Krichever formal group law

 and
deformed Baker-Akhiezer function

V. M. Buchstaber.
Steklov Mathematical Institute
〈buchstab@mi.ras.ru〉

Celebrating Igor Krichever's 60th birthday
Columbia University
May 4-7 2011.

We describe explicitly the formal group law over $\mathbb{Z}[\mu]$ corresponding to the Tate uniformization of the general Weierstrass model of the cubic curve with parameters $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{6}\right)$. This law is called the general elliptic formal group law.

We introduce the universal Krichever formal group law with the ring of coefficients $\mathcal{A}_{K r}$. Its exponential is defined by the Baker-Akhiezer function $\Phi(t)=\Phi\left(t ; \tau, g_{2}, g_{3}\right)$, where τ is a point on the elliptic curve with Weierstrass parameters $\left(g_{2}, g_{3}\right)$. Results on the ring $\mathcal{A}_{K r}$ are obtained.

We find the conditions necessary and sufficient for the elliptic formal group law to be a Krichever formal group law, and thus to define a rigid elliptic genus on S^{1}-equivariant $S U$-manifolds.

We introduce the deformed Baker-Akhiezer function $\psi(t)=\Psi(t ; v, w, \mu)$ where v and w are points of the curve with parameters μ. It is a quasiperiodic function with logarithmic derivative determined by the exponential of the general elliptic formal group law.
The deformation parameter is $\alpha=\wp^{\prime}(w) / \wp^{\prime}(v)$. The function $\Psi(t)$ coincides with the Baker-Akhiezer function $\Phi(t)$ if $\alpha= \pm 1$. We obtain the addition theorem for $\psi(t)$. Using this theorem we prove that the deformed Baker-Akhiezer function is the common eigenfunction of two double periodic differential operators of degree 2 and 3 . Their commutator has $\left(1-\alpha^{2}\right)$ as a factor.

Main definitions will be introduced during the talk.
New results presented in the talk have been obtained in recent joint works with E. Yu. Bunkova.

New results are published in

[1] V. M. Buchstaber,
The general Krichever genus, Russian Mathematical Surveys, 2010, 65:5, 979-981.
[2] Victor M. Buchstaber, Elena Yu. Bunkova, Elliptic formal group laws, integral Hirzebruch genera and Krichever genera, arXiv:1010.0944.
[3] E. Yu. Bunkova,
The addition theorem for the deformed Baker-Akhiezer function, Russian Mathematical Surveys, 2010, 65:6.
[4] V. M. Buchstaber and E. Yu. Bunkova,
Krichever formal group Iaw, Functional. Anal. Appl., 45:2 (2011).

In his first works (in the 70-s) I. M. Krichever obtained important results on Hirzebrugh genera of manifolds, using the formal group of geometric cobordisms.

In his works in the 80-s the Baker-Akhiezer function became a powerful tool for solving problems of the theory of integrable systems.

In 1990 I. M. Krichever introduced the Hirzebrugh genus defined by the Baker-Akhiezer function. Using the theory of elliptic functions he proved that his genus has the fundamental rigidity property on manifolds with an S^{1}-equivariant $S U$-structure.

The formal group law.

A commutative one-dim formal group law over a commutative ring A is the formal series

$$
F(u, v)=u+v+\sum a_{i, j} u^{i} v^{j}, \quad a_{i, j} \in A, \quad i>0, j>0,
$$

which satisfies the conditions

$$
\begin{aligned}
F(u, v) & =F(v, u), \\
F(u, F(v, w)) & =F(F(u, v), w) .
\end{aligned}
$$

A homomorphism of formal group laws $h: F_{1} \rightarrow F_{2}$ over the ring A is a series $h(u) \in A[[u]], h(0)=0$, such that

$$
h\left(F_{1}(u, v)\right)=F_{2}(h(u), h(v)) .
$$

A homomorphism h is an isomorphism if $h^{\prime}(0)$ is a unit in A, and it is a strong isomorphism if $h^{\prime}(0)=1$.

The exponential and the logarithm of the formal group law.
Let $F_{a}(u, v)=u+v$. For each formal group law $F(u, v) \in A[[u, v]]$ there exists an isomorphism $h: F_{a} \rightarrow F$ over the ring $A \otimes \mathbb{Q}$.

