FOCK SPACE AS INTEGRAL OVER SPACES ON RANDOM CONFIGURATIONS (PATHS) AND NON-FOCK FACTORIZATIONS. (PARTIALLY WITH M.I.GRAEV)

A. M. VERSHIK (St.Petersburg)

$$
3 \text { мая } 2011 \text { г. }
$$

CONFERENCE "The VERSALITY OF INTEGRABILITY"

FOCK SPACE AS INTEGRAL OVER SPACES ON RANDOM CONFIGURATIONS (PATHS) AND NON-FOCK FACTORIZATIONS. (PARTIALLY WITH M.I.GRAEV)

A. M. VERSHIK (St.Petersburg)

$$
3 \text { мая } 2011 \text { г. }
$$

CONFERENCE "The VERSALITY OF INTEGRABILITY"
Celebrating of Igor Krichever's 60th Birthday COLUMBIA UNIVERSITY, 4-7 of May 2011, NEW-YORK

CONTENT

CONTENT

1. USUAL MODEL OF THE FOCK SPACE: CONTINUOUS TENSOR PRODUCT OF HILBERT SPACES OR ITO-WIENER SPACE OVER BROWNIAN MOTION.

CONTENT

1. USUAL MODEL OF THE FOCK SPACE: CONTINUOUS TENSOR PRODUCT OF HILBERT SPACES OR ITO-WIENER SPACE OVER BROWNIAN MOTION.
2.INTEGRAL MODEL OF FOCK SPACE, GENERALIZED LEBESGUE MEASURE IN INFINITE DIMENSIONAL SPACE AND INFINITE DIMENSIONAL CARTAN GROUP.

CONTENT

1. USUAL MODEL OF THE FOCK SPACE: CONTINUOUS TENSOR PRODUCT OF HILBERT SPACES OR ITO-WIENER SPACE OVER BROWNIAN MOTION.
2.INTEGRAL MODEL OF FOCK SPACE, GENERALIZED LEBESGUE MEASURE IN INFINITE DIMENSIONAL SPACE AND INFINITE DIMENSIONAL CARTAN GROUP.
3.INTEGRAL MODEL OF THE REPRESENTATIONS OF THE CURRENT GROUPS with coefficients in the semisimple groups of rank one: $O(n, 1)$ or $U(n, 1)$.

CONTENT

1. USUAL MODEL OF THE FOCK SPACE: CONTINUOUS TENSOR PRODUCT OF HILBERT SPACES OR ITO-WIENER SPACE OVER BROWNIAN MOTION.
2.INTEGRAL MODEL OF FOCK SPACE, GENERALIZED LEBESGUE MEASURE IN INFINITE DIMENSIONAL SPACE AND INFINITE DIMENSIONAL CARTAN GROUP.
3.INTEGRAL MODEL OF THE REPRESENTATIONS OF THE CURRENT GROUPS with coefficients in the semisimple groups of rank one: $O(n, 1)$ or $U(n, 1)$.
4.APPLICATION TO CURRENT GROUPS ON PARABOLIC SUBGROUPS OF RANK 1 ISOMORPHISM WITH OLD MODEL OF THE REPRESENTATION IN THE FOCK SPACE.

CONTENT

1. USUAL MODEL OF THE FOCK SPACE: CONTINUOUS TENSOR PRODUCT OF HILBERT SPACES OR ITO-WIENER SPACE OVER BROWNIAN MOTION.
2.INTEGRAL MODEL OF FOCK SPACE, GENERALIZED LEBESGUE MEASURE IN INFINITE DIMENSIONAL SPACE AND INFINITE DIMENSIONAL CARTAN GROUP.
3.INTEGRAL MODEL OF THE REPRESENTATIONS OF THE CURRENT GROUPS with coefficients in the semisimple groups of rank one: $O(n, 1)$ or $U(n, 1)$.
4.APPLICATION TO CURRENT GROUPS ON PARABOLIC SUBGROUPS OF RANK 1 ISOMORPHISM WITH OLD MODEL OF THE REPRESENTATION IN THE FOCK SPACE. 5.NON-FOCK FACTORIZATIONS - BLACK NOISE. 0-DIMENSION (VOTING) MODEL; 1-2 DIMENSIONAL EXAMPLES.

CANONICAL MODEL: EXP

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space.

