The rigidity problem, elliptic functions and Hurwitz series.

Victor M. Buchstaber.
Steklov Mathematical Institute
〈buchstab@mi.ras.ru〉

For each Hirzebruch genus $L_{f}: \Omega_{U} \rightarrow \mathbb{Q}$
I. Krichever (1974) constructed an equivariant genus with values in $K\left(\mathbb{C} P^{\infty}\right) \otimes \mathbb{Q}$ and described this genus for almost complex S^{1}-equivariant manifolds $M^{2 n}$ in terms of fixed points of the S^{1}-action on $M^{2 n}$.
In this case the signs of isolated fixed points are +1 .
He introduced (1990) the genus L_{f} where f is the Baker-Akhiezer function of an elliptic curve.
I. Krichever proved that the corresponding equivariant genus has the fundamental rigidity property on S^{1}-equivariant $S U$-manifolds.

The universal S^{1}-equivariant genera for stably complex S^{1}-manifolds with values in $U^{*}\left(C P^{\infty}\right)$ was considered by V. Buchstaber and N. Ray in 2007.

The general theory of universal toric genera was constructed by V. Buchstaber, T. Panov and N. Ray (2008).

Applications of this theory to the homogeneous spaces of compact Lie groups is given by V. Buchstaber and S. Terzic (2008).

We will describe the general elliptic genus associated with the general Weierstrass model of the elliptic curve with 5 parameters and arithmetic Tate uniformization.
The main task of this talk is to present the results about the S^{1}-equivariant elliptic genera.

New results are published in

[1] V. M. Buchstaber,
The general Krichever genus, Russian Mathematical Surveys, 2010, 65:5, 979-981.
[2] Victor M. Buchstaber, Elena Yu. Bunkova, Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, arXiv: 1010.0944 v1 [math-ph] 5 Oct 2010.
[3] V. M. Buchstaber and E. Yu. Bunkova, Krichever formal group Iaw, Functional. Anal. Appl., 45:2 (2011).

Complex cobordisms.

Let $U^{*}(X)$ be the complex cobordism theory.
Then $U^{*}(p t)=\Omega_{U}=\sum \Omega_{-2 n}, n \geqslant 0$, is the ring of cobordisms of stable-complex manifolds.
A representative of $a \in \Omega_{-2 n}$ is $2 n$-dim manifold $M^{2 n}$ with the complex normal bundle in the real Euclidian space $\mathbb{R}^{2 N}$.

Theorem. (J. Milnor, S. Novikov, 1960)

$$
\Omega_{U} \simeq \mathbb{Z}\left[a_{n}: n=1, \ldots\right]
$$

where $\operatorname{deg} a_{n}=-2 n$.

The Hirzebruch genera.

Let $A=\sum A_{-2 k}$ be a commutative associative graded torsion-free ring. Consider the series
$f(t)=t+\sum f_{k} t^{k+1}, k \geqslant 1$, where $f_{k} \in A_{-2 k} \otimes \mathbb{Q}$.
The series

$$
\prod_{i=1}^{n} \frac{t_{i}}{f\left(t_{i}\right)}
$$

can be presented in the form $L_{f}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$, where σ_{k} is the k-th elementary symmetric polynomial of t_{1}, \ldots, t_{n}.

We have

$$
L_{f}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=1-f_{1} \sigma_{1}+\left(f_{1}^{2}-f_{2}\right) \sigma_{1}^{2}+\left(2 f_{2}-f_{1}^{2}\right) \sigma_{2}+\ldots
$$

Definition.

The Hirzebruch genus L_{f} of a stably complex manifold $M^{2 n}$ with tangent Chern classes $c_{i}=c_{i}\left(\tau\left(M^{2 n}\right)\right)$ and fundamental cycle $\left\langle M^{2 n}\right\rangle$ is defined by the formula

$$
L_{f}\left(M^{2 n}\right)=\left(L_{f}\left(c_{1}, \ldots, c_{n}\right),\left\langle M^{2 n}\right\rangle\right) \in A_{-2 n} \otimes \mathbb{Q}
$$

Theorem. (Corollary of F. Hirzebruch result, 1956.) Any Hirzebruch genus L_{f} defines a ring homomorphism

$$
L_{f}: \Omega_{U} \rightarrow A \otimes \mathbb{Q} .
$$

The formal group law.