The corresponding series $f(t) \in A \otimes \mathbb{Q}[[t]]$ is uniquely defined by the conditions

$$
f\left(t_{1}+t_{2}\right)=F\left(f\left(t_{1}\right), f\left(t_{2}\right)\right), \quad f(0)=0, \quad f^{\prime}(0)=1
$$

It is called the exponential of the formal group law $F(u, v)$. The logarithm of the formal group law F is the formal series $g(u)$ such that $g(f(t))=t$. We have

$$
\left.\frac{\partial F(u, v)}{\partial v}\right|_{v=0}=\frac{1}{g^{\prime}(u)}
$$

The universal formal group law.

The formal group law

$$
\mathcal{F}(u, v)=u+v+\sum \alpha_{i, j} u^{i} v^{j}
$$

over the $\operatorname{ring} \mathcal{A}$ is called the universal formal group law, if for any formal group $F(u, v)$ over a ring A there exists a unique homomorphism $r: \mathcal{A} \rightarrow A$ such that

$$
F(u, v)=u+v+\sum r\left(\alpha_{i, j}\right) u^{i} v^{j} .
$$

Construction of the universal formal group.

Over the ring $\mathcal{U}=\mathbb{Z}\left[\beta_{i, j}: i, j>0\right], \operatorname{deg}\left(\beta_{i, j}\right)=-2(i+j-1)$, define

$$
\widehat{F}(u, v)=u+v+\sum \beta_{i, j} u^{i} v^{j} .
$$

We have

$$
\begin{aligned}
& \widehat{F}(\widehat{F}(u, v), w)=u+v+w+\sum \beta_{i, j, k}^{l} u^{i} v^{j} w^{k}, \\
& \widehat{F}(u, \widehat{F}(v, w))=u+v+w+\sum \beta_{i, j, k}^{r} u^{i} v^{j} w^{k} .
\end{aligned}
$$

where $\beta_{i, j, k}^{l}$ and $\beta_{i, j, k}^{r}$ are homogeneous polynomials of $\beta_{i, j}$ and $\operatorname{deg} \beta_{i, j, k}^{l}=\operatorname{deg} \beta_{i, j, k}^{r}=-2(i+j+k-1)$.

Let $J \subset \mathcal{U}$ be the associativity ideal with generators $\beta_{i, j, k}^{l}-\beta_{i, j, k}^{r}$.

Consider the ring $\mathcal{A}=\mathcal{U} / J$ and the canonical projection

$$
\pi: \mathcal{U} \rightarrow \mathcal{A}
$$

Set $\mathcal{F}(u, v)=u+v+\sum \alpha_{i, j} u^{i} v^{j}$, where $\alpha_{i, j}=\pi\left(\beta_{i, j}\right)$.
By the construction the series $\mathcal{F}(u, v)$ over the graded ring \mathcal{A} gives the universal formal group.

Theorem. (M. Lazard, 1955)

$$
\mathcal{A} \simeq \mathbb{Z}\left[a_{n}: n=1,2, \ldots\right]
$$

where $\operatorname{deg} a_{n}=-2 n$.

Well-known formal groups and their exponentials.

$$
\begin{aligned}
& F(u, v)=u+v-\mu_{1} u v, \quad f(t)=\frac{1}{\mu_{1}}\left(1-\exp \left(-\mu_{1} t\right)\right) . \\
& F(u, v)=\frac{u+v}{1+\mu_{2} u v}, \quad f(t)=\frac{1}{\sqrt{\mu_{2}}} \operatorname{th}\left(\sqrt{\mu_{2}} t\right) . \\
& F(u, v)=u \sqrt{1+\frac{1}{4} \mu_{2} v^{2}}+v \sqrt{1+\frac{1}{4} \mu_{2} u^{2}}, \quad f(t)=\frac{2}{\sqrt{\mu_{2}}} \operatorname{sh}\left(\frac{1}{2} \sqrt{\mu_{2}} t\right) . \\
& F(u, v)=\frac{u \sqrt{1-2 \delta v^{2}+\varepsilon v^{4}}+v \sqrt{1-2 \delta u^{2}+\varepsilon u^{4}}}{1-\varepsilon u^{2} v^{2}}, \quad f(t)=\operatorname{sn}(t),
\end{aligned}
$$

where $s n(t)$ is the elliptic sine (Jacobi sine) such that

$$
\left(f^{\prime}\right)^{2}=1-2 \delta f^{2}+\varepsilon f^{4} .
$$

The general Weierstrass model of the elliptic curve

$$
Y^{2} Z+\mu_{1} X Y Z+\mu_{3} Y Z^{2}=X^{3}+\mu_{2} X^{2} Z+\mu_{4} X Z^{2}+\mu_{6} Z^{3}
$$

depends on 5 parameters $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{6}\right)$.