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space. Fock space:

$$
\mathcal{H}=\sum_{k=0}^{\infty} H_{s y m}^{\otimes k}=E X P H
$$

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space. Fock space:

$$
\mathcal{H}=\sum_{k=0}^{\infty} H_{s y m}^{\otimes k}=E X P H
$$

Suppose that K is another Hilbert space; X is manifold with measure $d x$; if

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space. Fock space:

$$
\mathcal{H}=\sum_{k=0}^{\infty} H_{s y m}^{\otimes k}=E X P H
$$

Suppose that K is another Hilbert space; X is manifold with measure $d x$; if

$$
H=L^{2}(X ; K) \equiv L^{2}(X) \bigotimes K \equiv \int_{X}^{\oplus} K_{x} d x ; \quad K_{x} \sim K
$$

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space. Fock space:

$$
\mathcal{H}=\sum_{k=0}^{\infty} H_{s y m}^{\otimes k}=E X P H
$$

Suppose that K is another Hilbert space; X is manifold with measure $d x$; if

$$
H=L^{2}(X ; K) \equiv L^{2}(X) \bigotimes K \equiv \int_{X}^{\oplus} K_{x} d x ; \quad K_{x} \sim K
$$

then we can write (using multiplicative property of EXP):

$$
\mathcal{H}=E X P\left\{\int_{X}^{\oplus} K_{x} d x\right\} \equiv \int_{X}^{\otimes} K_{x} d x
$$

CANONICAL MODEL: EXP

Let X is a manifold with measure $m ; H$ is an auxiliary Hilbert space. Fock space:

$$
\mathcal{H}=\sum_{k=0}^{\infty} H_{s y m}^{\otimes k}=E X P H
$$

Suppose that K is another Hilbert space; X is manifold with measure $d x$; if

$$
H=L^{2}(X ; K) \equiv L^{2}(X) \bigotimes K \equiv \int_{X}^{\oplus} K_{x} d x ; \quad K_{x} \sim K
$$

then we can write (using multiplicative property of EXP):

$$
\mathcal{H}=\operatorname{EXP}\left\{\int_{X}^{\oplus} K_{x} d x\right\} \equiv \int_{X}^{\otimes} K_{x} d x
$$

BY DEFINITION this is a continuous tensor product of the Hilbert spaces.

WIENER-ITO OF FOCK SPACE; ARAKI-GGV MODEL OF REPRESENTATIONS

WIENER-ITO OF FOCK SPACE; ARAKI-GGV MODEL OF REPRESENTATIONS
$\operatorname{EXPL}^{2}(X ; K)=\mathcal{L}^{2}(S(X) ; \nu)$,

WIENER-ITO OF FOCK SPACE; ARAKI-GGV MODEL OF REPRESENTATIONS

$$
E X P L^{2}(X ; K)=\mathcal{L}^{2}(S(X) ; \nu)
$$

where right side is L^{2} over white noise (gaussian) law ν (for 1-dimensional case - derivative of the brownian motion). many-particles decomposition, creation and annihilation operators, product-vectors etc.

The notion of FACTORIZATION

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:

$$
X=\biguplus_{k=1}^{r} X_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]
$$

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:
$X=\biguplus_{k=1}^{r} X_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]$
Conditions: continuity for monotonic up and down etc.

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:
$X=\biguplus_{k=1}^{r} X_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]$
Conditions: continuity for monotonic up and down etc. Fock factorization:
The Notion of product-vector or vacuum vector:

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:
$X=\biguplus_{k=1}^{r} X_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]$
Conditions: continuity for monotonic up and down etc. Fock factorization:
The Notion of product-vector or vacuum vector:
Let $h \in H$, define element exph \mathcal{H}.

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:

$$
X=\biguplus_{k=1}^{r} x_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]
$$

Conditions: continuity for monotonic up and down etc. Fock factorization:
The Notion of product-vector or vacuum vector:
Let $h \in H$, define element exph \mathcal{H}.

$$
\operatorname{exph}=\sum_{k=0}^{\infty} \frac{h^{\otimes k}}{\sqrt{k!}} .
$$

Product vectors or vacuum vectors with respect to given factorization:

The notion of FACTORIZATION

\mathcal{H} is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions of operator algebra onto subalgebras, corresponding to the partitions:

$$
X=\biguplus_{k=1}^{r} x_{k} ; \quad X_{k} \bigcap X_{k^{\prime}}=\emptyset\left(k \neq k^{\prime}\right) \quad \Rightarrow E N D[\mathcal{H}]=\bigotimes_{k=1}^{r} E N D\left[\mathcal{H}_{k}\right]
$$

Conditions: continuity for monotonic up and down etc. Fock factorization:
The Notion of product-vector or vacuum vector:
Let $h \in H$, define element exph \mathcal{H}.

$$
\operatorname{exph}=\sum_{k=0}^{\infty} \frac{h^{\otimes k}}{\sqrt{k!}} .
$$

Product vectors or vacuum vectors with respect to given factorization:

Araki-Woods theorem (1964) and Various Model of Fock Factorization

Araki-Woods theorem (1964) and Various Model of Fock

 FactorizationTheorem
Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.

Araki-Woods theorem (1964) and Various Model of Fock Factorization

Theorem
Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.