Let A be a commutative associative ring.
A commutative one-dim formal group law over A
(or shortly formal group) is the formal series

$$
F(u, v)=u+v+\sum a_{i, j} u^{i} v^{j}, \quad a_{i, j} \in A, \quad i>0, j>0
$$

which satisfies the conditions

$$
F(u, v)=F(v, u), \quad F(u, F(v, w))=F(F(u, v), w)
$$

The exponential of a formal group $F(u, v) \in A[[u, v]]$ is a uniquely defined formal series $f(t) \in A \otimes \mathbb{Q}[[t]]$ such that

$$
f\left(t_{1}+t_{2}\right)=F\left(f\left(t_{1}\right), f\left(t_{2}\right)\right), \quad f(0)=0, \quad f^{\prime}(0)=1 .
$$

The logarithm of the formal group law $F(u, v)$ is the formal series $g(u)$ such that $g(f(t))=t$.

Construction. (S. Novikov, A. Mishchenko, 1967)
Let $c_{1}(\eta) \in U^{*}\left(\mathbb{C} P^{\infty}\right)=\Omega_{U}[[u]]$ be the first Chern class of the universal complex linear bundle $\eta \rightarrow \mathbb{C} P^{\infty}$.

The class $c_{1}\left(\eta_{1} \otimes \eta_{2}\right) \in U^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=\Omega_{U}[[u, v]]$ defines the formal group law of geometric cobordisms

$$
\mathcal{F}_{U}(u, v)=u+v+\sum a_{i, j} u^{i} v^{j} .
$$

Here $a_{i, j} \in \Omega_{-2 n}$, where $n=i+j-1$.

Theorem. (A. Mishchenko, 1967)

The logarithm $g_{\mathcal{F}_{U}}(u)$ of the formal group $\mathcal{F}_{U}(u, v)$ has the form

$$
g_{\mathcal{F}_{U}}(u)=u+\sum\left[\mathbb{C} P^{n}\right] \frac{u^{n+1}}{n+1} .
$$

Theorem. (S. Novikov, 1968)
Let $L_{f}: \Omega_{U} \rightarrow A \otimes Q$ a Hirzebrugh genus. Set

$$
g_{f}(u)=u+\sum L_{f}\left(\mathbb{C} P^{n}\right) \frac{u^{n+1}}{n+1} .
$$

Then

$$
g_{f}(f(t))=t
$$

The universal formal group law.

The formal group law

$$
\mathcal{F}(u, v)=u+v+\sum \alpha_{i, j} u^{i} v^{j}
$$

over the $\operatorname{ring} \mathcal{A}$ is called the universal formal group law, if for any formal group $F(u, v)$ over a ring A there exists a unique homomorphism $r: \mathcal{A} \rightarrow A$ such that

$$
F(u, v)=u+v+\sum r\left(\alpha_{i, j}\right) u^{i} v^{j} .
$$

Construction of the universal formal group.
Consider the graded ring

$$
\mathcal{U}=\mathbb{Z}\left[\beta_{i, j}: i>0, j>0\right], \operatorname{deg} \beta_{i, j}=-2(i+j-1)
$$

and series

$$
\widehat{F}(u, v)=u+v+\sum \beta_{i, j} u^{i} v^{j} .
$$

We have

$$
\begin{aligned}
& \widehat{F}(\widehat{F}(u, v), w)=u+v+w+\sum \beta_{i, j, k}^{l} u^{i} v^{j} w^{k}, \\
& \widehat{F}(u, \widehat{F}(v, w))=u+v+w+\sum \beta_{i, j, k}^{r} u^{i} v^{j} w^{k},
\end{aligned}
$$

where $\beta_{i, j, k}^{l}$ and $\beta_{i, j, k}^{r}$ are homogeneous polynomials of $\beta_{i, j}$ and $\operatorname{deg} \beta_{i, j, k}^{l}=\operatorname{deg} \beta_{i, j, k}^{r}=-2(i+j+k-1)$.

