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@ Review of Heegaard Floer

@ Basic properties of bordered HF

© Bordered Heegaard diagrams

@ The algebra

© The cylindrical setting for Heegaard Floer
@ The module CFD

@ The module CFA

© The pairing theorem

© Four-dimensional information from bordered HF.
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Background

Classical Heegaard Floer theory assigns...

To Y3 closed, oriented || chain complexes CF(Y), CF*(Y), ...
well-defined up to homotopy equivalence.

To W*: Y32 — Y3 chain maps Fy: CF(Y1) — CF(Ya)....
smooth, oriented well-defined up to chain homotopy.
Such that. ..
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Background

Classical Heegaard Floer theory assigns...

To Y3 closed, oriented || chain complexes CF(Y), CF*(Y), ...
well-defined up to homotopy equivalence.

To W*: Y32 — Y3 chain maps Fy: CF(Y1) — CF(Ya)....
smooth, oriented well-defined up to chain homotopy.
Such that. ..

IFWi: Y1 — Yy and Wa: Yy — Y3 then Fuyu, w, = Fuy, o Fus,

(I'm omitting spin®-structures)
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Background

Advertising HF. ..

HF contains lots of geometric content:

@ Detects smooth structures on 4-manifolds. (Ozsvath-Szabd)
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And yet. ..

Heegaard Floer homology remains poorly understood:
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And yet. ..

Heegaard Floer homology remains poorly understood:
@ The only known definition involves (nonlinear) partial
differential equations.
@ Much of it is not yet algorithmically computable.
o All variants of HF for knots in S* (Manolescu-Ozsvath-Sarkar).
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Heegaard Floer homology remains poorly understood:
@ The only known definition involves (nonlinear) partial
differential equations.
@ Much of it is not yet algorithmically computable.
o All variants of HF for knots in S* (Manolescu-Ozsvath-Sarkar).

° /-/IT-_(Y3) is computable in general (Sarkar-Wang). So is
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And yet. ..

Heegaard Floer homology remains poorly understood:

@ The only known definition involves (nonlinear) partial
differential equations.
@ Much of it is not yet algorithmically computable.
o All variants of HF for knots in S* (Manolescu-Ozsvath-Sarkar).

° /-/IT-_(Y3) is computable in general (Sarkar-Wang). So is
CF~(Y)/U?CF~(Y) (Ozsvath-Stipsicz-Szabd).

e The cobordism maps Fy are computable for most W
(L-Manolescu-Wang).
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And yet. ..

Heegaard Floer homology remains poorly understood:

@ The only known definition involves (nonlinear) partial
differential equations.
@ Much of it is not yet algorithmically computable.
o All variants of HF for knots in S® (Manolescu-Ozsvath-Sarkar).
° I-/IT-"(Y3) is computable in general (Sarkar-Wang). So is
CF~(Y)/U>CF~(Y) (Ozsvath-Stipsicz-Szabo).
e The cobordism maps Fy, are computable for most W
(L-Manolescu-Wang).

But that’s it.
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@ The only known definition involves (nonlinear) partial
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e The cobordism maps Fy are computable for most W
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But that’s it.

@ The algorithms for HF and Fyy are inefficient and seem ad
hoc.
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Background

And yet. ..

Heegaard Floer homology remains poorly understood:

@ The only known definition involves (nonlinear) partial
differential equations.
@ Much of it is not yet algorithmically computable.
o All variants of HF for knots in S® (Manolescu-Ozsvath-Sarkar).

° /-/IT-'(Y3) is computable in general (Sarkar-Wang). So is
CF=(Y)/U?CF~(Y) (Ozsvath-Stipsicz-Szabd).

e The cobordism maps Fy are computable for most W
(L-Manolescu-Wang).

But that’s it.

@ The algorithms for HF and Fy are inefficient and seem ad
hoc.

It's like having only de Rham cohomology, except via nonlinear
equations and without the Mayer-Vietoris theorem.
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Background

Bordered Floer homology

@ The rest of the talk is about joint work with Peter Ozsvath
and Dylan Thurston.

@ Most of it can be found in “Bordered Heegaard Floer
homology: Invariance and pairing,” arXiv:0810.0687. (It's
quite long.)