The geometric group structure on the elliptic curve is defined in the following way:
the points P, Q, R of the curve lie on a straight line if and only if $P+Q+R=0$.

Let the zero of the geometric group structure be $O=(0: 1: 0)$.
For $P+Q+R=0$ and $R+\bar{R}+O=0$ we have $P+Q=\bar{R}$.

The Tate coordinates of the elliptic curve.

In the coordinate map $\{Y \neq 0\}$ with $u=-X / Y$ and $s=-Z / Y$:

$$
s=u^{3}+\mu_{1} u s+\mu_{2} u^{2} s+\mu_{3} s^{2}+\mu_{4} u s^{2}+\mu_{6} s^{3}
$$

Thus we obtain the formal series $s(u) \in \mathbb{Z}[\mu][[u]]$:

$$
\begin{aligned}
s=u^{3}+\mu_{1} u^{4}+\left(\mu_{1}^{2}\right. & \left.+\mu_{2}\right) u^{5}+\left(\mu_{1}^{3}+2 \mu_{1} \mu_{2}+\mu_{3}\right) u^{6}+ \\
& +\left(\mu_{1}^{4}+3 \mu_{1}^{2} \mu_{2}+\mu_{2}^{2}+3 \mu_{1} \mu_{3}+\mu_{4}\right) u^{7}+\ldots
\end{aligned}
$$

The coordinates $(u, s(u))$ of the point P are called the arithmetic Tate coordinates of P and give the Tate uniformization of the elliptic curve.

The elliptic formal group law.

Let $P=(u, s(u)), Q=(v, s(v)), R=(w, s(w))$ and $\bar{R}=(\bar{w}, s(\bar{w}))$. The geometric group structure on the elliptic curve V_{μ} defines the series $\mathcal{F}_{E l}(u, v)$ over $\mathbb{Z}[\mu]$ by the equation $\mathcal{F}_{E l}(u, v)=\bar{w}$.

Theorem. (General elliptic formal group law)

$$
\begin{aligned}
\mathcal{F}_{E l}(u, v)=(u+v & \left.-u v \frac{\left(\mu_{1}+\mu_{3} m\right)+\left(\mu_{4}+2 \mu_{6} m\right) k}{\left(1-\mu_{3} k-\mu_{6} k^{2}\right)}\right) \times \\
& \times \frac{\left(1+\mu_{2} m+\mu_{4} m^{2}+\mu_{6} m^{3}\right)}{\left(1+\mu_{2} n+\mu_{4} n^{2}+\mu_{6} n^{3}\right)\left(1-\mu_{3} k-\mu_{6} k^{2}\right)},
\end{aligned}
$$

where $\quad(u, s(u)) \in V_{\mu} \quad$ and $\quad m=\frac{s(u)-s(v)}{u-v}$,

$$
k=\frac{u s(v)-v s(u)}{u-v}, \quad n=m+u v \frac{\left(1+\mu_{2} m+\mu_{4} m^{2}+\mu_{6} m^{3}\right)}{\left(1-\mu_{3} k-\mu_{6} k^{2}\right)} .
$$

Definition. The formal group over A is called the elliptic formal group $F_{E l}(u, v)$ if its classifying ring homomorphism $\mathcal{A} \rightarrow A$ can be presented as $\mathcal{A} \rightarrow \mathbb{Z}[\mu] \rightarrow A$.

Remark. We will also denote by $\mu_{i} \in A$ the images of $\mu_{i} \in \mathbb{Z}[\mu]$.
Corollary. For $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, 0,0\right)$ we have

$$
F_{E l}(u, v)=\frac{(u+v)\left(1-\mu_{3} k\right)-\mu_{1} u v-\mu_{3} u v m}{\left(1-\mu_{3} k\right)\left(1+\mu_{2} u v-\mu_{3} k\right)}
$$

and the epimorphism $\mathcal{A} \rightarrow \mathbb{Z}\left[\mu_{1}, \mu_{2}, \mu_{3}\right]$.
Corollary. For $\mu=\left(0,0,0, \mu_{4}, \mu_{6}\right)$ we have

$$
F_{E l}(u, v)=u+v+k \frac{2 \mu_{4} m+3 \mu_{6} m^{2}}{1+\mu_{4} m^{2}+\mu_{6} m^{3}}
$$

and the epimorphism $\mathcal{A}\left[\frac{1}{2}, \frac{1}{3}\right] \rightarrow \mathbb{Z}\left[\frac{1}{2}, \frac{1}{3}, \mu_{4}, \mu_{6}\right]$.