Let $J \subset \mathcal{U}$ be the associativity ideal with generators $\beta_{i, j, k}^{l}-\beta_{i, j, k}^{r}$. Set $\mathcal{A}=\mathcal{U} / J$ and consider the canonical projection

$$
\pi: \mathcal{U} \rightarrow \mathcal{A}
$$

Set $\mathcal{F}(u, v)=u+v+\sum \alpha_{i, j} u^{i} v^{j}$, where $\alpha_{i, j}=\pi\left(\beta_{i, j}\right)$.
By the construction the series $\mathcal{F}(u, v)$ over the graded ring \mathcal{A} gives the universal formal group.

Theorem. (M. Lazard, 1955)

$$
\mathcal{A} \simeq \mathbb{Z}\left[a_{n}: n=1, \ldots\right]
$$

where deg $a_{n}=-2 n$.

Theorem. (D. Quillen, 1969)
The ring homomorphism

$$
\mathbb{Z}\left[a_{n}\right] \simeq \mathcal{A} \rightarrow \Omega_{U} \simeq \mathbb{Z}\left[a_{n}\right]
$$

classifying the formal group $\mathcal{F}_{U}(u, v)$ is an isomorphism.

Thus, the formal group of complex cobordisms was identified with the universal formal group $\mathcal{F}(u, v)$.

Let A be a ring without torsion.
Consider a formal group $F(u, v)$ over A with the exponential $f(t) \in A \otimes \mathbb{Q}[[t]]$. Then the homomorphism $r: \mathcal{A} \rightarrow A$ classifying $F(u, v)$ gives a Hirzebruch genus $L_{f}: \Omega_{U} \rightarrow A$ such that $F(u, v)=u+v+\sum L_{f}\left(a_{i, j}\right) u^{i} v^{j}$.

We obtain one-to-one correspondence

$$
(A, F) \Leftrightarrow\left(L_{f}: \Omega_{U} \rightarrow A\right)
$$

Corollary. $\quad g(u)=u+\sum L_{f}\left(\mathbb{C} P^{n}\right) \frac{u^{n+1}}{n+1}$.
Thus if we know a formal group law $F(u, v)$ over A we have the values $L_{f}\left(\mathbb{C} P^{n}\right) \in A$ using the formula

$$
\left.\frac{\partial F(u, v)}{\partial v}\right|_{v=0}=\frac{1}{g^{\prime}(u)}
$$

Universal equivariant genera

Consider a \mathbb{T}^{k}-equivariant normally complex manifold ($M^{2 n}, c_{\nu}, \theta$) where $M^{2 n}$ is a smooth manifold with a smooth action θ of the torus \mathbb{T}^{k} and c_{ν} is an equivariant complex structure for the normal bundle $\nu(i)$ of an equivariant embedding $i: M^{2 n} \rightarrow \mathbb{C}^{l}$.

Using the standard action of S^{1} on the unit sphere $S^{2 m+1} \subset \mathbb{C}^{m+1}$ we obtain the diagonal free action of \mathbb{T}^{k} on $\left(S^{2 m+1}\right)^{k}$. Consider the $2(m k+n)$-dim smooth manifold $W_{m}=\left(S^{2 m+1}\right)^{k} \times_{\mathbb{T}^{k}} M^{2 n}$ and the l-dim complex vector bundle $q_{m}: E_{m} \rightarrow\left(\mathbb{C} P^{m}\right)^{k}$, where $E_{m}=\left(S^{2 m+1}\right)^{k} \times_{\mathbb{T}^{k}} \mathbb{C}^{l}$.

Then $i: M^{2 n} \rightarrow \mathbb{C}^{l}$ extends to an embedding $i^{\prime}: W_{m} \rightarrow E_{m}$, and c_{ν} extends to a complex structure c^{\prime} on the normal bundle $\nu\left(i^{\prime}\right)$.