@ We also wrote an expository paper about some of the ideas,
“Slicing planar grid diagrams: a gentle introduction to
bordered Heegaard Floer homology,” arXiv:0810.0695,
which we hope is easy to read.
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Background

The goals of bordered Floer homology

(Ozsvath SZabo) IfY = Y1#Y> then
CF(Y) = CF(Y1) ®z, CF(Ya).

(cf. homology: CF multiplicative rather than additive.)
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Background

The goals of bordered Floer homology

(Ozsvath SZabo) IfY = Y1#Y> then
CF(Y) = CF(Y1) ®z, CF(Ya).

(cf. homology: CF multiplicative rather than additive.)

Bordered Floer theory extends this more general decompositions of
3-manifolds along surfaces.
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Properties

Roughly, bordered HF assigns...

e To a surface F, a (dg) algebra A(F).
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@ To a 3-manifold Y with boundary F, a
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o left A(—F)-module a-_\D(Y)
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Properties

Roughly, bordered HF assigns...

e To a surface F, a (dg) algebra A(F).
@ To a 3-manifold Y with boundary F, a
o right A(F)-module CFA(Y)
o left A(—F)-module a-_\D(Y)

such that
o If Y=Y Ur Y5 then

C/T:(Y) = Cﬂ(yl) ®A(F) f"—B(Y2).
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Properties

Precisely, bordered HF assigns...

To which is a
Marked | a connected, closed, A differential graded
surface | oriented surface, algebra A(F)
F + a handle decompos. of F
+ a small disk in F
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Properties

Precisely, bordered HF assigns...

To which is a

Marked a connected, closed, A differential graded
surface oriented surface, algebra A(F)

F + a handle decompos. of F

+ a small disk in F

Bordered Y3, | a compact, oriented
oY3=F 3-manifold with
connected boundary,
orientation-preserving
homeomorphism F — 9Y
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Properties

Precisely, bordered HF assigns...

To which is a

Marked a connected, closed, A differential graded
surface oriented surface, algebra A(F)

F + a handle decompos. of F

+ a small disk in F

Bordered Y3, | compact, oriented Right A.-module

oY3 =F 3-manifold with CFA(Y) over A(F),
connected boundary, Left dg-module
orientation-preserving fl:ﬁ( Y) over A(—F),
homeomorphism F — 0Y well-defined up to

homotopy equiv.
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Properties
Satisfying the pairing theorem:

IfoY1 = F = —0Y> then

C/‘:\E(Yl Us Yz) o EEA(Yl)éA(F)ﬁ—'B(Yz).

R. Lipshitz, P. Ozsvath and D. Thurston Bordered Heegaard Floer homology



Properties

Further structure (in progress):

o To an ¢ € MCG(F), bimodules CFDA(¢), CFDA(¢).

CFA(4(Y)) = CFA(Y) & 4() CFDA(9)
CFD(é(Y)) = CFDA(6) &.4(—r) CFD(Y)

(inducing an action of MCGg(F) on D?(A(F)-Mod)).
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Properties

Further structure (in progress):

o To an ¢ € MCG(F), bimodules CFDA(¢), CFDA(¢).

CFA(4(Y)) = CFA(Y) & 4() CFDA(9)
CFD(é(Y)) = CFDA(6) &.4(—r) CFD(Y)

(inducing an action of MCGg(F) on D?(A(F)-Mod)).
@ To F, bimodules CFDD and C/FM such that

CFD(Y) ~ CFA(Y) & 4(r) CFDD
CFA(Y) = CFAAG 4(_r) CFD(Y).
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Advertising bordered HF
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Advertising bordered HF

@ It's not tautologous.

@ It provides information about classical HF. For instance:

Suppose CFK™(K) ~ CFK™(K"). Let K¢ (resp. K() be the
satellite of K (resp. K') with companion C. Then
HFK~(Kc) = HFK~(KL).
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@ It provides information about classical HF. For instance:

Suppose CFK™(K) ~ CFK™(K"). Let K¢ (resp. K() be the
satellite of K (resp. K') with companion C. Then
HFK~(Kc) = HFK~(KL).

@ It's good for computations:

° C/Fm((b) for generators ¢ of MCGq can be computed
explicitly.
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Advertising bordered HF

@ It's not tautologous.

@ It provides information about classical HF. For instance:

Suppose CFK™(K) ~ CFK™(K"). Let K¢ (resp. K() be the
satellite of K (resp. K') with companion C. Then
HFK~(Kc) = HFK~(KL).

