MATH W4051 PROBLEM SET 1 DUE SEPTEMBER 15, 2009.

INSTRUCTOR: ROBERT LIPSHITZ

- (1) Use the ϵ - δ definition of continuity to prove that the function $f(x) = x^2$ from \mathbb{R} to \mathbb{R} is continuous.¹
- (2) Given metric spaces (X, d_X) and (Y, d_Y) , we define the *product metric* $d_{X \times Y}$ on $X \times Y$ by setting

$$d_{X \times Y}((x, y), (x', y')) = \sqrt{d_X(x, x')^2 + d_Y(y, y')^2}.$$

- (a) Prove that $(X \times Y, d_{X \times Y})$ is, in fact, a metric space.
- (b) Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces, and $f: X \to Y, g: X \to Z$ continuous maps. Prove that the map $(f, g): X \to Y \times Z$ is continuous (where $Y \times Z$ is given the product metric).
- (3) Given metric spaces (X, d_X) and (Y, d_Y) , a map $f: X \to Y$ is called an *isometry* if
 - f is surjective and
 - for all $p, q \in X$, $d_Y(f(p), f(q)) = d_X(p, q)$.
 - Spaces X and Y are called isometric if there exists an isometry $f: X \to Y$.
 - (a) Prove that isometries are necessarily injective.
 - (b) Show that if X and Y are isometric then X and Y are homeomorphic.
 - (c) Give an example of two (metric) spaces which are homeomorphic but not isometric. (Hint: see Problem (5).)
- (4) Homeomorphisms preserve topological properties. As an example of this, prove: Let (X, \mathcal{T}) and (Y, \mathcal{S}) be homeomorphic topological spaces. Then (X, \mathcal{T}) is metrizable if and only if (Y, \mathcal{S}) is metrizable.
- (5) Let (X, d_X) be a metric space and $r \in \mathbb{R}$. We say X has diameter at most r if for any $x, y \in X, d_X(x, y) \leq r$. We say X has finite diameter if X has diameter at most r for some $r \in \mathbb{R}$.
 - (a) Give an example of a metric space with diameter at most 1, and a metric space which does not have finite diameter.
 - (b) Prove that having diameter at most r is a metric property. That is, prove that if (X, d_X) is isometric to (Y, d_Y) and X has diameter at most r then Y has diameter at most r.
 - (c) Prove that having diameter at most r is *not* a topological property. That is, find metric spaces (X, d_X) and (Y, d_Y) such that X is homeomorphic to Y, X has diameter at most r and Y does not have diameter at most r.
 - (d) Prove that having finite diameter is not a topological property.
- (6) Munkres problem 13.5. (If you find this confusing, do 13.4 first.)
- (7) (Countability) Read Munkres Section 7. Do problem 7.1. (If this is all new to you, also do problem 7.4.)
- (8) Read Sections 1 and 2 of the "Ordinals" handout and do Problem 1 in it. (*Hint:* use induction.)

E-mail address: r12327@columbia.edu

¹If you find this hard, do several more, like $f(x) = x^3$: $\mathbb{R} \to \mathbb{R}$, $f(x,y) = x^2 + y^2$: $\mathbb{R}^2 \to \mathbb{R}$, f(x) = 1/x: $(0,1) \to (1,\infty)$, etc., until they become fairly easy.