The Weierstrass functions.

Let $\wp(t)$ such that $\lim _{t \rightarrow 0}\left(\wp(t)-\frac{1}{t^{2}}\right)=0$
be the unique doubly periodic even meromorphic function on \mathbb{C} with periods $2 \omega_{1}, 2 \omega_{2}$ and double poles in lattice points only. Here $\operatorname{Im}\left(\omega_{2} / \omega_{1}\right)>0$. It defines the odd function

$$
\zeta(t) \text { such that } \zeta^{\prime}(t)=-\wp(t) \text { and } \lim _{t \rightarrow 0}\left(\zeta(t)-\frac{1}{t}\right)=0
$$

and the entire odd function

$$
\sigma(t) \text { such that }(\ln \sigma(t))^{\prime}=\zeta(t) \text { and } \sigma^{\prime}(0)=1
$$

Periodic properties:

$$
\begin{aligned}
& \wp\left(t+2 \omega_{k}\right)=\wp(t), \quad \zeta\left(t+2 \omega_{k}\right)=\zeta(t)+2 \eta_{k} \\
& \sigma\left(t+2 \omega_{k}\right)=-\sigma(t) \exp \left(2\left(t+\omega_{k}\right) \eta_{k}\right), \quad k=1,2
\end{aligned}
$$

The standard Weierstrass model of the elliptic curve. In the coordinate map $\{Z \neq 0\}$ with $x=X / Z$ and $y=Y / Z$:

$$
y^{2}+\mu_{1} x y+\mu_{3} y=x^{3}+\mu_{2} x^{2}+\mu_{4} x+\mu_{6}
$$

Set $\quad b_{2}=\mu_{1}^{2}+4 \mu_{2}, \quad b_{4}=\mu_{1} \mu_{3}+2 \mu_{4}, \quad b_{6}=\mu_{3}^{2}+4 \mu_{6}$.
By the linear transform $(x, y) \mapsto\left(x+\frac{1}{12} b_{2}, 2 y+\mu_{1} x+\mu_{3}\right)$ we come to the standard Weierstrass model

$$
y^{2}=4 x^{3}-g_{2} x-g_{3},
$$

where $\quad g_{2}(\mu)=\frac{1}{12} b_{2}^{2}-2 b_{4}, \quad g_{3}(\mu)=\frac{1}{6} b_{2} b_{4}-\left(\frac{1}{6} b_{2}\right)^{3}-b_{6}$.

The standard Weierstrass model of the curve has the classical Weierstrass uniformization

$$
\wp^{\prime}(t)^{2}=4 \wp(t)^{3}-g_{2} \wp(t)-g_{3}
$$

where the periods of $\wp(t)=\wp\left(t ; g_{2}, g_{3}\right)$ are

$$
2 \omega_{k}=\oint \frac{d x}{y}, \quad k=1,2
$$

The discriminant of the standard elliptic curve is

$$
\Delta(\mathrm{g})=g_{2}^{3}-27 g_{3}^{2}
$$

The curve is degenerate if $\Delta(g(\mu))=0$.

Theorem. The exponential of the general elliptic formal group is

$$
f_{E l}(t)=-2 \frac{\wp(t)-\frac{1}{12} b_{2}}{\wp^{\prime}(t)-\mu_{1} \wp(t)+\frac{1}{12} \mu_{1} b_{2}-\mu_{3}}
$$

where $\wp(t)=\wp\left(t ; g_{2}(\mu), g_{3}(\mu)\right)$.
$f_{E l}(t)$ is an elliptic function of order 3 for $\mu_{6} \neq 0$ and of order 2 for $\mu_{6}=0$ (in the case of a non-degenerate curve).

Example of degenerate curve gives $\mu=\left(\mu_{1}, \mu_{2}, 0,0,0\right)$. Then

$$
\wp(t)=\frac{(a-b)^{2}}{4}\left(\left(\frac{e^{a t}+e^{b t}}{e^{a t}-e^{b t}}\right)^{2}-\frac{2}{3}\right)=\frac{1}{t^{2}}+\frac{(a-b)^{4}}{240} t^{2}+\ldots
$$

where $\mu_{1}=a+b, \quad \mu_{2}=-a b$. The formal group law is rational

$$
F(u, v)=\frac{u+v-\mu_{1} u v}{1+\mu_{2} u v} \quad \text { with } \quad f(t)=\frac{e^{a t}-e^{b t}}{a e^{a t}-b e^{b t}} .
$$

The Baker-Akhiezer function

$$
\Phi(t)=\frac{\sigma(\tau+t)}{\sigma(t) \sigma(\tau)} e^{-\zeta(\tau) t}
$$

Its parameters are the parameters $\left(g_{2}, g_{3}\right)$ of the curve in the standard Weierstrass form and a point τ on this curve.