@ It's good for computations:

° C/Fm((b) for generators ¢ of MCGq can be computed
explicitly.
e This leads to computations of CF(Y) for any Y, by factoring.
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Properties

Advertising bordered HF

@ It's not tautologous.

@ It provides information about classical HF. For instance:

Suppose CFK™(K) ~ CFK™(K"). Let K¢ (resp. K() be the
satellite of K (resp. K') with companion C. Then
HFK~(Kc) = HFK~(KL).

@ It's good for computations:
° C/Fm((b) for generators ¢ of MCGq can be computed
explicitly.
o This leads to computations of CF(Y) for any Y, by factoring.
o In fact, you can compute Fy for any W*.

R. Lipshitz, P. Ozsvath and D. Thurston Bordered Heegaard Floer homology



Bordered diagrams

Bordered Heegaard diagrams

o Let (5;,0f,.. 05 4B, .., Bg) be a Heegaard diagram for
a Y3 with bdy.

p2

- &

C
1
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Bordered diagrams

Bordered Heegaard diagrams

o Let (5;,0f,.. 05 4B, .., Bg) be a Heegaard diagram for
a Y3 with bdy.
o Let X' be result of surgering along af, ..., ag_,.
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Bordered diagrams

Bordered Heegaard diagrams

o Let (5;,0f,.. 05 4B, .., Bg) be a Heegaard diagram for
a Y3 with bdy.

o Let X' be result of surgering along af, ..., ag_,.

o Let of,..., a3, becircles in X'\ (new disks intersecting in

one point p, giving a basis for w1 (X’).

)
1
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Bordered diagrams

Bordered Heegaard diagrams

o Let (5;,0f,.. 05 4B, .., Bg) be a Heegaard diagram for
a Y3 with bdy.

o Let X' be result of surgering along af, ..., ag_,.

o Let of,..., a3, becircles in X'\ (new disks intersecting in
one point p, giving a basis for 71 (X’).

@ These give circles of,..., a5, in ¥.

<) &)

o i’

C
1
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Bordered diagrams

o Let ¥ =%\ Dc(p).

° X, of,... ,agfk,af, o O3y, 1, ..., Bg) is a bordered
Heegaard diagram for Y.
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Bordered diagrams

o Let ¥ =%\ Dc(p).

° X, of,... ,agfk,af, o O3y, 1, ..., Bg) is a bordered
Heegaard diagram for Y.

e Fix also z € ¥ near p.
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Bordered diagrams

A small circle near p looks like:
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A small circle near p looks like:
This is called a pointed matched circle Z.
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A small circle near p looks like:
This is called a pointed matched circle Z.
This corresponds to a handle decomposition of Y.
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Bordered diagrams

A small circle near p looks like:

This is called a pointed matched circle Z.

This corresponds to a handle decomposition of Y.
We will associate a dg algebra A(Z) to Z.
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The algebra

Where the algebra comes from.

e Decomposing ordinary (X, a, 3) into bordered H.D.’s
(X1,a1,8;) U (X2, a2, 3,), would want to consider
holomorphic curves crossing 0¥ 1 = 0%».

7 N —
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The algebra

Where the algebra comes from.

e Decomposing ordinary (X, a, 3) into bordered H.D.’s
(X1, a1,81) U (X2, a2,3,), would want to consider
holomorphic curves crossing 0¥ 1 = 0%».

@ This suggests the algebra should have to do with Reeb chords
in 0Y1 relative to a N 0% .

7 N —
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The algebra

Where the algebra comes from.

e Decomposing ordinary (X, a, 3) into bordered H.D.’s
(X1, a1,81) U (X2, a2,3,), would want to consider
holomorphic curves crossing 0¥ 1 = 0%».

@ This suggests the algebra should have to do with Reeb chords
in 0Y1 relative to a N 0% .

@ Analyzing some simple models, in terms of planar grid
diagrams, suggested the product and relations in the algebra.

7 N —
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The algebra

@ Let Z be a pointed matched circle, for a genus k surface.
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The algebra

@ Let Z be a pointed matched circle, for a genus k surface.

@ Primitive idempotents of A(Z) correspond to k-element
subsets | of the 2k pairs in Z.

@ We draw them like this:

<
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The algebra

e A pair (/,p), where p is a Reeb chord in Z\ z starting at /
specifies an algebra element a(/, p).