The composition $p_{m}: W_{m} \xrightarrow{i^{\prime}} E_{m} \xrightarrow{q_{m}}\left(\mathbb{C} P^{m}\right)^{k}$ is complex oriented mapping. It determines a complex cobordism class

$$
\Phi_{m}\left(M^{2 m}, c_{\nu}, \theta\right) \in U^{-2 n}\left(\left(\mathbb{C} P^{m}\right)^{k}\right)
$$

The standard embedding $\iota_{m}: \mathbb{C} P^{m} \rightarrow \mathbb{C} P^{m+1}$ acts by $\iota_{m}^{*} \Phi_{m+1}=\Phi_{m}$, hence the inverse sequence $\left(\Phi_{m}\left(M, \theta, c_{\nu}\right): m \geqslant 0\right)$ defines an element of $\lim _{\longleftarrow} U^{-2 n}\left(\left(\mathbb{C} P^{m}\right)^{k}\right) \simeq U^{-2 n}\left(\left(\mathbb{C} P^{\infty}\right)^{k}\right)$.

Definition. The universal \mathbb{T}^{k}-equivariant genus of $\left(M^{2 n}, c_{\nu}, \theta\right)$ is

$$
\Phi\left(M^{2 n}, c_{\nu}, \theta\right)(u)=\lim _{\leftrightarrows} \Phi_{m}\left(M^{2 n}, c_{\nu}, \theta\right)(u)
$$

The rigidity problem.

We have

$$
\Phi\left(M^{2 n}, c_{\nu}, \theta\right)(u) \in \Omega_{U}\left[\left[u_{1}, \ldots, u_{k}\right]\right]
$$

where $\Phi\left(M^{2 n}, c_{\nu}, \theta\right)(0)=\left[M^{2 n}\right]$.

Thus for any Hirzebruch genus $L_{f}: \Omega_{U} \rightarrow A$ we obtain \mathbb{T}^{k}-equivariant genus

$$
\Phi_{f}\left(M^{2 n}, c_{\nu}, \theta\right)(u) \in A\left[\left[u_{1}, \ldots, u_{k}\right]\right]
$$

Definition.

The \mathbb{T}^{k}-equivariant genus $\Phi_{f}\left(M^{2 n}, c_{\nu}, \theta\right)$ is rigid if

$$
\Phi_{f}\left(M^{2 n}, c_{\nu}, \theta\right)(u)=\Phi_{f}\left(M^{2 n}, c_{\nu}, \theta\right)(0)
$$

A compact smooth manifold $M^{2 n}$ with an action θ of \mathbb{T}^{k} and a stably complex θ-invariant structure c_{τ} on tangent bundle $\tau\left(M^{2 n}\right)$ will be called a stably complex \mathbb{T}^{k}-manifold ($M^{2 n}, c_{\tau}, \theta$).

Any such structure gives a \mathbb{T}^{k}-equivariant normally complex manifold ($\left.M^{2 n}, c_{\nu}, \theta\right)$ and we set by definition $\Phi\left(M^{2 n}, c_{\tau}, \theta\right)(u)=\Phi\left(M^{2 n}, c_{\nu}, \theta\right)(u)$.

Note that on the other hand the structure ($M^{2 n}, c_{\nu}, \theta$) does not define uniquely the structure ($M^{2 n}, c_{\tau}, \theta$).

Suppose the set of fixed points of the action θ is finite.
The action of \mathbb{T}^{k} on the fibre $\xi_{k} \cong \mathbb{C}^{n+l}$ over an isolated point $p \in M^{2 n}$ defines an equivariant decomposition $\xi_{p}=\mathbb{C}^{n} \oplus \mathbb{C}^{l}$, where the action of \mathbb{T}^{k} on \mathbb{C}^{l} is trivial and the action on \mathbb{C}^{n} has $0 \in \mathbb{C}^{n}$ as fixed point.

The signs and weights.