Corollary
(Feldman, Tsilevich-V)
Let $L^{2}(S(M) ; \mu)$ where μ is a law of Levy process on the space $S(M)$ of Schwartz distributions on the manyfold M with natural factorization is Fock factorization. The vacuum vectors are multiplicative functionals $\xi \mapsto \exp \left\{\int \xi(x) d F(x)\right\}$

Araki-Woods theorem (1964) and Various Model of Fock

Factorization

Theorem
Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.

Corollary
(Feldman, Tsilevich-V)
Let $L^{2}(S(M) ; \mu)$ where μ is a law of Levy process on the space $S(M)$ of Schwartz distributions on the manyfold M with natural factorization is Fock factorization. The vacuum vectors are multiplicative functionals $\xi \mapsto \exp \left\{\int \xi(x) d F(x)\right\}$
One-particle subspace is a space of additive (linear) functional on the process,
Probabilistic model of Fock space is the space L^{2} not over white noise (Ito-Wiener space over X) but other Levy measures.

Araki-Woods theorem (1964) and Various Model of Fock

Factorization

Theorem

Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.
Corollary
(Feldman, Tsilevich-V)
Let $L^{2}(S(M) ; \mu)$ where μ is a law of Levy process on the space $S(M)$ of Schwartz distributions on the manyfold M with natural factorization is Fock factorization. The vacuum vectors are multiplicative functionals $\xi \mapsto \exp \left\{\int \xi(x) d F(x)\right\}$
One-particle subspace is a space of additive (linear) functional on the process,
Probabilistic model of Fock space is the space L^{2} not over white noise (Ito-Wiener space over X) but other Levy measures.
Examples: Poisson process; isomorphism of it with Fock space
(Gel'fand-Graev-Vershik; Neretin); gamma process
(Tsilevich-Yor-V) etc.

Araki-Woods theorem (1964) and Various Model of Fock

Factorization

Theorem

Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.
Corollary
(Feldman, Tsilevich-V)
Let $L^{2}(S(M) ; \mu)$ where μ is a law of Levy process on the space $S(M)$ of Schwartz distributions on the manyfold M with natural factorization is Fock factorization. The vacuum vectors are multiplicative functionals $\xi \mapsto \exp \left\{\int \xi(x) d F(x)\right\}$
One-particle subspace is a space of additive (linear) functional on the process,
Probabilistic model of Fock space is the space L^{2} not over white noise (Ito-Wiener space over X) but other Levy measures.
Examples: Poisson process; isomorphism of it with Fock space
(Gel'fand-Graev-Vershik; Neretin); gamma process
(Tsilevich-Yor-V) etc.

Araki-Woods theorem (1964) and Various Model of Fock

Factorization

Theorem

Necessary and sufficiently condition on factorization to be Fock factorization is there are total set of product vectors.
Corollary
(Feldman, Tsilevich-V)
Let $L^{2}(S(M) ; \mu)$ where μ is a law of Levy process on the space $S(M)$ of Schwartz distributions on the manyfold M with natural factorization is Fock factorization. The vacuum vectors are multiplicative functionals $\xi \mapsto \exp \left\{\int \xi(x) d F(x)\right\}$
One-particle subspace is a space of additive (linear) functional on the process,
Probabilistic model of Fock space is the space L^{2} not over white noise (Ito-Wiener space over X) but other Levy measures.
Examples: Poisson process; isomorphism of it with Fock space
(Gel'fand-Graev-Vershik; Neretin); gamma process
(Tsilevich-Yor-V) etc.

"Integral model"of bosonic Fock space

"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)

"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)

Define the cone \mathcal{K} is the cone of all the finite discrete measures on X :

$$
\mathcal{K}(X)=\{\gamma\} ; \gamma=\left\{x_{s}, c_{s}\right\}_{s=1}^{\infty}=\sum_{s} c_{s} \delta_{x_{s}}
$$

here

"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)

Define the cone \mathcal{K} is the cone of all the finite discrete measures on X :

$$
\mathcal{K}(X)=\{\gamma\} ; \gamma=\left\{x_{s}, c_{s}\right\}_{s=1}^{\infty}=\sum_{s} c_{s} \delta_{x_{s}}
$$

here $c_{1} \geq, c_{2}, \geq \ldots \geq 0 ; \quad \sum_{s} c_{s}<\infty ; \quad x_{s} \in X$.