@ We draw them like this:

<
/ From:
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The algebra

More generally, given (/, p) where p = {p1,...,p¢} is a set of
Reeb chords starting at /, with:

@ i # j implies p; and p; start and end on different pairs.
e {starting points of p;’s} C /.

specifies an algebra element a(/, p).

<

From: +

These generate A(Z) over Fy.
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The algebra

That is, A(Z) is the subalgebra of the algebra of k-strand,
upward-veering flattened braids on 4k positions where:

@ no two start or end on the same pair

s
7 7

@ Algebra elements are fixed by “horizontal line swapping”.
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The algebra

Multiplication...

...Is concatenation if sensible, and zero otherwise.
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The algebra

Multiplication...

...Is concatenation if sensible, and zero otherwise.
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The algebra

Double crossings

We impose the relation

(double crossing) = 0.

eg.,

77 = =0
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The algebra

The differential

There is a differential d by
d(a) = Z smooth one crossing of a.

e.g.,

74 =

R. Lipshitz, P. Ozsvath and D. Thurston Bordered Heegaard Floer homology



The algebra

Where do all of these relations (and differential) come from?
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The algebra

Where do all of these relations (and differential) come from?

Studying degenerations of holomorphic curves.
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The algebra

Where do all of these relations (and differential) come from?

Studying degenerations of holomorphic curves.

They can all be deduced from some simple examples.
See arXiv:0810.0695.
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The algebra

Algebra — summary

@ The algebra is generated by the Reeb chords in Z, with
certain relations. e.g.,
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The algebra

Algebra — summary

@ The algebra is generated by the Reeb chords in Z, with
certain relations. e.g.,

e Multiplying consecutive Reeb chords concatenates them.
e Far apart Reeb chords commute.
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The algebra

Algebra — summary

@ The algebra is generated by the Reeb chords in Z, with
certain relations. e.g.,

e Multiplying consecutive Reeb chords concatenates them.
e Far apart Reeb chords commute.

@ The algebra is finite-dimensional over 5, and has a nice
description in terms of flattened braids.
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Cylindrical HF

The cylindrical setting for classical CF:

Fix an ordinary H.D. (¥4, c, 3, 2). (Here, a = {ov,...,045}.)
@ The chain complex CF is generated over [y by g-tuples
{xi € ag(iy NBi} CanpP. (o € Sg is a permutation.)

(cf. ToN Tg C Sym8(X).)

® Q)

Generators: {u, x},{v,x}.
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Cylindrical HF

The cylindrical setting for classical CF:

Fix an ordinary H.D. (¥4, c, 3, 2). (Here, a = {ov,...,05}.)

@ The chain complex CF is generated over F, by g-tuples
{xi € ag(iy N Bi} CanpP. (o €S, is a permutation.)

@ The differential counts embedded holomorphic maps
(5,05) = (Ex[0,]] xR, (ax1xR)U(B x0xR))

asymptotic to x x [0,1] at —oo and y X [0, 1] at +o0.

e For CF, curves may not intersect {z} x [0,1] x R.
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Cylindrical HF

Example of CF

Generators: {u, x}, {v, x}.

NHu,x} ={v,x} +{v,x} =0.
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Cylindrical HF

Example of CF

Generators: {u, x}, {v, x}.

Hu,x} ={v,x} +{v,x} =0.
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Cylindrical HF

Example of CF

-

® ®@

Generators: {u, x}, {v, x}.

Hu,x} ={v,x}{v,x} =0.
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Cylindrical HF

e For (X, ,f3,z) a bordered Heegaard diagram, view 0¥ as a
cylindrical end, p.
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Cylindrical HF

e For (X, ,f3,z) a bordered Heegaard diagram, view 0¥ as a
cylindrical end, p.

@ Maps
u: (5,05) - (Ex[0,1]] xR, (ax1xR)U(B x0xR))

have asymptotics at +00, —oo and the puncture p, i.e., east
00.
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Cylindrical HF

e For (X, ,f3,z) a bordered Heegaard diagram, view 0¥ as a
cylindrical end, p.

@ Maps
u: (5,05) - (Ex[0,1]] xR, (ax1xR)U(B x0xR))

have asymptotics at +00, —oo and the puncture p, i.e., east
00.

