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CANONICAL MODEL: EXP

Let X is a manifold with measure m; H is an auxiliary Hilbert space.
Fock space:

H =
∞∑

k=0

H⊗k
sym = EXPH,

Suppose that K is another Hilbert space; X is manifold with
measure dx ; if

H = L2(X ; K ) ≡ L2(X )
⊗

K ≡
∫ ⊕

X
Kxdx ; Kx ∼ K ,

then we can write (using multiplicative property of EXP):

H = EXP{
∫ ⊕

X
Kxdx} ≡

∫ ⊗
X

Kxdx

BY DEFINITION this is a continuous tensor product of the Hilbert
spaces.
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WIENER-ITO OF FOCK SPACE; ARAKI-GGV MODEL OF
REPRESENTATIONS

EXPL2(X ; K ) = L2(S(X ); ν),

where right side is L2 over white noise (gaussian) law ν (for
1-dimensional case — derivative of the brownian motion).
many-particles decomposition, creation and annihilation operators,
product-vectors etc.
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The notion of FACTORIZATION

H is a Hilbert space, X is a manifold.
Factorization is the system of the compatible tensor decompositions
of operator algebra onto subalgebras, corresponding to the
partitions:

X =
r⊎

k=1

Xk ; Xk

⋂
Xk ′ = ∅(k 6= k ′) ⇒ END[H] =

r⊗
k=1

END[Hk ]

Conditions: continuity for monotonic up and down etc. Fock
factorization:
The Notion of product-vector or vacuum vector:
Let h ∈ H, define element exph ∈ H.

exph =
∞∑

k=0

h⊗k

√
k!
.

Product vectors or vacuum vectors with respect to given
factorization:

v = ⊗vk ; (v = exph)

a(h), a∗(h)...
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Araki-Woods theorem (1964) and Various Model of Fock
Factorization

Theorem
Necessary and sufficiently condition on factorization to be Fock
factorization is there are total set of product vectors.

Corollary
(Feldman, Tsilevich-V)
Let L2(S(M);µ) where µ is a law of Levy process on the space
S(M) of Schwartz distributions on the manyfold M with natural
factorization is Fock factorization. The vacuum vectors are
multiplicative functionals ξ 7→ exp{

∫
ξ(x)dF (x)}

One-particle subspace is a space of additive (linear) functional on
the process,
Probabilistic model of Fock space is the space L2 not over white
noise (Ito-Wiener space over X ) but other Levy measures.
Examples: Poisson process; isomorphism of it with Fock space
(Gel’fand-Graev-Vershik; Neretin); gamma process
(Tsilevich-Yor-V) etc.
product (vacuum)-vectors is exponent of linear functionals.
But there are a distinguish example.
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"Integral model"of bosonic Fock space

(M.I.Graev-A.V.-2006.)
Define the cone K is the cone of all the finite discrete measures on
X :

K(X ) = {γ}; γ = {xs , cs}∞s=1 =
∑

s

csδxs

here c1 ≥, c2,≥ . . . ≥ 0;
∑

s cs <∞; xs ∈ X .
Define a new Hilbert space:

H =

∫
γ∈C(X )

∞⊗
s=1

Hxs ,cs dL(γ),

Here we use only countable tensor product and integration over the
space of configurations.
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Definition of the measure L through Laplace Transform

Laplace transform of a measure:∫
K

exp{− < f , γ >}dLθ(γ) = exp{−θ
∫

X
ln f (x)dm(x)}

here f (x) > 0a.e., < f , γ >=
∫
X f (x)γ(x)dm(x) ≡

∑
s f (xs)cs

θ > 0;
For theta = 1 we called the measure L generalized infinite
dimensional Lebesgue or stable measure
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Fundamental property of the Measure Lθ

Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)

2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Fundamental property of the Measure Lθ
Infinite dimensional Cartan group:

M = {a(.) :

∫
X

lna(x)dx = 0 a(x) ≥ 0}

Action on K:

Ma(γ) = Ma(
∑

csδxs ) =
∑

csa(xs)δxs

Theorem
There exist a unique measure (sigma-finite) on the space of
Schwartz’s distribution Lθ such that for any measurable B

1.Lθ(MaB) = Lθ(B)

(invariance)
2.a(.) ≡ c ;Lθ(cB) = cθLθ(B)

(homogeneity)



Group of the coefficients and its representations.

Let G is group of type R∗ i G0 (R∗ = R+)
Let also πr , r ∈ R∗ is a unitary representation of the group G0 in
the Hilbert space Kr .
Suppose that for different r representations πr are NOT equivalent
but are equivariant: there exist ISOMETRY Tr : Kr → K1 such
that:

πr (.) = π1(Tr .)