By definition the sign of $p \in M^{2 n}$ is +1 if the linear map

$$
\tau_{p}\left(M^{2 n}\right) \xrightarrow{I \oplus 0} \tau_{p}\left(M^{2 n}\right) \oplus \mathbb{R}^{2 l} \xrightarrow{c_{\tau, p}} \xi_{p} \cong \mathbb{C}^{n} \oplus \mathbb{C}^{l} \xrightarrow{\pi} \mathbb{C}^{n}
$$

conserves the orientation and else the sign is -1 .

The action θ of \mathbb{T}^{k} on $\tau_{p}\left(M^{2 n}\right)$ defines the representation $\mathbb{T}^{k} \rightarrow U(n)$ that is completely defined by the set of vectors $\left\{\wedge_{1}(p), \ldots, \Lambda_{n}(p)\right\}, \Lambda_{j}(p) \in \mathbb{Z}^{k}$ of weights of the representation.

Multidimentional power system.

Now let $\left\{[w](u) \in \Omega^{*}[[u]]: w \in \mathbb{Z}\right\}$ denote the power system of the formal group $\mathcal{F}(u, v)$ for complex cobordism.

Denote by $\mathcal{F}_{q=1}^{k} a_{q}$ the sum of the elements of a_{1}, \ldots, a_{k} in the formal group $\mathcal{F}(u, v)$, that is $\mathcal{F}_{q=1}^{k} a_{q}=\mathcal{F}\left(\mathcal{F}_{q=1}^{k-1}, a_{k}\right)$.

The w-series $[w](u)=w u \bmod \left(u^{2}\right)$ is defined uniquely by $[0](u)=0$ and $[w](u)=\mathcal{F}(u,[w-1](u))$ for $w \in \mathbb{Z}$.

For $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{Z}^{k}$ and $u=\left(u_{1}, \ldots, u_{k}\right)$ one defines

$$
\begin{gathered}
{[\mathbf{w}](u)=[w](u) \quad \text { for } \quad k=1 \quad \text { and }} \\
{[\mathbf{w}](u)=\mathcal{F}_{q=1}^{k}\left[w_{q}\right]\left(u_{q}\right), \quad \text { for } \quad k \geq 2}
\end{gathered}
$$

The Iocalization formula.

Theorem.

Let $\left(M^{2 n}, c_{\tau}, \theta\right)$ be a stably-complex \mathbb{T}^{k}-manifold, where θ is an action with isolated fixed points. The localization formula holds:

$$
\Phi\left(M^{2 n}, c_{\tau}, \theta\right)(u)=\sum_{p \in \operatorname{Fix} \theta} \operatorname{sign}(p) \prod_{j=1}^{n} \frac{1}{\left[\wedge_{j}(p)\right](u)}
$$

where $\left\{\wedge_{j}(p), 1 \leqslant j \leqslant n\right\}$ are the weight vectors of the fixed point $p \in M^{2 n}$.

Let $L_{f}: \Omega_{U} \rightarrow A$ be the Hirzebrugh genus corresponding to the formal group law $F(u, v)$ over A with the exponential $f(t)$. Denote by $[\mathbf{w}]_{F}$ the power system corresponding to $F(u, v)$. Then

$$
\Phi_{f}\left(M^{2 n}, c_{\tau}, \theta\right)(u)=\sum_{p \in \operatorname{Fix} \theta} \operatorname{sign}(p) \prod_{j=1}^{n} \frac{1}{\left[\Lambda_{j}(p)\right]_{F}(u)}
$$

From the localization theorem we obtain

Corollary.

$$
\begin{aligned}
& \sum_{p \in \operatorname{Fix} \theta} \operatorname{sign}(p) \prod_{j=1}^{n} \frac{1}{\left[\wedge_{j}(p)\right](u)}=\left[M^{2 n}\right]+\mathcal{L}(u), \\
& \text { where } \mathcal{L}(u) \in \Omega_{U}\left[\left[u_{1}, \ldots, u_{k}\right]\right] .
\end{aligned}
$$

Hurwitz series.