Set

$$
L_{2}=\frac{d^{2}}{d t^{2}}-2 \wp(t) .
$$

$\Phi(t)$ is a quasiperiodic solution of the Lame equation

$$
L_{2} \Phi(t)=\wp(\tau) \Phi(t)
$$

such that $\lim _{t \rightarrow 0}\left(\Phi(t)-\frac{1}{t}\right)=0$. Set

$$
L_{3}=2 \frac{d^{3}}{d t^{3}}-6_{\wp}(t) \frac{d}{d t}-3 \wp^{\prime}(t) .
$$

Then

$$
L_{3} \Phi(t)=\wp^{\prime}(\tau) \Phi(t) .
$$

We have

$$
\left[L_{2}, L_{3}\right]=\wp^{\prime \prime \prime}(t)-12 \wp(t) \wp^{\prime}(t)=0 .
$$

Set

$$
L_{1}=\frac{d}{d t}+\phi(t), \quad \text { where } \quad \phi(t)=-\frac{1}{2} \frac{\wp^{\prime}(t)-\wp^{\prime}(\tau)}{\wp(t)-\wp(\tau)}
$$

Then

$$
L_{1} \Phi(t)=0
$$

and

$$
L_{2}=L_{1}^{-} L_{1}^{+}+\wp(\tau) \quad \text { where } \quad L_{1}=\frac{d}{d t}-\phi(t)
$$

The addition theorem for the Baker-Akhiezer function.

$$
\Phi(t+q)=\frac{\Phi(t) \Phi^{\prime}(q)-\Phi^{\prime}(t) \Phi(q)}{\wp(t)-\wp(q)} .
$$

Corollary.

$$
\frac{\Phi(t+q)}{\Phi(t) \Phi(q)}=-\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\wp(t) & \wp(q) & \wp(\tau) \\
\wp^{\prime}(t) & \wp^{\prime}(q) & \wp^{\prime}(\tau)
\end{array}\right| .
$$

The universal Krichever formal group law.

Let $\mathcal{B}=\mathbb{Z}\left[\chi_{k}: k=1,2, \ldots\right]$.
Consider the series of the following special form

$$
\widehat{\mathcal{F}}(u, v)=u b(v)+v b(u)-b^{\prime}(0) u v+\frac{b(u) \beta(u)-b(v) \beta(v)}{u b(v)-v b(u)} u^{2} v^{2}
$$

with $b(u)=1+\sum b_{i} u^{i}$, and $\beta(u)=\frac{b^{\prime}(u)-b^{\prime}(0)}{2 u}=\sum_{k \geqslant 0} \beta_{k+2} u^{k}$.
Here $b_{1}=\chi_{1}, \quad b_{2 i}=\chi_{2 i} \quad b_{2 i+1}=2 \chi_{2 i+1} \quad$ and $\beta_{2 k}=k \chi_{2 k}, \beta_{2 k+1}=(2 k+1) \chi_{2 k+1}$.

This series gives the formal group law $\widehat{\mathcal{F}}(u, v) \in \widehat{\mathcal{A}}[[u, v]]$ where $\widehat{\mathcal{A}}=\mathcal{B} / \widehat{\mathcal{J}}$ and $\widehat{\mathcal{J}}$ is the associativity ideal.

Theorem. $\hat{\mathcal{A}} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right]$.
Theorem. $\widehat{\mathcal{J}}=\sum_{k \geq 5} \widehat{\mathcal{J}}_{2 k}$.
Lemma. $\widehat{\mathcal{J}}_{10}=\mathbb{Z}$ generated by

$$
j_{10}=5 \chi_{5}+4 \chi_{1} \chi_{4}+3 \chi_{1}^{2} \chi_{3}+2 \chi_{2} \chi_{3} .
$$

Lemma. $\widehat{\mathcal{J}}_{12}=\mathbb{Z} \oplus \mathbb{Z}$ generated by $\chi_{1} j_{10}$ and $j_{12}=2 \widehat{j}_{12}$, where

$$
\hat{j}_{12}=\chi_{6}+\chi_{3}^{2}+\chi_{2} \chi_{4}-2 \chi_{1}^{2}\left(\chi_{1} \chi_{3}+\chi_{4}\right) .
$$

Corollary. There is an element of order 2 in the group $\widehat{\mathcal{A}_{12}}$.
I. M. Krichever introduced the Hirzebruch genus L_{f} that is determined by the function

$$
f_{K r}(t)=\frac{\exp \frac{1}{2} \lambda t}{\Phi\left(t ; \tau, g_{2}, g_{3}\right)}
$$

and proved the fundamental rigidity property for this genus on manifolds with an S^{1}-equivariant $S U$-structure.