"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)

Define the cone \mathcal{K} is the cone of all the finite discrete measures on X :

$$
\mathcal{K}(X)=\{\gamma\} ; \gamma=\left\{x_{s}, c_{s}\right\}_{s=1}^{\infty}=\sum_{s} c_{s} \delta_{x_{s}}
$$

here $c_{1} \geq, c_{2}, \geq \ldots \geq 0 ; \quad \sum_{s} c_{s}<\infty ; \quad x_{s} \in X$.
Define a new Hilbert space:

$$
\mathcal{H}=\int_{\gamma \in C(X)} \bigotimes_{s=1}^{\infty} H_{x_{s}, c_{s}} d \mathcal{L}(\gamma)
$$

"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)

Define the cone \mathcal{K} is the cone of all the finite discrete measures on X :

$$
\mathcal{K}(X)=\{\gamma\} ; \gamma=\left\{x_{s}, c_{s}\right\}_{s=1}^{\infty}=\sum_{s} c_{s} \delta_{x_{s}}
$$

here $c_{1} \geq, c_{2}, \geq \ldots \geq 0 ; \quad \sum_{s} c_{s}<\infty ; \quad x_{s} \in X$.
Define a new Hilbert space:

$$
\mathcal{H}=\int_{\gamma \in C(X)} \bigotimes_{s=1}^{\infty} H_{x_{s}, c_{s}} d \mathcal{L}(\gamma)
$$

Here we use only countable tensor product and integration over the space of configurations.

Definition of the measure \mathcal{L} through Laplace Transform

Definition of the measure \mathcal{L} through Laplace Transform

Laplace transform of a measure:

$$
\int_{\mathcal{K}} \exp \{-<f, \gamma>\} d \mathcal{L}_{\theta}(\gamma)=\exp \left\{-\theta \int_{X} \ln f(x) d m(x)\right\}
$$

Definition of the measure \mathcal{L} through Laplace Transform

Laplace transform of a measure:

$$
\int_{\mathcal{K}} \exp \{-<f, \gamma>\} d \mathcal{L}_{\theta}(\gamma)=\exp \left\{-\theta \int_{X} \ln f(x) d m(x)\right\}
$$

here $f(x)>$ 0a.e., $\quad<f, \gamma>=\int_{X} f(x) \gamma(x) d m(x) \equiv \sum_{s} f\left(x_{s}\right) c_{s}$

Definition of the measure \mathcal{L} through Laplace Transform

Laplace transform of a measure:

$$
\int_{\mathcal{K}} \exp \{-<f, \gamma>\} d \mathcal{L}_{\theta}(\gamma)=\exp \left\{-\theta \int_{X} \ln f(x) d m(x)\right\}
$$

here $f(x)>0$ a.e., $\quad<f, \gamma>=\int_{X} f(x) \gamma(x) d m(x) \equiv \sum_{s} f\left(x_{s}\right) c_{s}$ $\theta>0$;
For theta $=1$ we called the measure \mathcal{L} generalized infinite dimensional Lebesgue or stable measure

Fundamental property of the Measure \mathcal{L}_{θ}

Fundamental property of the Measure \mathcal{L}_{θ} Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Fundamental property of the Measure \mathcal{L}_{θ} Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

Fundamental property of the Measure \mathcal{L}_{θ} Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

$$
M_{a}(\gamma)=M_{a}\left(\sum c_{s} \delta_{x_{s}}\right)=\sum c_{s} a\left(x_{s}\right) \delta_{x_{s}}
$$

Fundamental property of the Measure \mathcal{L}_{θ}

Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

$$
M_{a}(\gamma)=M_{a}\left(\sum c_{s} \delta_{x_{s}}\right)=\sum c_{s} a\left(x_{s}\right) \delta_{\chi_{s}}
$$

Theorem
There exist a unique measure (sigma-finite) on the space of Schwartz's distribution \mathcal{L}_{θ} such that for any measurable B

$$
\text { 1. } \mathcal{L}_{\theta}\left(M_{a} B\right)=\mathcal{L}_{\theta}(B)
$$

Fundamental property of the Measure \mathcal{L}_{θ}

Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

$$
M_{a}(\gamma)=M_{a}\left(\sum c_{s} \delta_{x_{s}}\right)=\sum c_{s} a\left(x_{s}\right) \delta_{\chi_{s}}
$$

Theorem
There exist a unique measure (sigma-finite) on the space of Schwartz's distribution \mathcal{L}_{θ} such that for any measurable B

$$
\text { 1. } \mathcal{L}_{\theta}\left(M_{a} B\right)=\mathcal{L}_{\theta}(B)
$$

(invariance)

Fundamental property of the Measure \mathcal{L}_{θ}

Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

$$
M_{a}(\gamma)=M_{a}\left(\sum c_{s} \delta_{x_{s}}\right)=\sum c_{s} a\left(x_{s}\right) \delta_{\chi_{s}}
$$

Theorem
There exist a unique measure (sigma-finite) on the space of Schwartz's distribution \mathcal{L}_{θ} such that for any measurable B

$$
\text { 1. } \mathcal{L}_{\theta}\left(M_{a} B\right)=\mathcal{L}_{\theta}(B)
$$

