MATH W4051 PROBLEM SET 13 DUE NEVER?

INSTRUCTOR: ROBERT LIPSHITZ

The goal of this problem set is to prove the following:

Theorem 1. S^2 is not contractible.

Remark. I'm happy to solutions to any parts of this extremely optional problem set with any of you. Please do not try to turn it into Tom.

(1) Given a space X, the symmetric group S_n acts on $X^n = \overbrace{X \times X \times \cdots \times X}^{X \times \cdots \times X}$ by permuting the factors. That is, for $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ a bijection, define

$$\sigma \cdot (x_1, \ldots, x_n) = (x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}).$$

Define

(a) Prove that the map X^n induced by σ is continuous.

Define $\operatorname{Sym}^n(X) = X^n/S_n$. That is, a point in $\operatorname{Sym}^n(X)$ is an *unordered n*-tuple of points in X.

(b) Prove that if $f: X \to Y$ is continuous then f induces a continuous map

 $\operatorname{Sym}^n(f)$: $\operatorname{Sym}^n(X) \to \operatorname{Sym}^n(Y)$.

Show that Sym^n defines a functor from the category of topological spaces to itself, i.e., that $\operatorname{Sym}^n(Id) = Id$ and that $\operatorname{Sym}^n(f \circ g) = \operatorname{Sym}^n(f) \circ \operatorname{Sym}^n(g)$.

- (c) Prove that if $f \sim g$ then $\operatorname{Sym}^n(f) \sim \operatorname{Sym}^n(g)$. Conclude that if $X \simeq Y$ then $\operatorname{Sym}^n(X) \simeq \operatorname{Sym}^n(Y)$.
- (d) Prove that $\operatorname{Sym}^n(S^2) \cong \mathbb{C}P^n$, where $\mathbb{C}P^n = (\mathbb{C}^{n+1} \setminus 0)/(p \sim \lambda p)$. (*Hint.* A point x in $\operatorname{Sym}^n(S^2)$ is an unordered k-tuple of points in $\mathbb{C} = S^2 \setminus \{pt\}$, for some k < n. Let $p_x(z) = a_0 + a_1 z + \dots + a_k z^k$ be a degree k polynomial vanishing at these k points. Map x to $(a_0, a_1, \dots, a_k, 0, \dots, 0) \in (\mathbb{C}^{n+1} \setminus 0)/\sim = \mathbb{C}P^n$.)
- (2) Let $X = X_1 \cup X_2 \cup \ldots$ with $X_i \subset X_{i+1}$. Let \mathcal{T}_i be a topology on X_i so that $\mathcal{T}_{i+1}|_{X_i} = \mathcal{T}_i$. Define a topology \mathcal{T} on X by saying $U \subset X$ is open if for all $i, U \cap X_i \in \mathcal{T}_i$. The topology \mathcal{T} is called the *weak topology*, the *union topology* or the *direct limit topology*.
 - (a) Check that the weak topology \mathcal{T} is, in fact, a topology.
 - (b) Check that a map $f: (X, \mathcal{T}) \to Y$ is continuous if and only if $f|_{X_i}$ is continuous for all *i*. Check that the weak topology is the coarsest topology with this property.
 - (c) Optional: formulate the direct limit topology in categorical terms, similar to the formulation of products or coproducts. (Which is it closer to?)
- (3) Let \mathbb{R}^{ω} denote the set $\{(x_1, x_2, \dots)\}$ of infinite sequences of real numbers. Inside \mathbb{R}^{ω} we have $\mathbb{R}^1 = \{(x_1, 0, 0, \dots), \mathbb{R}^2 = \{(x_1, x_2, 0, \dots)\}$ and so on. We also have

$$S^{n} = \{ (x_{1}, x_{2}, \dots, x_{n+1}, 0, 0, \dots) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \}.$$

Let $S^{\infty} = \bigcup_{n=0}^{\infty} S^n$, and endow S^{∞} with the weak topology induced by the S^n .

Prove that S^{∞} is contractible. (Hint: it's easy to show any non-surjective map $S^{\infty} \rightarrow S^{\infty}$ is nullhomotopic. Show that Id is homotopic to the shift operator $s(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots)$.)

(4) Define $\operatorname{Sym}^{\infty}(X, x_0)$ as follows. Define the weakly-infinite permutation group S_{∞} to be the set of bijective $f \colon \mathbb{N} \to \mathbb{N}$ such that f(n) = n for all but finitely many n. (In other words, $S_{\infty} = \bigcup_n S_n$.)