When r → 0 representation πr → Id - tends to identity
representation.
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Representation of the current group

Define the current group of the bounded measurable functions on
the manifold X with values in G :

GX = {x 7→ g(x) ∈ G}

with point-wise multiplications.
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Construction of the representation of the current group

STEP 1. Choose trajectory(=configuration)
γ =

∑
csδxs ;

∑
s cs <∞ c1 ≥ · · · ≥ 0 For each γ define a

Hilbert space which is countable tensor product of
⊗

s Kcs in which
we have presentation of ×xs G0. Consider the numbers cs > 0 and
define the COUNTABLE tensor product

⊗
s Kcs Let current

g(x) ∈ GO , x ∈ X
Now we correspond to the configuration γ and current g(.) the
operator in the space

⊗
s Kcs :

Πγ(g(.)) =
⊗

s

πcs)g(xs).
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Construction of the representation of the current group

STEP 2. The element of the group R∗X 3 r(x) change the charges
of

γ =
∑

csδxs 7→
∑

r(xs)csδxs

So tensor products
⊗

s Kcs over configuration γ goes to tensor
product

⊗
s Kr(xs)cs

over configuration of γr (.)(.), consequently we
change operators Πγ(g(.)) of representations

⊗
s πcs) in the space⊗

s Kcs onto operators Πγr (.)(g(.)). This is possible because of
equivariance of representations of πr .
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Integration

STEP 3. Now we can integrate over all configurations γ over
generalize Lebesgue measure L:

H =

∫
γ∈K(X )

∞⊗
s=1

Kxs ,cs dL(γ),

IMPORTANT. Measure L is invariant with respect to
multiplication on r(x) iff

∫
ln r(x) = 0.

We obtain the representation Π of the group GX .

Theorem
The representation Π is irreducible.

Доказательство.
The group R∗X has ergodic action on K(X ).
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Example: O(n, 1), U(n, 1) and parabolic its subgroups.

Maximal parabolic subgroup P ⊂ O(n, 1) is isomorphic to the
group of triples

(r , u, c), where r ∈ R∗, u ∈ O(n − 1), c ∈ Rn−1

with multiplication

(r1, u1c1) (r2, u2, c2) = (r1r2, u1u2, c1 + rc2u).

So this group P is semisimple product

P = R∗ i P0, where P0 = O(n − 1) i Rn−1,

and elements r ∈ R∗ acts on P0 as the automorphisms
(u, c) 7→ (u, c)r = (u, rc).
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Extension on O(n, 1), U(n, 1)

Theorem
Consider Kr = L2(Br ), where Br is Euclidean of the radius r with
usual representation πr of the motion group P0 = Mn−1. Then the
construction above gives the unitary representation of the current
group PX of the bounded measurable functions on the manifold X
with values in the parabolic group P , and this representation
naturally extends onto current group O(n, 1)X . The case of the
group U(n, 1) is similar.
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Non-Fock Factorization and Black Noise.

Difficult Task: To construct factorization without product
(=vacuum) vectors (or with rare set of its).
("Extremely Non-Additive conjunction")
Examples for d=0,d=1. A.Versik & B.Tsirel’son (1998),
d=2: S.Smirnov-O.Schramm (2009). (Percolation model)
d = 0 —The simplest (zero-dimensional) example:
A CANTOR set X =

∏∞
1 {0, 1, 2} - the set of the infinite path in

the triadic tree T3 with one root.
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Election by majority

The Hilbert space is H =  L2(X ) with a measure µ.

H = lim
←
{(C2)⊗3n

, ψn}

The imbedding

ψn : Hn = C23n−1

→ Hn+1 = C23n

, n = 1, . . .

is tensor product of one imbedding (n = 1)

ψ : C2 → C8.
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Formulas
The map ψ is linear map corresponded to map 2—>8 (8 = 23):

Basis in C2 — e1, e2, in C8— e1 . . . e8. Each vertex of cube
corresponds to vector of basis:

e1 ∼ (0), e2 ∼ (1); e1 ∼ (0, 0, 0), e2 ∼ (1, 0, 0), e3 ∼ (0, 1,O), e4 ∼ (0, 0, 1)

e5 ∼ (1, 1, 0), e6 ∼ (1, 0, 1), e7 ∼ (0, 1, 1), e8 ∼ (1, 1, 1)

f (e1) = f (e2) = f (e3) = f (e4) = e1 f (e5) = f (e6) = f (e7) = f (e8) = e2

ψ(e1) = e1 + ...+ e4; ψ(e2) = e5 + ..+ e8

Theorem
The factorization of the L2 by cylindric sets over space of the
pathes of triadic tree has no product vectors besides constant and
consequently defines a Non-Fock factorization.
Discussion.
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