@ The eco asymptotics are Reeb chords p; x (1, t;).
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Cylindrical HF

For (¥,,3,z) a bordered Heegaard diagram, view 9% as a
cylindrical end, p.

@ Maps
u: (5,05) - (Ex[0,1]] xR, (ax1xR)U(B x0xR))

have asymptotics at +00, —oo and the puncture p, i.e., east
00.

The eco asymptotics are Reeb chords p; x (1, t;).

The asymptotics pj, ..., p;, of u inherit a partial order, by
R-coordinate.
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Generators of 6——3

Fix a bordered Heegaard diagram (X, o, 3, z)
fF\D(Z) is generated by g-tuples x = {x;} with:
@ one x; on each (-circle
@ one x; on each a-circle
@ no two x; on the same «-arc.
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Generators of 6——3

Fix a bordered Heegaard diagram (X, o, 3, z)
fF\D(Z) is generated by g-tuples x = {x;} with:
@ one x; on each (-circle
@ one x; on each a-circle
@ no two x; on the same «-arc.
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..and associated idempotents.

e To x, associate the idempotent /(x), the a-arcs not occupied
by x.

@ As a left A-module,
CFD = &y Al(x).
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..and associated idempotents.

e To x, associate the idempotent /(x), the a-arcs not occupied
by x.

o As a left A-module,
CFD = &, Al(x).
@ So, if | is a primitive idempotent, /x = 0 if | # /(x) and

I(x)x = x.
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The differential on fF\D

Z Z #M X,Y: P15 - ~-apn)) a(pl,l(x))---a(p,,,l,,)y.

(p17 7,0!1)
where M(x,y; p1,...,pn) consists of holomorphic curves
asymptotic to
@ x at —o©
@ y at +o00

@ p1,...,pn at eocc.
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Example D1: a solid torus.

[ ¥4
p3 b
x
P2 a
P1
) @

d(b) = a+ p3x
d(x) = p2a
d(a) = 0.
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Example D1: a solid torus.

[ ¥4

P3

P2 a

P1

¢

d(b) = a+ p3x
d(x) = pea
d(a) = 0.
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Example D1: a solid torus.

d(b) = a+ p3x
d(x) = pea
d(a) = 0.

R. Lipshitz, P. Ozsvath and D. Thurston

Bordered Heegaard Floer homology



Example D1: a solid torus.
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CFD

Example D2: same torus, different diagram.

[ ¥4

—9)
P1

¢ O

P3

P2

d(x) = pap3x = pa3x.
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CFD

Example D2: same torus, different diagram.

d(x) = pap3x = pa3x.
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Comparison of the two examples.

First chain complex:

¥

a
pai
X
Second chain complex:

P23

— X
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Comparison of the two examples.

First chain complex:
a
J/ \\li
p3
P2
X ——

P23
— X

b

Second chain complex:

They're homotopy equivalent. In fact:

If(X,a,8,2) and (X, a’, 3, 2") are pointed bordered Heegaard
diagrams for the same bordered Y3 then CFD(X) is homotopy
equivalent to CFD(Y').
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Generators and idempotents of CFA.

Fix a bordered Heegaard diagram (%, o, 3, z)
ﬁ(i) is generated by the same set as CFD: g-tuples x = {x;}
with:

@ one x; on each (-circle

@ one x; on each a-circle

@ no two x; on the same a-arc.
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Generators and idempotents of CFA.

Fix a bordered Heegaard diagram (%, o, 3, z)
ﬁ(i) is generated by the same set as CFD: g-tuples x = {x;}
with:

@ one x; on each (-circle

@ one x; on each a-circle

@ no two x; on the same a-arc.

Over [y, -
CFA = ¢, F,.
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Generators and idempotents of CFA.

Fix a bordered Heegaard diagram (%, o, 3, z)
ﬁ(i) is generated by the same set as CFD: g-tuples x = {x;}
with:

@ one x; on each (-circle

@ one x; on each a-circle

@ no two x; on the same a-arc.

Over [y, -
CFA = ¢, F,.