Theorem. The isomorphism $\gamma: \hat{\mathcal{A}} \otimes \mathbb{Q} \rightarrow \mathbb{Q}\left[\lambda, \wp(\tau), \wp^{\prime}(\tau), g_{2}\right]$
where $\quad \gamma\left(\chi_{1}\right)=\lambda, \quad \gamma\left(\chi_{2}\right)=-\frac{1}{8} \lambda^{2}+\frac{3}{2} \wp(\tau)$,
$\gamma\left(\chi_{3}\right)=\frac{1}{24} \lambda^{3}-\frac{1}{2} \wp(\tau) \lambda+\frac{1}{3} \wp^{\prime}(\tau)$,
$\gamma\left(\chi_{4}\right)=-\frac{9}{128} \lambda^{4}+\frac{15}{16} \wp(\tau) \lambda^{2}-\frac{3}{4} \wp^{\prime}(\tau) \lambda+\frac{3}{8} \wp(\tau)^{2}-\frac{1}{8} g_{2}$.
transforms the exponential of the formal group $\widehat{\mathcal{F}}(u, v)$ to $f_{K r}(t)$.

The previous theorem leads to the following:

Definition. The formal group law $\widehat{\mathcal{F}}(u, v)$ will be called the universal Krichever formal group law and denoted $\mathcal{F}_{K r}$. The ring $\widehat{\mathcal{A}}$ will be denoted $\mathcal{A}_{K r}$.

Definition. A formal group over a ring A is called a Krichever formal group $F_{K r}(u, v)$ if its classifying ring homomorphism $\mathcal{A} \rightarrow A$ can be presented as $\mathcal{A} \rightarrow \mathcal{A}_{K r} \rightarrow A$.

The parameters $\left(g_{2}, g_{3}\right)$ of a curve, a point τ on this curve and a parameter λ define the exponential of the Krichever formal group law. The set $\left(\lambda, \tau, g_{2}, g_{3}\right)$ we will call the parameters of the Krichever formal group law.

Definition. A formal group over a ring A is called an elliptic Krichever formal group if
its classifying ring homomorphism $\mathcal{A} \rightarrow A$ can be presented simultaneously as $\mathcal{A} \rightarrow \mathcal{A}_{K r} \rightarrow A$ and $\mathcal{A} \rightarrow \mathbb{Z}[\mu] \rightarrow A$.

Theorem.

An elliptic formal group law over a ring A without zero divisors is a Krichever formal group law if and only if in A we have:

$$
\mu_{2} \mu_{3}-\mu_{1} \mu_{4}=0, \quad \mu_{3}^{2}+3 \mu_{6}=0, \quad \mu_{3}\left(\mu_{1} \mu_{3}+\mu_{4}\right)=0
$$

Corollary. The conditions of the Theorem are equivalent to

$$
\begin{aligned}
\mu_{6}=0 & \text { if } \mu_{1}=0, \mu_{3}=0 ; \\
\mu_{2}=0, \mu_{3}^{2}=-3 \mu_{6}, \quad \mu_{4}=0 & \text { if } \mu_{1}=0, \mu_{3} \neq 0 \\
\mu_{4}=0, \quad \mu_{6}=0 & \text { if } \mu_{1} \neq 0, \mu_{3}=0 \\
\mu_{2}=-\mu_{1}^{2}, \mu_{4}=-\mu_{1} \mu_{3},-3 \mu_{6}=\mu_{3}^{2} & \text { if } \mu_{1} \neq 0, \mu_{3} \neq 0
\end{aligned}
$$

Examples of the elliptic Krichever formal groups.
Let $\mu_{1}=\mu_{3}=\mu_{6}=0$ and $\delta=\mu_{2}, \varepsilon=\mu_{2}^{2}-4 \mu_{4}$ then

$$
F_{E l}(u, v)=F_{K r}(u, v)=\frac{u \rho(v)+v \rho(u)}{1-\varepsilon u^{2} v^{2}}
$$

for $\rho^{2}(u)=1-2 \delta u^{2}+\varepsilon u^{4}$.
Let $\mu_{1}=\mu_{2}=\mu_{4}=0$ and $\mu_{3}^{2}=-3 \mu_{6}$ then

$$
F_{E l}(u, v)=F_{K r}(u, v)=\frac{u^{2} r(v)-v^{2} r(u)}{u r^{2}(v)-v r^{2}(u)}
$$

for $r^{3}(u)=1-3 \mu_{3} u^{3}$.
Let $\mu_{3}=\mu_{4}=\mu_{6}=0$ then

$$
F_{E l}(u, v)=F_{K r}(u, v)=\frac{u+v-\mu_{1} u v}{1+\mu_{2} u v}
$$

Theorem.