(invariance)

$$
\text { 2.a(.) } \equiv c ; \mathcal{L}_{\theta}(c B)=c^{\theta} \mathcal{L}_{\theta}(B)
$$

Fundamental property of the Measure \mathcal{L}_{θ}

Infinite dimensional Cartan group:

$$
\mathcal{M}=\left\{a(.): \int_{X} \ln a(x) d x=0 \quad a(x) \geq 0\right\}
$$

Action on \mathcal{K} :

$$
M_{a}(\gamma)=M_{a}\left(\sum c_{s} \delta_{x_{s}}\right)=\sum c_{s} a\left(x_{s}\right) \delta_{\chi_{s}}
$$

Theorem
There exist a unique measure (sigma-finite) on the space of Schwartz's distribution \mathcal{L}_{θ} such that for any measurable B

$$
\text { 1. } \mathcal{L}_{\theta}\left(M_{a} B\right)=\mathcal{L}_{\theta}(B)
$$

(invariance)

$$
\text { 2.a(.) } \equiv c ; \mathcal{L}_{\theta}(c B)=c^{\theta} \mathcal{L}_{\theta}(B)
$$

(homogeneity)

Group of the coefficients and its representations.

Group of the coefficients and its representations.

Let G is group of type $\mathbb{R}^{*}<G_{0}\left(\mathbb{R}^{*}=\mathbb{R}_{+}\right)$

Group of the coefficients and its representations.

Let G is group of type $\mathbb{R}^{*} \curlywedge G_{0}\left(\mathbb{R}^{*}=\mathbb{R}_{+}\right)$
Let also $\pi_{r}, r \in \mathbb{R}^{*}$ is a unitary representation of the group G_{0} in the Hilbert space K_{r}.

Group of the coefficients and its representations.

Let G is group of type $\mathbb{R}^{*}<G_{0}\left(\mathbb{R}^{*}=\mathbb{R}_{+}\right)$
Let also $\pi_{r}, r \in \mathbb{R}^{*}$ is a unitary representation of the group G_{0} in the Hilbert space K_{r}.
Suppose that for different r representations π_{r} are NOT equivalent but are equivariant: there exist ISOMETRY $T_{r}: K_{r} \rightarrow K_{1}$ such that:

Group of the coefficients and its representations.

Let G is group of type $\mathbb{R}^{*}<G_{0}\left(\mathbb{R}^{*}=\mathbb{R}_{+}\right)$
Let also $\pi_{r}, r \in \mathbb{R}^{*}$ is a unitary representation of the group G_{0} in the Hilbert space K_{r}.
Suppose that for different r representations π_{r} are NOT equivalent but are equivariant: there exist ISOMETRY $T_{r}: K_{r} \rightarrow K_{1}$ such that:

$$
\pi_{r}(.)=\pi_{1}\left(T_{r .}\right)
$$

Group of the coefficients and its representations.

Let G is group of type $\mathbb{R}^{*}<G_{0}\left(\mathbb{R}^{*}=\mathbb{R}_{+}\right)$
Let also $\pi_{r}, r \in \mathbb{R}^{*}$ is a unitary representation of the group G_{0} in the Hilbert space K_{r}.
Suppose that for different r representations π_{r} are NOT equivalent but are equivariant: there exist ISOMETRY $T_{r}: K_{r} \rightarrow K_{1}$ such that:

$$
\pi_{r}(.)=\pi_{1}\left(T_{r .}\right)
$$

When $r \rightarrow 0$ representation $\pi_{r} \rightarrow I d$ - tends to identity representation.

Representation of the current group

Representation of the current group

Define the current group of the bounded measurable functions on the manifold X with values in G :

$$
G^{X}=\{x \mapsto g(x) \in G\}
$$

with point-wise multiplications.

Construction of the representation of the current group

Construction of the representation of the current group

STEP 1. Choose trajectory (=configuration)
$\gamma=\sum c_{s} \delta_{\chi_{s}} ; \quad \sum_{s} c_{s}<\infty \quad c_{1} \geq \cdots \geq 0$

Construction of the representation of the current group

STEP 1. Choose trajectory (=configuration)
$\gamma=\sum c_{s} \delta_{x_{s}} ; \quad \sum_{s} c_{s}<\infty \quad c_{1} \geq \cdots \geq 0$ For each γ define a Hilbert space which is countable tensor product of $\otimes_{s} K_{c_{s}}$ in which we have presentation of $\times_{x_{s}} G_{0}$.