This is much smaller than a-_\D
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The differential on (,{54

...counts only holomorphic curves contained in a compact subset of
2, i.e., with no asymptotics at ecc.
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The module structure on (,/'F7\

e To x, associate the idempotent J(x), the a-arcs occupied by
x (opposite from CFD).
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The module structure on (,/'F7\

e To x, associate the idempotent J(x), the a-arcs occupied by
x (opposite from CFD).
@ For | a primitive idempotent, define

f x if I =J(x)
x’_{o if 1 4 J(x)
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The module structure on (,/'F7\

e To x, associate the idempotent J(x), the a-arcs occupied by
x (opposite from CFD).
@ For | a primitive idempotent, define

f x if I =J(x)
x’_{o if 1 4 J(x)

@ Given a set p of Reeb chords, define

x-a(J(x),p) = Y (#M(x,¥:p))y

y

where M(x,y; p) consists of holomorphic curves asymptotic
to

@ X at —oo.

e y at +o0.

e p at eoo, all at the same height.
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CFA

A local example of the module structure on CFA.

@ Consider the following piece of a Heegaard diagram, with
generators {r,x}, {s,x},{r,y},{s.y}.

y o0X
T
X

P1

S

r
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CFA

A local example of the module structure on CFA.

@ Consider the following piece of a Heegaard diagram, with

generators {r,x},{s,x},{r,y},{s,y}.
@ The nonzero products are: {r,x}p1 = {s, x},

{r,ytpr={s,y}, {r;xtps ={r,y}, {s,x}ps = {s,y},
{r,x}(p1p3) = {s.y}

y o0X
T
X

P1

S

r
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CFA

A local example of the module structure on CFA.

@ Consider the following piece of a Heegaard diagram, with

generators {r,x},{s,x},{r,y},{s,y}.
@ The nonzero products are: {r,x}p1 = {s, x},

{r,ytpr={s,y}, {r;xtps ={r,y}, {s,x}ps = {s,y},

{r.x}(p1p3) = {s.y}.
e Example: {r,x}p1 = {s, x} comes from this domain.

y oX
T
X

P1

S

r
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CFA

A local example of the module structure on CFA.

@ Consider the following piece of a Heegaard diagram, with

generators {r,x},{s,x},{r,y},{s,y}.
@ The nonzero products are: {r,x}p1 = {s, x},

{r,ytpr={s,y}, {r;xtps ={r,y}, {s,x}ps = {s,y},

{r.x}(p1p3) = {s.y}.
e Example: {r,x}p3 = {r,y} comes from this domain.

y o0X
D [
X

P1

S

r
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CFA

A local example of the module structure on CFA.

@ Consider the following piece of a Heegaard diagram, with

generators {r,x},{s,x},{r,y},{s,y}.
@ The nonzero products are: {r,x}p1 = {s, x},

{r,ytpr={s,y}, {r;xtps ={r,y}, {s,x}ps = {s,y},

{r.x}(p1p3) = {s,y}.
e Example: {r,x}(p1p3) = {s,y} comes from this domain.

y o0X
D [
X

P1

S

r
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Example Al: a solid torus.

A J
v P3
dics
U P2
P1
®—

d(u)=v
upp =1t
upaz = v
tpz = v.
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Example Al: a solid torus.

d(u)=v
upp =t
ap23 = v
tpz = v.
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Example Al: a solid torus.

du)=v
upp =t
ap23 = Vv
tpz = v.
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Example Al: a solid torus.

d(u)=v
upp =t
ap3 =V
tpz = v.
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Example Al: a solid torus.

apzz = Vv
tp3 =v.
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Why associativity should hold...

@ (x-pj)- pj counts curves with p; and p; infinitely far apart.

@ x - (pj - pj) counts curves with p; and p; at the same height.

@ These are ends of a 1-dimensional moduli space, with height
between p; and p; varying.

>P2 P2
01 P1pP2
>P1
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The local model again.

P3

P1

=S
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..and why it doesn't.

@ But this moduli space might have other ends: broken flows
with p; and p, at a fixed nonzero height.

P2
P2
>p1 gpl
P
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..and why it doesn't.

@ But this moduli space might have other ends: broken flows
with p; and p, at a fixed nonzero height.

@ These moduli spaces — M(x,y; (p1,p2)) — measure failure of
associativity. So...

P2
P2
>p1 gpl
P
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Higher A..-operations

Define

mpy1(x, a(py), - - -, a(pn)) = Z (#M(x,y; (p1:---2Pn)))Y

y
where M(x,y; (p1,--.,p,)) consists of holomorphic curves
asymptotic to

@ X at —oo.

@ y at +o00.

