BORDERED FLOER HOMOLOGY HOMEWORK 2

ROBERT LIPSHITZ

(1) Let $a(\rho)$ denote the algebra element associated to a chord ρ . Suppose that $\mathcal{A}(\mathcal{Z})$ is generated by chords, and that the module $_{\mathcal{A}(\mathcal{Z})} \widehat{CFD}(\mathcal{H})$ is defined as in the lecture. Verify that the diagram fragments shown induce the specified relations on \mathcal{A} . (See [4] for details.)

- (2) Recall that a strongly bordered 3-manifold with two boundary components consists of a Y^3 with $\partial Y = \partial_L Y \amalg \partial_R Y$; parameterizations of $\partial_L Y$ and $\partial_R Y$ by surfaces $F(\mathcal{Z}_L)$ and $F(\mathcal{Z}_R)$; and a framed arc γ from $\partial_L Y$ to $\partial_R Y$ (connecting the basepoints z in $\partial_L Y$ and $\partial_R Y$, and with framing pointing into the 2handle of $\partial_L Y$ and $\partial_R Y$). Define Heegaard diagrams for strongly bordered 3-manifolds with two boundary components, in analogy to bordered Heegaard diagrams for bordered 3-manifolds with connected boundary. (See [5, Section 5.1] for details.)
- (3) Below are Heegaard diagrams for the 0-framed, -1-framed and ∞ -framed solid tori. We computed the invariant $\widehat{CFD}(H_0)$ and $\widehat{CFD}(H_{-1})$ in lecture.

Date: July 20, 2010.

ROBERT LIPSHITZ

(a) Compute $\widehat{CFD}(H_{\infty})$.

(b) Write down an exact sequence

$$0 \to \widehat{CFD}(H_{\infty}) \to \widehat{CFD}(H_{-1}) \to \widehat{CFD}(H_0) \to 0.$$

What does this imply about $\widehat{HF}(Y)$?

(4) This exercise relates to a diagram from [1] which can be used to show that

 $\widehat{HF}(-Y_1 \cup_F Y_2) \cong \operatorname{Ext}_{\mathcal{A}(-F)}(\widehat{CFD}(Y_1), \widehat{CFD}(Y_2)) \cong \operatorname{Ext}_{\mathcal{A}(F)}(\widehat{CFA}(Y_1), \widehat{CFA}(Y_2)).$

(See [1] or [2].) For notational convenience, we will work in the genus 1 case. Let AZ denote the following strongly bordered Heegaard diagram:

(Unlike the diagrams we will use in lecture, this one has α -arcs meeting one boundary component and β -arcs meeting the other.)

- (a) Prove (by direct computation) that $\widehat{CFAA}(\mathsf{AZ})$ is isomorphic to $\mathcal{A}(T^2)$, as an $\mathcal{A}(T^2)$ -bimodule. (Hint: AZ is a *nice diagram*; see [3, Section 8], particularly Proposition 8.4.)
- (b) Aside: Use the pairing theorem and the previous part to show that if $\mathbb{I}_{\mathcal{Z}}$ denotes the identity Heegaard diagram for \mathcal{Z} then $\widehat{CFDA}(\mathbb{I}) \simeq \mathcal{A}$ as an \mathcal{A} -bimodule.
- (c) Given a Heegaard diagram \mathcal{H} , let $\overline{\mathcal{H}}$ be the orientation-reverse of \mathcal{H} . Prove that $\widehat{CFD}(\overline{\mathcal{H}}) = \widehat{CFD}(\mathcal{H})^*$, the dual of $\widehat{CFD}(\mathcal{H})$.
- (d) Suppose \mathcal{H} is a bordered Heegaard diagram for a 3-manifold Y with connected boundary. Let \mathcal{H}^{β} denote the result of relabeling the α -curves in \mathcal{H} as β -curves and the β -curves as α -curves. Show that $\mathcal{H}^{\beta} \cup_{\partial} \mathsf{AZ}$ is a bordered Heegaard diagram for -Y.

 $\mathbf{2}$

(e) Challenge: Let \mathcal{H} denote the result of gluing two copies of AZ along the boundary component intersecting the β -arcs (so \mathcal{H} is an α - α -bordered Heegaard diagram.) What strongly bordered 3-manifold does \mathcal{H} represent?

References

- Denis Auroux, Fukaya categories of symmetric products and bordered Heegaard-Floer homology, 2010, arXiv:1001.4323.
- [2] Robert Lipshitz, Peter S. Ozsváth, and Dylan P. Thurston, *Heegaard Floer homology as morphism spaces*, in preparation.
- [3] _____, Bordered Heegaard Floer homology: Invariance and pairing, 2008, arXiv:0810.0687.
- [4] _____, Slicing planar grid diagrams: A gentle introduction to bordered Heegaard Floer homology, 2008, arXiv:0810.0695.
- [5] _____, Bimodules in bordered Heegaard Floer homology, 2010, arXiv:1003.0598.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NY 10027 *E-mail address*: lipshitz@math.columbia.edu