Let $u=\left(u_{1}, \ldots, u_{k}\right)$ and $j=\left(j_{1}, \ldots j_{k}\right) \in \mathbb{Z}_{\geqslant}^{k}$.
Set $u^{j}=u_{1}^{j_{1}} \cdot \ldots \cdot u_{k}^{j_{k}}$ and $j!=j_{1}!\ldots j_{k}!$.
A k-dimensional Hurwitz series over A is a formal power series in the form

$$
\varphi(u)=\sum_{j} \varphi_{j} \frac{u^{j}}{j!} \in A \otimes \mathbb{Q}\left[\left[u_{1}, \ldots u_{k}\right]\right]
$$

with $\varphi_{j} \in A$ for all j.
Hurwitz series over A form a commutative associative ring $H A[[u]]$ with respect to the usual addition and multiplication of series.

This ring is closed under differentiation and integration with respect to u_{1}, \ldots, u_{k}.
If $\varphi(u)$ and $\psi(u) \in H A[[u]], \varphi(0)=0$, then $\psi(\varphi(u)) \in H A[[u]]$.

For a formal group law $F(u, v)$ over A its exponential $f(t)$ and logarithm $g(u)$ are 1-dimensional Hurwitz series over A.

Set $t=\left(t_{1}, \ldots, t_{k}\right)$ and $\langle\mathbf{w}, t\rangle=\sum_{i} w_{i} t_{i}$.

Corollary.

$$
\sum_{p \in \mathrm{Fix} \theta} \operatorname{sign}(p) \prod_{j=1}^{n} \frac{1}{f\left(\left\langle\Lambda_{j}(p), t\right\rangle\right)}=L_{f}\left(M^{2 n}\right)+\mathcal{L}\left(t_{f}\right)
$$

where $\mathcal{L}\left(t_{f}\right) \in H A\left[\left[t_{1}, \ldots, t_{k}\right]\right]$ and $t_{f}=\left(f\left(t_{1}\right), \ldots, f\left(t_{k}\right)\right)$.

Example of $\mathbb{C} P^{1}$.
Consider the projective line $\mathbb{C} P^{1}$ with the action of $S^{1}=\{z \in \mathbb{C},|z|=1\}: g\left(z_{1}: z_{2}\right)=\left(g z_{1}: z_{2}\right)$.
This action has two fixed points $p_{1}=(1: 0)$ and $p_{2}=(0: 1)$ such that $\operatorname{sign}\left(p_{k}\right)=+1, k=1,2$ and $\wedge\left(p_{1}\right)=1, \wedge\left(p_{2}\right)=-1$.

Thus for any genus $L_{f}: \Omega_{U} \rightarrow A$ we have

$$
\begin{gathered}
\Phi_{f}\left(\mathbb{C} P^{1}\right)(u)=\frac{1}{u}+\frac{1}{\bar{u}} \in A[[u]], \\
\Phi_{f}\left(\mathbb{C} P^{1}\right)(f(t))=\frac{1}{f(t)}+\frac{1}{f(-t)} \in H A[[t]] .
\end{gathered}
$$

The elliptic formal group law.

The elliptic formal group law $\mathcal{F}_{E l}(u, v)$ is given by the addition on the elliptic curve in the Tate form

$$
s=u^{3}+\mu_{1} u s+\mu_{2} u^{2} s+\mu_{3} s^{2}+\mu_{4} u s^{2}+\mu_{6} s^{3} .
$$

Theorem.

$\mathcal{F}_{E l}(u, v)=\left(u+v-u v \frac{\left(\mu_{1}+\mu_{3} m\right)+\left(\mu_{4}+2 \mu_{6} m\right) k}{\left(1-\mu_{3} k-\mu_{6} k^{2}\right)}\right) \times$

$$
\times \frac{\left(1+\mu_{2} m+\mu_{4} m^{2}+\mu_{6} m^{3}\right)}{\left(1+\mu_{2} n+\mu_{4} n^{2}+\mu_{6} n^{3}\right)\left(1-\mu_{3} k-\mu_{6} k^{2}\right)},
$$

where $\quad(u, s(u)) \in V_{\mu} \quad$ and $\quad m=\frac{s(u)-s(v)}{u-v}$,

$$
k=\frac{u s(v)-v s(u)}{u-v}, \quad n=m+u v \frac{\left(1+\mu_{2} m+\mu_{4} m^{2}+\mu_{6} m^{3}\right)}{\left(1-\mu_{3} k-\mu_{6} k^{2}\right)} .
$$