Construction of the representation of the current group

STEP 1. Choose trajectory(=configuration)
$\gamma=\sum c_{s} \delta_{x_{s}} ; \quad \sum_{s} c_{s}<\infty \quad c_{1} \geq \cdots \geq 0$ For each γ define a Hilbert space which is countable tensor product of $\otimes_{s} K_{c_{s}}$ in which we have presentation of $\times_{x_{s}} G_{0}$. Consider the numbers $c_{s}>0$ and define the COUNTABLE tensor product $\otimes_{s} K_{c_{s}}$

Construction of the representation of the current group

STEP 1. Choose trajectory(=configuration)
$\gamma=\sum c_{s} \delta_{x_{s}} ; \quad \sum_{s} c_{s}<\infty \quad c_{1} \geq \cdots \geq 0$ For each γ define a Hilbert space which is countable tensor product of $\otimes_{s} K_{c_{s}}$ in which we have presentation of $\times_{x_{s}} G_{0}$. Consider the numbers $c_{s}>0$ and define the COUNTABLE tensor product $\otimes_{s} K_{c_{s}}$ Let current $g(x) \in G_{O}, x \in X$

Construction of the representation of the current group

STEP 1. Choose trajectory(=configuration)
$\gamma=\sum c_{s} \delta_{x_{s}} ; \quad \sum_{s} c_{s}<\infty \quad c_{1} \geq \cdots \geq 0$ For each γ define a Hilbert space which is countable tensor product of $\bigotimes_{s} K_{c_{s}}$ in which we have presentation of $\times_{x_{s}} G_{0}$. Consider the numbers $c_{s}>0$ and define the COUNTABLE tensor product $\otimes_{s} K_{c_{s}}$ Let current $g(x) \in G_{O}, x \in X$
Now we correspond to the configuration γ and current $g($.$) the$ operator in the space $\otimes_{s} K_{c_{s}}$:

$$
\Pi_{\gamma}(g(.))=\bigotimes_{s} \pi_{c_{s}} g\left(x_{s}\right)
$$

Construction of the representation of the current group

Construction of the representation of the current group

STEP 2. The element of the group $\mathbb{R}^{* X} \ni r(x)$ change the charges of

Construction of the representation of the current group

STEP 2. The element of the group $\mathbb{R}^{* X} \ni r(x)$ change the charges of

$$
\gamma=\sum c_{s} \delta_{x_{s}} \mapsto \sum r\left(x_{s}\right) c_{s} \delta_{x_{s}}
$$

Construction of the representation of the current group

STEP 2. The element of the group $\mathbb{R}^{* X} \ni r(x)$ change the charges of

$$
\gamma=\sum c_{s} \delta_{x_{s}} \mapsto \sum r\left(x_{s}\right) c_{s} \delta_{x_{s}}
$$

So tensor products $\bigotimes_{s} K_{c_{s}}$ over configuration γ goes to tensor product $\bigotimes_{s} K_{r\left(x_{s}\right) c_{s}}$ over configuration of $\gamma^{r}().($.$) , consequently we$ change operators $\Pi_{\gamma}(g()$.$) of representations \bigotimes_{s} \pi_{c_{s}}$ in the space $\bigotimes_{s} K_{c_{s}}$ onto operators $\Pi_{\gamma^{r}(.)}(g()$.$) .$

Construction of the representation of the current group

STEP 2. The element of the group $\mathbb{R}^{* X} \ni r(x)$ change the charges of

$$
\gamma=\sum c_{s} \delta_{x_{s}} \mapsto \sum r\left(x_{s}\right) c_{s} \delta_{x_{s}}
$$

So tensor products $\bigotimes_{s} K_{c_{s}}$ over configuration γ goes to tensor product $\bigotimes_{s} K_{r\left(x_{s}\right) c_{s}}$ over configuration of $\gamma^{r}().($.$) , consequently we$ change operators $\Pi_{\gamma}(g()$.$) of representations \bigotimes_{s} \pi_{c_{s}}$ in the space $\bigotimes_{s} K_{c_{s}}$ onto operators $\Pi_{\gamma^{r}(.)}(g()$.$) . This is possible because of$ equivariance of representations of π_{r}.

Integration

Integration

STEP 3.

Integration

STEP 3. Now we can integrate over all configurations γ over generalize Lebesgue measure \mathcal{L} :

$$
\mathcal{H}=\int_{\gamma \in \mathcal{K}(X)} \bigotimes_{s=1}^{\infty} K_{x_{s}, c_{s}} d \mathcal{L}(\gamma)
$$

IMPORTANT. Measure \mathcal{L} is invariant with respect to multiplication on $r(x)$ iff $\int \ln r(x)=0$.
We obtain the representation Π of the group G^{X}.
Theorem
The representation Π is irreducible.
Доказательство.
The group $\mathbb{R}^{* X}$ has ergodic action on $\mathcal{K}(X)$.

Example: $O(n, 1), U(n, 1)$ and parabolic its subgroups.

Example: $O(n, 1), U(n, 1)$ and parabolic its subgroups.

