly explains using ∂ to denote the boundary.)
- (3) Prove that any finite CW complex is locally connected, and also locally path connected.
- (4) Quotients of spaces by group actions.¹ Let G be a group, and X a topological space. An *action of* G on X is a map $G \times X \to X$, which we will write $(g, x) \mapsto g \cdot x$, such that
 - For any $x \in X$, $1_G \cdot x = x$.
 - If $g, g' \in G$ and $x \in X$ then $(gg') \cdot x = g \cdot (g' \cdot x)$.
 - For each $g \in G$, the map $X \to X$ defined by $x \mapsto g \cdot x$ is continuous.

Given an action of a group G on a space X, we can define an equivalence relation \sim by $x \sim y$ if there exists $g \in G$ so that $g \cdot x = y$. We let X/G denote X/\sim .

- (a) Prove that \sim is an equivalence relation.
- (b) Prove that an action of G on X is a group homomorphism $G \to Homeo(X)$.
- (c) \mathbb{Z}^2 acts on \mathbb{R}^2 by $(n,m) \cdot (x,y) = (x+n,y+m)$. What is $\mathbb{R}^2/\mathbb{Z}^2$? (Just identify it and draw a picture, don't try to prove it (whatever that would mean).)
- (d) $\mathbb{Z}/3$ acts on S^2 by rotation by $2\pi/3$ around the z-axis. What is $S^2/(\mathbb{Z}/3)$? (Again, a correct statement and some pictures is enough.)
- (e) Suppose that the space X is a CW complex, and the action of G respects the cell structure in the following way: for any $g \in G$, $g \neq 1_G$, and any cell e in X, g(e) is also a cell in X, and $g(e) \neq e$. Then X/G inherits a cell structure from X. Explain how, briefly. Give an example illustrating this in the case of the action of $\mathbb{Z}/3$ on S^2 just described.
- (f) The group $\mathbb{Z}/5$ acts on S^3 as follows. Write $S^3 = \{(z, w) \in \mathbb{C}^2 \mid |z|^2 + |w|^2 = 1\}$ and $\mathbb{Z}/5 = \{1, \zeta, \zeta^2, \zeta^3, \zeta^4\}$. Then define

$$\zeta^n(z, w) = (e^{2\pi i n/5} z, e^{6\pi i n/5} w).$$

The quotient S^3/G is called the *lens space* L(5,3). Use the previous part to describe a CW complex structure on L(5,3). How many 0-cells, 1-cells, 2-cells and 3-cells does your CW complex have? (This takes some work; good luck.)

- (5) Munkres 23.5
- (6) Munkres 24.9
- (7) Munkres 25.4

 $^{^{1}}$ A few of you haven't seen groups much yet. This would be a good time to start learning the definitions. The first four parts of this problem are pretty gentle.

Optional but recommended problems:

- (1) Prove that $\mathbb{D}^m \times \mathbb{D}^n \cong \mathbb{D}^{m+n}$. (There are lots of possible approaches, but all of them take a little work. This is the sort of result I'm likely to call "obvious" in class, so it's good to be able to prove it.)
- (2) Let X_n be a topological space, $n = 1, ..., \infty$, such that $X_{n-1} \subset X_n$ for all n. Let $X = \bigcup_{n=1}^{\infty} X_n$. Define a topology on X by declaring $U \subset X$ to be open if $U \cap X_n$ is open for all n. (This is an instance of the *direct limit topology*.)
 - (a) Let Y be another topological space. A map $f: X \to Y$ is continuous if and only if the restriction of f to each X_n is continuous.
 - (b) Use the direct limit topology to give a topology on infinite CW complexes with a finite number of cells in each dimension.
 - (c) Let X be a finite CW complex, and Y an infinite one, given the topology from part 2b. Let $f: X \to Y$ be any continuous map. Then the image f(X) of X intersects only finitely many cells in Y. (You may want to postpone this for a week: you'll probably want to use compactness.)

This result is somewhat counter-intuitive. Why?

(3) Munkres 25.9. (You'll want to read the supplementary exercises on pp. 145 and 146 first; this is interesting material that we don't have time for.)

E-mail address: r12327@columbia.edu