Theorem. The exponential of an elliptic formal group is

$$
f_{E l}(t)=-2 \frac{\wp(t)-\frac{1}{12}\left(\mu_{1}^{2}+4 \mu_{2}\right)}{\wp^{\prime}(t)-\mu_{1}\left(\wp(t)-\frac{1}{12} \mu_{1}\left(\mu_{1}^{2}+4 \mu_{2}\right)\right)-\mu_{3}}
$$

where $\wp(t)=\wp\left(t ; g_{2}(\mu), g_{3}(\mu)\right)$.
In the general case $f_{E l}(t) \in H \mathbb{Z}[\mu][[t]]$ where $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{6}\right)$.

Let the elliptic curve be non-degenerate. Then $f_{E l}(t)$ is an elliptic function of order 3 for $\mu_{6} \neq 0$ and of order 2 for $\mu_{6}=0$.

Definition.

The Hirzebruch genus with exponentional $f(t)=f_{E l}(t)$ is called the elliptic genus.

For an elliptic genus we have

$$
\Phi_{f}\left(\mathbb{C} P^{1}\right)(u)=\mu_{1}+\frac{\mu_{3}}{\wp(g(u))-\frac{1}{12}\left(4 \mu_{2}+\mu_{1}^{2}\right)} \in \mathbb{Z}[\mu][[u]] .
$$

The beginning of this series is

$$
\mu_{1}+\mu_{3}\left(u^{2}+\mu_{1} u^{3}+\left(\mu_{1}^{2}+\mu_{2}\right) u^{4}+\left(\mu_{1}^{3}+2 \mu_{1} \mu_{2}+\mu_{3}\right) u^{5}+\ldots\right) .
$$

Corollary.

The elliptic genus is rigid on $\mathbb{C} P^{1}$ with the given structure if and only if $\mu_{3}=0$.

The quaternionic stably complex S^{1}-structure on S^{2}.

Consider the maximum torus \mathbb{T}^{1} in Lie group $S P(1)$. The homogeneous space $S P(1) / \mathbb{T}^{1}$ is the sphere S^{2}. Thus we obtain the stably complex \mathbb{T}^{1}-manifold $\left(S^{2}, c_{\tau}, \theta\right)$.

The action θ has two fixed points p_{1} and p_{2} such that $\operatorname{sign}\left(p_{1}\right)=+1, \operatorname{sign}\left(p_{2}\right)=-1$, and $\wedge\left(p_{1}\right)=\wedge\left(p_{2}\right)=(1)$.

Thus for any genus $L_{f}: \Omega_{U} \rightarrow A$ we have

$$
\Phi_{f}\left(S^{2}\right)(u)=\frac{1}{u}-\frac{1}{u}=0
$$

Note that $\left[S^{2}\right]=0$ for the given structure.

Almost compex structure on S^{6}.

Consider the smallest simple-connected exceptional simple Lie groups G_{2}. It has the rank 2 and dimension 14 and contains as subgroup $S U(3)$.

The homogeneous space $G_{2} / S U(3)$ is the sphere S^{6} and admits G_{2}-invariant almost complex structure.

Thus we obtain the \mathbb{T}^{2}-equivariant almost complex $S U$-structure on S^{6}. This action has two fixed points p_{1} and p_{2}
such that $\operatorname{sign}\left(p_{k}\right)=+1, k=1,2$ and
$\wedge\left(p_{1}\right)=((1,0),(0,1),(-1,-1)), \wedge\left(p_{2}\right)=((-1,0),(0,-1),(1,1))$.