Now, consider the set $\prod^{\infty}(X, x_0)$ consisting of sequences of points in X where all but finitely many of the terms are x_0 . That is, elements of $\prod^{\infty}(X, x_0)$ look like

$$(y_1, y_2, \ldots, y_k, x_0, x_0, x_0, \ldots).$$

Then S_{∞} acts on $\prod^{\infty}(X, x_0)$ by permuting the coordinates. Define $\operatorname{Sym}^{\infty}(X, x_0)$ to be the quotient $\prod^{\infty}(X, x_0)/S_{\infty}$.

Note that there are inclusion maps i_n : $\operatorname{Sym}^n(X, x_0) \to \operatorname{Sym}^\infty(X, x_0)$. Moreover, any point $p \in \operatorname{Sym}^\infty(X, x_0)$ is in the image of i_n for large enough n. So, we can think of $\operatorname{Sym}^\infty(X, x_0) = \bigcup_n \operatorname{Sym}^n(X, x_0)$. Give $\operatorname{Sym}^n(X, x_0)$ the union topology induced from the $\operatorname{Sym}^n(X, x_0)$.

We take $(x_0, x_0, ...)$ as the basepoint of $\text{Sym}^{\infty}(X, x_0)$.

- (a) Prove that $\operatorname{Sym}^{\infty}$ defines a functor $\mathcal{T}_* \to \mathcal{T}_*$.
- (b) Prove that if $f, g: (X, x_0) \to (Y, y_0)$ are homotopic rel x_0 then

 $\operatorname{Sym}^{\infty}(f), \operatorname{Sym}^{\infty}(g): \operatorname{Sym}^{\infty}(X, x_0) \to \operatorname{Sym}^{\infty}(Y, y_0)$

are homotopic rel Sym^{∞}(x_0). Conclude that if X deformation retracts to x_0 then Sym^{∞}(X, x_0) deformation retracts to Sym^{∞}(x_0).

- (c) Prove that $\operatorname{Sym}^{\infty}(S^2)$ is a quotient space of S^{∞} .
- (d) Let $\pi: S^{\infty} \to \operatorname{Sym}^{\infty}(S^2)$. Check that for any $p \in \operatorname{Sym}^{\infty}(S^2), \pi^{-1}(p)$ is a circle.
- (5) Given a based space (X, x_0) , define the based loop space of (X, x_0) to be $\{f : ([0, 1], \{0, 1\}) \rightarrow (X, \{x_0\})\}$ with the compact-open topology.
 - (a) Check that Ω defines a functor $\mathcal{T}_* \to \mathcal{T}_*$.
 - (b) Prove that if $f, g: (X, x_0) \to (Y, y_0)$ are homotopic rel x_0 then $\Omega(f), \Omega(g): \Omega(X, x_0) \to \Omega(Y, y_0)$ are homotopic rel $\Omega(x_0)$. Conclude that if X deformation retracts to x_0 then $\Omega(X, x_0)$ deformation retracts to $\Omega(x_0)$.

Remark. I will sometimes drop the basepoint from the notation $\Omega(X, x_0)$, writing simply $\Omega(X)$.

- (6) Verify that $\Omega(S^1)$ has infinitely many connected components, each of which is contractible. (Hint: the winding number gives a continuous map $W: \Omega(S^1) \to \mathbb{Z}$. Using the fact that the universal cover of S^1 is contractible, show that $W^{-1}(n)$ is contractible for each n.)
- (7) Prove that if S^2 is contractible then S^2 deformation retracts to a point. Conclude that S^2 is not contractible if and only if $\Omega(\text{Sym}^{\infty}(S^2))$ is not contractible.
- (8) Since S^1 is a group (as the unit complex numbers), $\Omega(S^1, 1)$ is naturally a group under pointwise multiplication. (Here, we use 1, the identity in S^1 , as the basepoint.) Show that since S^1 acts continuously on S^{∞} with quotient $\operatorname{Sym}^{\infty}(S^2)$, the group $\Omega(S^1)$ acts continuously on $\Omega(S^{\infty})$ with quotient $\Omega(\operatorname{Sym}^{\infty}(S^2))$.
- (9) Let $\Omega_0(S^1)$ denote the connected component of S^1 containing the identity. Show that $S^{\infty}/\Omega_0(S^1)$ is a nontrivial, connected covering space of $\Omega(\text{Sym}^{\infty}(S^2))$.
- (10) Conclude that S^2 is not contractible.

E-mail address: rl2327@columbia.edu