
MATH W4051 PROBLEM SET 2
DUE SEPTEMBER 16, 2008.

INSTRUCTOR: ROBERT LIPSHITZ

Note: definition of the Zariski topology has been revised since this was first posted.

(1) Let C∞(R) denote the set of all functions f : R → R such that f is differentiable to all
orders (i.e., f (n) exists for all n ≥ 0). Notice that C∞(R) is a vector space in an obvious
way.

We endow C∞(R) with two different metrics. Let1

d0(f, g) = sup{|f(x)− g(x)| | x ∈ R}
d1(f, g) = d0(f, g) + sup{|f ′(x)− g′(x)| | x ∈ R}

(d0 is called the C0-metric and d1 is called the C1-metric.)
(a) Convince yourself that d0 and d1 are, in fact, metrics. (You don’t have to write

anything for this part.)
(b) Is the topology induced by d0 finer or coarser than the topology induced by d1?
(c) Define a map D : C∞(R) → C∞(R) by D(f)(x) = f ′(x). Prove that D gives a

continuous map (C∞, d1)→ (C∞, d0).
(d) Prove that D does not give a continuous map (C∞, d0) → (C∞, d0). (If you haven’t

seen this before, this should surprise you: the map D is linear but not necessarily
continuous!)

(2) (a) Let X be a set and B a sub-basis for a topology on X. Then the topology generated
by B is the coarsest topology on X such that every set in B is open. Formulate
precisely what this means.

(b) Prove it.
(c) For Y and Z topological spaces, the product topology on Y ×Z is the finest topology

on Y × Z such that for any topological space X and continuous maps f : X → Y ,
g : X → Z, (f, g) : X → Y × Z is continuous. Prove this.
The product topology is also the coarsest topology so that the projections πY : Y ×
Z → Y and πZ : Y × Z → Z are continuous. Prove this, too.

(d) Analogous statements hold for arbitrary (possibly infinite) products. Formulate and
prove them.
(This problem should make you feel lucky that the product topology exists: it’s the
finest topology with one property you want, but the coarsest with another, so it’s
the only topology with both.)

(3) The Zariski topology on Cn is defined as follows: a subset S ⊂ Cn is closed iff there are
is a set of polynomials {pα(z1, . . . , zn)} so that

S = {~z ∈ Cn | pα(z1, . . . , zn) = 0for all α}.
A set is defined to be open if its complement is closed.

1for a set S of real numbers, recall that sup(S) is the supremum or least upper bound of S, i.e., the smallest
real number r such that for all s ∈ S, s ≤ r.
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(a) Verify that this defines a topology on Cn. Is it coarser or finer than the usual one?
(b) Is the Zariski topology metrizable? Why or why not?
(c) For n = 1 the Zariski topology is the same as a topology defined in Munkres (or,

briefly, in class). Which one?
(d) Show that the Zariski topology is the coarsest topology such that for any polynomial

p(z1, . . . , zn), the corresponding map Cn → C is continuous.
(e) Is the Zariski topology Hausdorff?
(f) Optional—uses some more abstract algebra: I originally wrote the problem with the

sets {pα} finite. Why is this equivalent to the current definition?
Remark. If F is any field (or even just a ring) then the same definition makes sense for Fn.
This allows one to use topology to study, say, algebraic sets over fields of characteristic
p. (In practice if F is not algebraically closed this is not quite the topology one is looking
for.) For this reason, the Zariski topology plays a central role in algebraic geometry.

(4) Munkres 17.13. (This is how the analogue of compactness in algebraic geometry is de-
fined.)

(5) Munkres 17.14
(6) Munkres 18.6
(7) Munkres 19.6

Also, here’s an optional problem:

• Find a subset S of R which becomes perfect after applying the Cantor derivative exactly
n times.
• Find a subset S of R which becomes perfect after applying the Cantor derivative a

countably infinite number of times (or more precisely, ω times), in the following sense:
Let S(n) denote the result of applying the Cantor derivative n times to S. Let S(ω) =⋂∞
n=0 S

(n). Find a set such that no S(n) is perfect but S(ω) is perfect.
• Find a subset S of R so that S(ω) is not perfect but its Cantor derivative S(ω+1) is.
• If you know about ordinals (or if you learn about them), prove:’

Lemma 1. For any countable ordinal o there is a set S ⊂ R so that S(o) is perfect but if
o′ < o then S(o′) is not perfect.

(The first step is defining S(o).)
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