@ p; all at one height at eco, p, at some other (higher) height
at eoo, and so on.
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Example A2: same torus, different diagram.

P2

P1

o

m3(Xa p37p2) =X
m4(Xa ;03»,023,02) =X
ms(x, p3, p23, P23, P2) = X
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Example A2: same torus, different diagram.

m3(x’ P3, p2) =X
ma(x, p3, P23, p2) = X
ms (X, p3, p23, P23, P2) = X
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Comparison of the two examples.

First chain complex:

2(+p03)
% V

u
14+p23
m2(7p2)J/
X
Second chain complex:

m3(-,p3,02)+ma(-,p3,023,02)+ .-
X X
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Comparison of the two examples.

First chain complex:

u

1+4+p23
m2(7p2)J/
X

2(+p03)
% V

Second chain complex:

m3(-,p3,02)+ma(-,p3,023,02)+ .-
X X

They're Ao, homotopy equivalent (exercise).
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Comparison of the two examples.

First chain complex:

2(+p03)
% V

u
14+p23
m2(7p2)J/
X
Second chain complex:

m3(-,p3,02)+ma(-,p3,023,02)+ .-
X X

They're Ao, homotopy equivalent (exercise).
Suggestive remark:

(14 p23) 1 “="1+ po3 + paz, p23 + - ..
p3(L+ p23) 12 ="p3, p2 + p3, P23, p2 + - - ..
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CFA

In general:

If(X,a,8,2z) and (X,a/, 3, 2') are pointed bordered Heegaard
diagrams for the same bordered Y3 then CFA(X) is As-homotopy
equivalent to CFA(Y').
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Pairing
The pairing theorem

Recall:

IfoYr = F = —0Y5 then

C/'/\:(Yl Ug Yg) S @(YI)GBA(F)?F\D(YQ).

We'll illustrate this with three examples.
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1 ) (¥
u v P3 P3 b a
Hmy(,023) [ (ANl
u P2 P2 a )
—_ 2
x ma(+,p3) Y X >b
P1 P1

Generators of @(Yl) ®6—'B(Y2): URX, vRX, t®a, t® b.
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A [ ¥4
u v P3 P3 b a
1+my(-, ) >\ N
u P2 P2 a )
—_ 2
sz(wp3) Y X >b
P1 P1

Generators of EE‘\(Yl) ® EF\D(YQ): URX, VX, t®a, t® b.

dt@b)=t®a+t@mx=t@at+tpdx=t@a+vex
dudx)=vx+uR@ma=vRx+upRa=vex+txa
d(v®x)—v®p23—vp2®a—0

d(t®a) =
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20 ¥
u v P3 P3 b a
1+ma(-,023) ¢ [ (BN .
u P2 P2 a )
—_ 2
X o x—=b
P1 P1

Generators of EE‘\(Yl) ® EF\D(YQ): URX, VX, t®a, t® b.

dt@b)=t@a+tdmx=tRa+tpdx=t®at+vex
dudx)=vx+uR@ma=vRx+upRa=vRx+txa
d(v®x)—v®p23—vp2®a—0

d(t®a) =
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AN

Generators of EE‘\(Yl) ® EF\D(YQ): URX, VX, t®a, t® b.

dt@b)=t®a+tQ@px=tRa+tpdx=tRa+vex
dudx)=vx+uR@ma=vRx+upRa=vex+txa
d(v®x)—v®pza—vp2®a—0

d(t®a) =
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AN

Generators of EE‘\(Yl) ® fl‘-:B(YQ): URX, VX, t®a, t® b.

dt@b)=ta+tdmx=t@at+tp3@x=t@a+vex
dudx)=vx+uR@ma=vRx+upRa=vex+txa
d(v®x)—v®pza—vp2®a—0

d(t®a) =
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AN

Generators of EE‘\(Yl) ® fl‘-:B(YQ): URX, VX, t®a, t® b.

dt@b)=tRa+tdmx=t®at+tpdx=t®a+vx
dudx)=vx+uR@ma=vRx+upRa=vex+txa
d(v®x)—v®pza—vp2®a—0

d(t®a) =
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z® [ ¥
u v P3 P3 b 3
1 os) (N |
u P2 P2 a ,
—_— 2
x my(+,p3) v X > b
P1 P1

Generators of (,/"Eﬁ\(Yl) ®fF\D(Y2): URX, VRX, t®a, t® b.