Maximal parabolic subgroup $P \subset O(n, 1)$ is isomorphic to the group of triples

$$
(r, u, c), \quad \text { where } \quad r \in \mathbb{R}^{*}, \quad u \in O(n-1), \quad c \in \mathbb{R}^{n-1}
$$

Example: $O(n, 1), U(n, 1)$ and parabolic its subgroups.

Maximal parabolic subgroup $P \subset O(n, 1)$ is isomorphic to the group of triples

$$
(r, u, c), \quad \text { where } \quad r \in \mathbb{R}^{*}, \quad u \in O(n-1), \quad c \in \mathbb{R}^{n-1}
$$

with multiplication

$$
\left(r_{1}, u_{1} c_{1}\right)\left(r_{2}, u_{2}, c_{2}\right)=\left(r_{1} r_{2}, u_{1} u_{2}, c_{1}+r c_{2} u\right)
$$

So this group P is semisimple product

$$
P=\mathbb{R}^{*} \curlywedge P_{0}, \quad \text { where } \quad P_{0}=O(n-1) \curlywedge \mathbb{R}^{n-1}
$$

and elements $r \in \mathbb{R}^{*}$ acts on P_{0} as the automorphisms $(u, c) \mapsto(u, c)^{r}=(u, r c)$.

Extension on $O(n, 1), U(n, 1)$

Extension on $O(n, 1), U(n, 1)$

Theorem
Consider $K_{r}=L^{2}\left(B_{r}\right)$, where B_{r} is Euclidean of the radius r with usual representation π_{r} of the motion group $P_{0}=M_{n-1}$. Then the construction above gives the unitary representation of the current group P^{X} of the bounded measurable functions on the manifold X with values in the parabolic group P, and this representation naturally extends onto current group $O(n, 1)^{X}$.

Extension on $O(n, 1), U(n, 1)$

Theorem
Consider $K_{r}=L^{2}\left(B_{r}\right)$, where B_{r} is Euclidean of the radius r with usual representation π_{r} of the motion group $P_{0}=M_{n-1}$. Then the construction above gives the unitary representation of the current group P^{X} of the bounded measurable functions on the manifold X with values in the parabolic group P, and this representation naturally extends onto current group $O(n, 1)^{X}$. The case of the group $U(n, 1)$ is similar.

Non-Fock Factorization and Black Noise.

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product
(=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product
(=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")
Examples for $\mathrm{d}=0, \mathrm{~d}=1$.

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product
(=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")
Examples for $\mathrm{d}=0, \mathrm{~d}=1$. A.Versik \& B.Tsirel'son (1998),

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product (=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")
Examples for $\mathrm{d}=0, \mathrm{~d}=1$. A.Versik \& B.Tsirel'son (1998), $\mathrm{d}=2$: S.Smirnov-O.Schramm (2009). (Percolation model)

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product (=vacuum) vectors (or with rare set of its). ("Extremely Non-Additive conjunction")
Examples for $\mathrm{d}=0, \mathrm{~d}=1$. A.Versik \& B.Tsirel'son (1998), $\mathrm{d}=2$: S.Smirnov-O.Schramm (2009). (Percolation model) $d=0$-The simplest (zero-dimensional) example:

Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product (=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")
Examples for $\mathrm{d}=0, \mathrm{~d}=1$. A.Versik \& B.Tsirel'son (1998), $\mathrm{d}=2$: S.Smirnov-O.Schramm (2009). (Percolation model)
$d=0$-The simplest (zero-dimensional) example:
A CANTOR set $X=\prod_{1}^{\infty}\{0,1,2\}$ - the set of the infinite path in the triadic tree \mathbb{T}_{3} with one root.

Election by majority

Election by majority

The Hilbert space is $\mathcal{H}=Ł^{2}(X)$ with a measure μ.

$$
\mathcal{H}=\lim _{\leftarrow}\left\{\left(\mathbb{C}^{2}\right)^{\otimes 3^{n}}, \psi_{n}\right\}
$$

Election by majority

The Hilbert space is $\mathcal{H}=Ł^{2}(X)$ with a measure μ.

$$
\mathcal{H}=\lim _{\leftarrow}\left\{\left(\mathbb{C}^{2}\right)^{\otimes 3^{n}}, \psi_{n}\right\}
$$

The imbedding

$$
\psi_{n}: H_{n}=\mathbb{C}^{2^{3^{n-1}}} \rightarrow H_{n+1}=\mathbb{C}^{2^{3^{n}}}, n=1, \ldots
$$

is tensor product of one imbedding $(n=1)$

Election by majority

The Hilbert space is $\mathcal{H}=Ł^{2}(X)$ with a measure μ.

