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Preface 1

• My talk is about a model of continuous time Markov dynamics in
infinite dimensions. Its construction exploits some connections
between representation theory of so called big groups and
probability.

• Existing directions:
(1) Interacting particle systems. local interaction
(2) Some continuous-space analogs [Kondratiev et al]. short range
interaction
(3) Models arising from Random Matrix Theory. The basic
example is Dyson’s Brownian motion. Here particles represent
eigenvalues of very large matrices, and dynamics of eigenvalues
arises from diffusion processes on matrices. long range interaction

• The model I will speak about is close to (3).
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Laguerre diffusion on R+ 2

D = x
d2

dx2
+ (b− x)

d

dx
, b > 0.

Dxn = −nxn + lower terms

Laguerre polynomials:

DLn = −nLn, Ln(x) = xn + lower terms

Ln(x) = (b)n

∑
0≤m≤n

(−1)n−m

(
n
m

)
(b)m

xm,

where (z)n = z(z + 1) . . . (z + n− 1) is the Pochhammer symbol.
The orthogonality measure is Gamma distribution:

P (dx) =
xb−1

Γ(b)
e−xdx.



Preface 1D Laguerre AlgSkel eΩ X(t) Det K K-Dyn AnalCont

Laguerre diffusion on R+ 3

• Let ϕ : R[x] → R be the moment functional defined by P :

ϕ(F ) = 〈F, P 〉, F ∈ R[x].

In terms of ϕ, P is characterized as a unique probability measure
such that

ϕ(1) = 1, ϕ(DF ) = 0 ∀F ∈ R[x].

• This reflects the fact that P is the stationary distribution for
the Markov process X(t) generated by D.
• The transition function of X(t) has the form

Prob{X(t) ∈ dy | X(0) = x} =
∞∑

n=0

e−nt Ln(x)Ln(y)
(Ln, Ln)

P (dy)
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Algebraic skeleton-1: Algebra of symmetric functions 4

• Replace R[x] by Sym, the algebra of symmetric functions.

Sym = R[e1, e2, . . . ]

e1, e2, . . . are the elementary symmetric functions.
• Replace monomials {xn} by Schur symmetric functions {Sν}.
ν = (ν1, ν2, . . . , 0, 0, . . . ) is partition=Young diagram.
• Dual Jacobi-Trudi:

Sν = det
[
eν′

i−i+j

]
where ν ′ is the transposed diagram and the order of determinant is
the number of columns in ν ′.
• Functions F ∈ Sym will be realized as “polynomial
observables” on the future state space of the Markov process
under construction.
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Algebraic skeleton-2: Laguerre symmetric functions 5

• Analog of the Laguerre polynomials Ln: the Laguerre
symmetric functions Lν . Two complex parameters z and z′.

Lν = (z)ν(z′)ν

∑
µ⊆ν

(−1)|ν|−|µ|
dim ν/µ

(z)µ(z′)µ (|ν| − |µ|)!
Sµ

Cf. formula for Ln: similarity of structure! Here |ν| =
∑

νi is the
number of boxes in ν; dim ν/µ is the number of standard tableaux
on ν/µ; (z)ν is an analog of the Pochhammer symbol:

(z)ν =
∏

(i,j)∈ν

(z + j − i)

• Cf. Desrosiers and Hallnäs (2011); Sergeev and Veselov (2009).
• {Lν} is an inhomogeneous basis in SymC, because

Lν = Sν + lower degree terms.
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Algebraic skeleton-3: ∞-dim Laguerre differential operator 6

Analog of Laguerre operator D on R∗ is Dz,z′ : SymC → SymC:

Dz,z′Lν = −|ν|Lν , ∀ν

Equivalently, it can be written as a second order differential
operator in formal variables e1, e2, . . . :

Dz,z′ =
∑
n≥1

(
n−1∑
k=0

(2n− 1− 2k)e2n−1−kek

)
∂2

∂e2
n

+ 2
∑

m>n≥1

(
n−1∑
k=0

(m + n− 1− 2k)em+n−1−kek

)
∂2

∂em∂en

+
∞∑

n=1

(
− nen + (z − n + 1)(z′ − n + 1)en−1

) ∂

∂en
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Thoma’s cone Ω̃ as analog of R+ 7

Ω̃ ⊂ R∞
+ × R∞

+ × R+, points are triples ω = (α, β, δ) such that

α = (α1 ≥ α2 ≥ · · · ≥ 0), β = (β1 ≥ β2 ≥ · · · ≥ 0), δ ≥ 0∑
αi +

∑
βj ≤ δ.

Ω̃ is a cone, is closed, ∞-dimensional, but locally compact.
Embed Sym into Fun(Ω̃):

1 +
∞∑

k=1

ek(ω)uk = eγu
∞∏
i=1

1 + αiu

1− βiu
,

γ := δ −
∑

(αi + βi) ≥ 0.