Toric genera of S^{6}.
For any genus $L_{f}: \Omega_{U} \rightarrow A$ we have

$$
\Phi_{f}\left(S^{6}\right)(u, v)=\frac{1}{u v F(\bar{u}, \bar{v})}+\frac{1}{\bar{u} \bar{v} F(u, v)} \in A[[u, v]]
$$

$$
\Phi_{f}\left(S^{6}\right)(f(t), f(q))=\frac{1}{f(t) f(q) f(-t-q)}+\frac{1}{f(-t) f(-q) f(t+q)} \in H A[[t, q]]
$$

Corollary. For any odd series $f(t)$ the genus L_{f} is rigid on S^{6} with given structure.

For the Krichever genus $L_{K r}$ we have

$$
f(t)=f_{K r}(t)=\frac{e^{\frac{\lambda}{2} t}}{\Phi(t ; \tau)}
$$

where $\Phi(u ; \tau)$ is the Baker-Akhiezer function.
By the addition theorem for the Weierstrass σ-function

$$
\frac{\sigma(t+\tau) \sigma(\tau-t)}{\sigma(t)^{2} \sigma(\tau)^{2}}=\wp(t)-\wp(\tau)
$$

we obtain

$$
\Phi_{f}\left(S^{6}\right)(f(t), f(q))=-\wp^{\prime}(\tau) .
$$

It gives the direct proof that the Krichever genus is rigid on the almost complex $S U$-manifold S^{6}.

Theorem.

If an elliptic genus is rigid on S^{6}, then $\Phi_{f}\left(S^{6}\right)=3 \mu_{3}-\mu_{1} \mu_{2}$.
An elliptic genus is rigid on S^{6} if and only if

$$
\begin{aligned}
\mu_{1} \mu_{4} & =\mu_{3} \mu_{2} \\
3 \mu_{1} \mu_{6} & =\mu_{3} \mu_{4} \\
9 \mu_{3} \mu_{6} & =\mu_{3}\left(\mu_{1} \mu_{2} \mu_{3}-3 \mu_{3}^{2}+\mu_{2} \mu_{4}\right) .
\end{aligned}
$$

Corollary. The conditions of the theorem are equivalent to

$$
\begin{aligned}
\mu_{1}=0, \mu_{3}=0, & \text { or } \\
\mu_{3}=0, \mu_{4}=0, \mu_{6}=0, & \text { or } \\
\mu_{2}=-\mu_{1}^{2}, \mu_{4}=-\mu_{1} \mu_{3}, 3 \mu_{6}=-\mu_{3}^{2}, & \text { or } \\
3 \mu_{3}=\mu_{1} \mu_{2}, 3 \mu_{4}=\mu_{2}^{2}, 27 \mu_{6}=\mu_{2}^{3} . &
\end{aligned}
$$

Examples of elliptic genera, not rigid on S^{6}.
Let $\mu=\left(0,0, \mu_{3}, 0, \mu_{6}\right)$ we get $g_{2}=0, g_{3}=-\mu_{3}^{2}-4 \mu_{6}$, then

$$
\begin{aligned}
\Phi_{f}\left(S^{6}\right)(f(t), f(q))=3 \mu_{3} & +\frac{\mu_{3}\left(\mu_{3}^{2}-3 g_{3}\right)}{4} \frac{1}{\wp(t) \wp(q) \wp(t+q)}= \\
& =3 \mu_{3}+\frac{1}{4} \mu_{3}\left(\mu_{3}^{2}-3 g_{3}\right) t^{2} q^{2}(t+q)^{2}+\ldots
\end{aligned}
$$

The following example gives us a polynomial answer:

$$
\begin{aligned}
& \text { Let } \mu=\left(\mu_{1},-\frac{1}{4} \mu_{1}^{2},-\frac{1}{12} \mu_{1}^{3}, \frac{1}{24} \mu_{1}^{4},-\frac{1}{576} \mu_{1}^{6}\right) \text {, then } \\
& \qquad \Phi_{f}\left(S^{6}\right)(f(t), f(q))= \\
& =-\frac{1}{6912} \mu_{1}^{5}\left(\mu_{1}^{4} t^{2} q^{2}(t+q)^{2}-12 \mu_{1}^{2}\left(t^{2}+t q+q^{2}\right)^{2}+288\left(q^{2}+t q+t^{2}\right)\right) .
\end{aligned}
$$