The Krichever formal group law with parameters ($\lambda, \tau, g_{2}, g_{3}$) over a ring without zero divisors is an elliptic formal group law if and only if the following conditions hold:
Set $a_{1}=\frac{\lambda}{2}, \quad a_{2}=\wp(\tau), a_{3}=\wp^{\prime}(\tau), a_{4}=\frac{g_{2}}{2}$ then

$$
\begin{aligned}
3 a_{1}^{5}-10 a_{2} a_{1}^{3}+15 a_{2}^{2} a_{1}-2 a_{4} a_{1}-4 a_{2} a_{3} & =0, \\
\left(a_{1}^{3}-3 a_{2} a_{1}+a_{3}\right)\left(9 a_{1}^{4}-30 a_{2} a_{1}^{2}+12 a_{3} a_{1}+2 a_{4}-3 a_{2}^{2}\right) & =0 .
\end{aligned}
$$

Corollary. For $\lambda=0$ the conditions of the theorem become

$$
\wp^{\prime}(\tau)=0 \quad \text { or } \quad \wp(\tau)=0, \quad g_{2}=0 .
$$

We have

$$
f_{K r}(t)=\frac{\exp \frac{1}{2} \lambda t}{\Phi\left(t ; \tau, g_{2}, g_{3}\right)} .
$$

Let $\lambda=0, \wp^{\prime}(\tau)=0$. Then $\mu_{1}=\mu_{3}=\mu_{6}=0$.
In this case $f_{K r}(t)=s n(t)$ is the solution of the equation

$$
f^{\prime 2}=1+3 a_{2} f^{2}+\left(3 a_{2}^{2}-\frac{1}{2} a_{4}\right) f^{4} .
$$

Let $\lambda=0, \wp(\tau)=0, g_{2}=0$. Then $\mu_{1}=\mu_{2}=\mu_{4}=0$
and $\mu_{3}^{2}=-3 \mu_{6}=\frac{1}{9} a_{3}^{2}$. Set $\wp(t)=\wp\left(t ; 0, \frac{1}{27} a_{3}^{2}\right)$.
Then $f_{K r}(t)=\frac{-2 \wp(t)}{\wp^{\prime}(t)+\frac{1}{3} a_{3}}$ is the solution of the equation

$$
f^{\prime 3}=\left(1+a_{3} f^{3}\right)^{2} .
$$

The deformed Baker-Akhiezer function.

$$
\begin{gathered}
\text { Set } \phi(t ; v, w)=\frac{1}{f_{E l}(t)}-\frac{\mu_{1}}{2}=-\frac{1}{2} \frac{\wp^{\prime}(t)+\wp^{\prime}(w)}{\wp(t)-\wp(v)}, \\
\wp(t)=\wp\left(t ; g_{2}(\mu), g_{3}(\mu)\right), \wp^{\prime}(w)=-\mu_{3}, \wp(v)=\frac{1}{12}\left(4 \mu_{2}+\mu_{1}^{2}\right) .
\end{gathered}
$$

The deformed Baker-Akhiezer function $\Psi(t)$ is the solution of

$$
L_{1} \Psi(t)=0, \text { where } L_{1}=\frac{d}{d t}+\phi(t)
$$

such that $\lim _{t \rightarrow 0}\left(\Psi(t)-\frac{1}{t}\right)=0$.

Lemma.

$$
\Psi(t)=\frac{\sigma(v+t)^{\frac{1}{2}(1-\alpha)} \sigma(v-t)^{\frac{1}{2}(1+\alpha)}}{\sigma(t) \sigma(v)} \exp \left(\left(-\frac{\mu_{1}}{2}+\alpha \zeta(v)\right) t\right)
$$

where $\alpha=\frac{\wp^{\prime}(w)}{\wp^{\prime}(v)}$ is the deformation parameter.
$\Psi(t ; v, w)=\Phi(t ; v)$ for $\alpha=-1$ and $\Psi(t ; v, w)=\Phi(t ;-v)$ for $\alpha=1$.