$$
\mathcal{H}=\lim _{\leftarrow}\left\{\left(\mathbb{C}^{2}\right)^{\otimes 3^{n}}, \psi_{n}\right\}
$$

The imbedding

$$
\psi_{n}: H_{n}=\mathbb{C}^{2^{3^{n-1}}} \rightarrow H_{n+1}=\mathbb{C}^{2^{3^{n}}}, n=1, \ldots
$$

is tensor product of one imbedding $(n=1)$

$$
\psi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{8}
$$

Formulas

The map ψ is linear map corresponded to map $2->8\left(8=2^{3}\right)$:

Formulas

The map ψ is linear map corresponded to map $2->8\left(8=2^{3}\right)$: Basis in $\mathbb{C}^{2}-e_{1}, e_{2}$, in $\mathbb{C}^{8}-e^{1} \ldots e^{8}$.

Formulas

The map ψ is linear map corresponded to map $2->8\left(8=2^{3}\right)$:
Basis in $\mathbb{C}^{2}-e_{1}, e_{2}$, in $\mathbb{C}^{8}-e^{1} \ldots e^{8}$. Each vertex of cube corresponds to vector of basis:

$$
\begin{aligned}
& e_{1} \sim(0), e_{2} \sim(1) ; e^{1} \sim(0,0,0), e^{2} \sim(1,0,0), e^{3} \sim(0,1, O), e^{4} \sim(0,0,1 \\
& e^{5} \sim(1,1,0), e^{6} \sim(1,0,1), e^{7} \sim(0,1,1), e^{8} \sim(1,1,1) \\
& f\left(e^{1}\right)=f\left(e^{2}\right)=f\left(e^{3}\right)=f\left(e^{4}\right)=e_{1} \quad f\left(e^{5}\right)=f\left(e^{6}\right)=f\left(e^{7}\right)=f\left(e^{8}\right)= \\
& \quad \psi\left(e_{1}\right)=e^{1}+\ldots+e^{4} ; \quad \psi\left(e_{2}\right)=e^{5}+. .+e^{8}
\end{aligned}
$$

Formulas

The map ψ is linear map corresponded to map $2->8\left(8=2^{3}\right)$:
Basis in $\mathbb{C}^{2}-e_{1}, e_{2}$, in $\mathbb{C}^{8}-e^{1} \ldots e^{8}$. Each vertex of cube corresponds to vector of basis:

$$
\begin{aligned}
& e_{1} \sim(0), e_{2} \sim(1) ; e^{1} \sim(0,0,0), e^{2} \sim(1,0,0), e^{3} \sim(0,1, O), e^{4} \sim(0,0,1 \\
& e^{5} \sim(1,1,0), e^{6} \sim(1,0,1), e^{7} \sim(0,1,1), e^{8} \sim(1,1,1) \\
& f\left(e^{1}\right)=f\left(e^{2}\right)=f\left(e^{3}\right)=f\left(e^{4}\right)=e_{1} \quad f\left(e^{5}\right)=f\left(e^{6}\right)=f\left(e^{7}\right)=f\left(e^{8}\right)= \\
& \quad \psi\left(e_{1}\right)=e^{1}+\ldots+e^{4} ; \quad \psi\left(e_{2}\right)=e^{5}+. .+e^{8}
\end{aligned}
$$

Theorem

The factorization of the L^{2} by cylindric sets over space of the pathes of triadic tree has no product vectors besides constant and consequently defines a Non-Fock factorization.
Discussion.

References

A.Vershik, N.Tsilevich. Fock factorizations and L^{2} over Levy processes. Russian Math. Survey 2003.

References

A.Vershik, N.Tsilevich. Fock factorizations and L^{2} over Levy processes. Russian Math. Survey 2003.
A.Vershik. Does Infinite dimensional Lebesgue measure exist. Proceeding of Steklov Institute. 2007.

References

A.Vershik, N.Tsilevich. Fock factorizations and L^{2} over Levy processes. Russian Math. Survey 2003.
A.Vershik. Does Infinite dimensional Lebesgue measure exist. Proceeding of Steklov Institute. 2007.
A.Vershik, M.Graev. Integral Model of the Representations on the current groups. Russian Math. Survey. 2008 Funct. Anal. 2009-10.

References

A.Vershik, N.Tsilevich. Fock factorizations and L^{2} over Levy processes. Russian Math. Survey 2003.
A.Vershik. Does Infinite dimensional Lebesgue measure exist. Proceeding of Steklov Institute. 2007.
A.Vershik, M.Graev. Integral Model of the Representations on the current groups. Russian Math. Survey. 2008 Funct. Anal. 2009-10.
B.Tsirelson, A.Vershik.Examples of nonlinear continuous tensor product of measure spaces and non-Fock factorizations. Rev. Math. Phys. 10, no. 1, 81-145 (1998).