dt@b)=tRa+tdmx=tRa+tps@x=tRa+vx
dudx)=vx+uR@ma=vRx+upRa=vRx+txa
d(v®x)—v®pga—vp2®a—0

d(t®a) =

This simplifies to Fo(t @ a+ u @ x) @ Fo(t @ b = v ® x).



zZ0 [ ¥

u v P3 P3
] Nt (B OP I
20,02 U d [72 ,02 X X

ma(-,p:
X —>V
P1 P1
® e e @

Generators of 5134( Y1) ® &B(Yz): u®x, vex.
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1 [ ¥
u U P3 P3
14+ma(+,p23) @ *********** 4@
my(-, t x P23
2( pz)l \ m P2 o X ——> X
ma(+,p3

X ——vV

P1 P1

® e e @

Generators of 51:74( Y1) ® fFB(Yg): U® X, v_ax.

dUuRX)=vRX+URpEx=vRX+up@x=vRx+vex=0.
d(v®x)=v®pxsx=vesx=0.

R. Lipshitz, P. Ozsvath and D. Thurston Bordered Heegaard Floer homology



Generators of EEZ\( Y1) ® fF\D(Yz): u®x, v x.

d(u®x):v®x+u®,023x:v®x+up23®x:v®x+v®x:0.
d(v®x) =Vv® pax =vps®x=0.

The most interesting part is the interaction:

| |

| | X

‘ L
u |

. p

|

v |

moy : X

v |

J v
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20 [ I
p3 P3 b 2
melpspate f ”””””””” @ " 1
) P2 P2 a
P2
X ——ph
P1 P1
@ e O

(t@ateb|d(t®a)=t®a+t®b=0, d(t®a)=0).
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20 [ I
p3 P3 b 2
melpspate f ”””””””” @ " 1
) P2 P2 a
P2
X ——ph
P1 P1
e N TR

(t@a,teb|dtewb)=t®Qa+t®a=0, d(tx®a)=0).
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m3(-,p3,02)+--
X —X

(t@ate®b|d(t®b)=t®a+t®a=0, d(tx®a)=D0).
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24

m3(-,p3,p2)+ - @7
X ——= X t

: [
(t@atob|dteob)=toa+t®a=0, d(t®a)=0).

| b
L P d
rr;3< | X
ti p2 —d

| 2
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24

m3(-,p3,p2)+ - @7
X ——= X t

: [
(t@atob|dteob)=toa+t®a=0, d(t®a)=0).

i b
b p3_ d
rr;3< | X
ti P2 d

| 2
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m3(-,p3,p2)+ -
X —> X

(t@atob|dtob)=toat+t®a=0, d(t®a)=0).

3 b
t, v
! P3 d
m3 | x
| P2 d
t, [
| ' a
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The surgery exact sequence

(Ozsvath-Szabd) For K a knot in Y there is an exact sequence

— HF(Yao(K)) — HF(Y_1(K)) — HF(Yo(K)) — HF(Yoo(K)) —
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The surgery exact sequence

Theorem

(Ozsvath-Szabd) For K a knot in Y there is an exact sequence

— HF(Yao(K)) — HF(Y_1(K)) — HF(Yo(K)) — HF(Yoo(K)) —

Proof via bordered Floer.
Define

T a

2] &, N
H_1:} b Ho:n n
o [0 5 p

r a

X
8

There/’s\a s.e.s. . -
0 — CFD(Hoo) — CFD(H_1) — CFD(Ho) — 0. u
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Is it the same sequence?

For
r a
| N
Heo H_1:} b Ho:n n
r a

P)= b + ma  B@)= & $(b) = pan
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Is it the same sequence?

For

r a
| 3, a1
Hoo : H_1:b b Ho:n n
LR v
r a

the maps are

o(r) = +  pea

) . ORI LR
SLESES

A version of the pairing theorem shows this gives the triangle map
on HF.
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@ The map in the surgery sequence is induced by a 2-handle
attachment W.
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@ The map in the surgery sequence is induced by a 2-handle
attachment W.

@ So, this map has a universal definition as a map between CFD
of solid tori.
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@ The map in the surgery sequence is induced by a 2-handle
attachment W.

@ So, this map has a universal definition as a map between CFD
of solid tori.

@ More generally, the map for attaching handles along a link is
given by a concrete map between CFD of handlebodies.
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