Equivalently, in terms of power sums pk,

pk(ω) =

{∑
αk

i −
∑

(−βi)k, k ≥ 2
δ, k = 1.

Sym → “polynomial functions” on Ω̃. Supersymmetry!



Preface 1D Laguerre AlgSkel eΩ X(t) Det K K-Dyn AnalCont

z-Measure Pz,z′ on Ω̃ as analog of Γ-distribution on R+ 8

Formal moment functional ϕz,z′ : SymC → C:

ϕz,z′(1) = 1, ϕz,z′(Dz,z′F ) = 0 ∀F ∈ Sym .

(z, z′) is admissible if either z and z′ are complex-conjugate, or
m < z, z′ < m + 1 with m ∈ Z. This implies that (z)ν(z′)ν is real
and > 0, and ϕz,z′(Sν) > 0 ∀ν. From now on (z, z′) is admissible.

Theorem(Borodin-O, 2000). There exists a unique probability
measure Pz,z′ such that all polynomial functions F (ω) are
Pz,z′-integrable and

ϕz,z′(F ) = 〈F, Pz,z′〉, F ∈ Sym .

Moreover, the Laguerre symmetric functions form an orthogonal
basis in L2(Ω̃, Pz,z′).
We call Pz,z′ the z-measure. Its origin: harmonic analysis on S∞
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The Markov process X(t) 9

• First Main Theorem (assume (z, z′) admissible).
Dz,z′ : Sym → Sym generates a Feller Markov process Xz,z′(t) on

Ω̃, and Pz,z′ serves as the stationary (=invariant) distribution for
Xz,z′(t).

Comments:
• A Feller Markov process is determined by a Feller operator
semigroup {T (t)}t≥0 on the Banach space C0(Ω̃).
• Recall Ω̃ is a locally compact. C0(Ω̃) = continuous functions
vanishing at infinity.
• A Feller semigroup is a strongly continuous operator semigroup
{T (t)}, t ≥ 0, where ‖T (t)‖ ≤ 1, preserves nonnegative functions
(+ one more condition).
• Feller semigroup gives rise to a Markov process.
• Any contraction semigroup {T (t)} possesses a generator A, a
densely defined dissipative operator. Informally, T (t) = eAt.
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Difficulties 10

• The major difficulty: the “pre-generator” Dz,z′ is initially defined
on the space Sym of “polynomial functions” which are unbounded
on Ω̃ and so are not in the Banach space C0(Ω̃).
• There are two ways to overcome this difficulty.
(1) Define first a semigroup on the Hilbert space L2(Ω̃, Pz,z′), then

prove that it preserves the space C0(Ω̃) and induces on it a Feller
semigroup. After that we see that the transition function of X(t),
that is the kernel of T (t), is given by the formula

Prob{X(t) ∈ dω′ | X(0) = ω} =
∑

ν

e−|ν|t
Lν(ω)Lν(ω′)

(Lν ,Lν)
Pz,z′(dω′)

(2) Find “natural” extension of Dz,z′ from Sym to a larger space

which has a large enough intersection with C0(Ω̃). Then prove
that on this intersection, the operator generates a Feller
semigroup. (Based on method of BO 2010 + an idea of B.)

Approximation Meixner → Laguerre
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Random particle ensembles driven by measures on Ω̃ 11

• R∗ := R \ {0} – the punctured line. Projection Ω̃ → Conf(R∗):

π : ω = (α, β, δ) ∈ Ω̃ −→ {αi : αi 6= 0} ∪ {−βi : βi 6= 0}

I.e., remove possible zeros and ignore parameter δ. Result: locally
finite configurations.
• Every probability measure P gives rise to an ensemble of
random particle configurations on R∗.
• The language of correlation functions:

ρk(x1, . . . , xk), k = 1, 2, . . .

– The kth function is the density of probability to find a particle
at prescribed position xi, for i = 1, . . . , k.
• If π ↓ suppP is injective, then P is determined by {ρk} uniquely.
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The Whittaker kernel (BO, 2000) 12

Apply correspondence π to P = Pz,z′ ((z, z′) admissible).
• Theorem

suppPz,z′ ⊂ Ω̃ ′ := {ω :
∑

(αi + βi) = δ}.

Thus, Pz,z′ is completely characterized by {ρk = ρ
(z,z′)
k }

• Theorem (BO 2000) The random particle ensemble for Pz,z′ is
determinantal:

ρ
(z,z′)
k (x1, . . . , xk) = det

[
Kz,z′(xi, xj)

]k
i,j=1

, k = 1, 2, . . .

where Kz,z′(x, y) is a kernel on R∗.

• Kz,z′(x, y) is called the Whittaker kernel. It is integrable.
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Integrable kernels (IIKS 1990, Deift 1998) 13

• Let K be an integral operator with kernel K(x, y). They are
integrable if rank([x,K]) < ∞. This means that the kernel has
the form

K(x, y) =
∑

Ai(x)Bi(y)
x− y

,

where the sum is finite and the numerator vanishes on x = y.
Notion is due to Its-Izergin-Korepin-Slavnov 1990, further studied
by Deift 1998.
• In many examples from Random Matrix Theory,

K(x, y) =
A(x)B(y)−B(x)A(y)

x− y
.

• Notice that K(x, y) = K(y, x).
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Christoffel-Darboux, sine kernel, Airy kernel 14

• Example 1: the Christoffel-Darboux kernels:

KN (x, y) =
N−1∑
i=0

fi(x)fi(y)
(fi, fi)

= constN
fN (x)fN−1(y)− fN−1(x)fN (y)

x− y
,

Here f0 = 1, f2, . . . are orthogonal polynomials, N = 1, 2, . . . .
rankKN = N

• Example 2: Limit kernels:
(a) sine kernel: A = sin, B = A′ = cos
(b) Airy kernel: A = Ai, B = Ai′.
Here rankK = ∞
• These are projection kernels.
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J-symmetry of Kz,z′(x, y) 15

• The Whittaker kernel is J-symmetric, that is, symmetric with
respect to an indefinite inner product in
L2(R∗) = L2(R−)⊕ L2(R+):

Kz,z′(x, y) = sgn(x) sgn(y)Kz,z′(y, x) x, y ∈ R∗.

• Informally: Pz,z′ is a Gibbs measure, but with long-range pair
interaction between the particles. The pair potential V is of
log-gas type:

V (x, y) = ±2 log
1

|x− y|
, x, y ∈ R∗, ± = sgn(x) sgn(y).

• The picture resembles to RMT: eigenvalues of random matrices
in large-N limit.
• Difference: the plus/minus sign. Informal interpretation: the
“alpha” and the “beta” particles are oppositely charged.
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Extended Whittaker kernel 16

• Equilibrium version Xeq
z,z′(t): start Xz,z′(t) from Pz,z′ . Xeq

z,z′(t)
is stationary in time.
• f.d. or multitime distributions: probability measures on
Conf(R∗)× · · · × Conf(R∗) (k = 2, 3, . . . times).
• Equivalently, the space-time (or dynamical) correlation functions

ρ
(z,z′)
k (t1, x1; . . . ; tk, xk), k = 1, 2, . . . : density of probability to

find, at prescribed moment ti, a particle at prescribed position xi,
for i = 1, . . . , k.
• Second Main Theorem Again determinantal correlations:

ρ
(z,z′)
k (t1, x1; . . . ; tk, xk) = det

[
Kz,z′(ti, xi | tj , xj)

]k
i,j=1

.

for any k = 1, 2 . . . , time variables ti ∈ R, and space variables
xi ∈ R∗.
• Kz,z′(s, x | t, y) is extended W. kernel, from BO 2006.
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Problem: survival of Markov property under (scaling) limit 17

• Ext. W. kernel was first derived by a formal scaling limit
transition from discrete (“Meixner”) models on partitions.
• General problem {X(n)(t)} a sequence of Markov processes on
particle configurations with computable corr. functions.
– Do the (scaling) limit corr. functions correspond to a Markov
process, too?
– If yes, how to construct it explicitly?
• Example 1: Extended Ch-D and the corresponding Markov
processes are well known.
• Example 2: For the sine or Airy kernels, their extended versions
are well known (Tracy-Widom). But Markov processes??? –
Spohn, Osada, Katori-Tanemura.
• Comparison: Extended Whittaker vs. Extended sine/Airy



Preface 1D Laguerre AlgSkel eΩ X(t) Det K K-Dyn AnalCont

Analytic continuation in N 18

N = 1, 2, . . . ; Sym(N)= symmetric polynomials in N variables;
VN =

∏
1≤i,j≤N (xi − xj)=Vandermonde; D(i) =a copy of

D = x d2

dx2 + (b− x) d
dx acting on the ith variable xi, 1 ≤ i ≤ N .

The formula

DN = V −1
N ◦

(
D(1) + · · ·+ D(N)

)
◦ VN + N(N−1)

2

=
N∑

i=1

xi
∂2

∂x2
i

+
N∑

i=1

b− xi +
∑
j: j 6=i

2xi

xi − xj

 ∂

∂xi
,

correctly determines a linear operator Sym(N) → Sym(N).
Write Sym(N) = R[e1, . . . , eN ], express DN as a differential
operator in e1, . . . , eN , and make formal analytic continuation in b
and N ; then rename z = N , z′ = N + b− 1. This gives
D : Sym → Sym.

Rains 2005; Sergeev-Veselov 2009.


	Preface
	P1

	1D Laguerre
	L1
	L2

	AlgSkel
	AS-1
	AS-2
	AS-3

	"0365
	Omega
	Z-Meas

	X(t)
	M1
	M1

	Det
	1
	2

	K
	K-1
	K-2
	K-3

	K-Dyn
	KDyn-1
	KDyn-2

	AnalCont
	A