Let $\wp^{\prime}(w)=-\wp^{\prime}(\tau), \wp(v)=\wp(\tau)$. Then $\Psi(t ; v, w)$ is the usual Baker-Akhiezer function $\Phi(t ; \tau)$. Here τ is the solution of the system $\wp^{\prime}(\tau)=\mu_{3}, \wp(\tau)=\frac{1}{12}\left(4 \mu_{2}+\mu_{1}^{2}\right)$, which is compatible only in if $\mu_{6}=0$.

The addition formula.

Theorem.

$$
\begin{aligned}
& \Psi(t+q)= \\
& =\frac{\left|\begin{array}{cc}
\Psi(t) & \Psi(q) \\
\Psi^{\prime}(t) & \Psi^{\prime}(q)
\end{array}\right|}{\wp(t)-\wp(q)} \times \frac{\left|\begin{array}{ccc}
1 & 1 & 1 \\
\wp(t) & \wp(q) & \wp(v) \\
\wp^{\prime}(t) & \wp^{\prime}(q) & \wp^{\prime}(v)
\end{array}\right| \begin{array}{ccc}
\frac{1-\alpha}{2} & \left.\begin{array}{ccc}
1 & 1 & 1 \\
\wp(t) & \wp(q) & \wp(-v) \\
\wp^{\prime}(t) & \wp^{\prime}(q) & \wp^{\prime}(-v)
\end{array} \right\rvert\, \\
\frac{1-\alpha}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\wp(t) & \wp(q) & \wp(v) \\
\wp^{\prime}(t) & \wp^{\prime}(q) & \wp^{\prime}(v)
\end{array}\right|+\frac{1+\alpha}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\wp(t) & \wp(q) & \wp(-v) \\
\wp^{\prime}(t) & \wp^{\prime}(q) & \wp^{\prime}(-v)
\end{array}\right|
\end{array} .}{} .
\end{aligned}
$$

Properties of the deformed Baker-Akhiezer function

 for $\mu_{1}=0$.1. In the vicinity of $t=0$ we have

$$
\Psi(t ; v, w)=\frac{1}{t}-\frac{1}{2} \wp(v) t+\frac{1}{6} \wp^{\prime}(w) t^{2}+\left(t^{3}\right)
$$

2. The functions $\Psi(t ; v, w)$ and $\Psi(t ;-v, w)$ give the solutions of the deformed Lame equation

$$
\begin{gathered}
L_{2} \Psi(t)=\wp(v) \Psi(t), \quad \text { where } \quad L_{2}=\frac{d^{2}}{d t^{2}}-U \\
\text { and } U=2 \wp(t)-\frac{1-\alpha^{2}}{4}\left(\frac{\wp^{\prime}(v)}{\wp(t)-\wp(v)}\right)^{2} .
\end{gathered}
$$

3. Let $2 \omega_{k}, k=1,2$ be the periods of the \wp-function. Then

$$
\begin{gathered}
\Psi\left(t+2 \omega_{k} ; v, w\right)=\Psi(t ; v, w) \exp \left(2 \alpha\left(\zeta(v) \omega_{k}-\eta_{k} v\right)\right) \\
\psi\left(t ; v+2 \omega_{k}, w\right)=\Psi(t ; v, w)
\end{gathered}
$$

The function $\Psi\left(t ; \omega_{k}, w\right)=\Psi\left(t ; \omega_{k}\right)$ does not depend on w and $\Psi\left(t+2 \omega_{k} ; \omega_{k}\right)=\psi\left(t ; \omega_{k}\right)$.
4. $\Psi\left(t ; v, \omega_{k}\right)=\sqrt{\wp(t)-\wp(v)}$. In this case $\alpha=0$.
5. We have

$$
\Psi(t ; v, w)=\Psi(t ;-v,-w)=-\Psi(-t ; v,-w) .
$$

Let $L_{1}^{+}=L_{1}=\partial+\phi(t)$ and $L_{1}^{-}=\partial-\phi(t)$ where

$$
\phi(t)=-\frac{1}{2} \frac{\wp^{\prime}(t)+\wp^{\prime}(v)}{\wp(t)-\wp(v)}+\frac{1-\alpha}{2} \frac{\wp^{\prime}(v)}{\wp(t)-\wp(v)} .
$$

We have

$$
L_{2}-\wp(v)=L_{1}^{-} L_{1}^{+} .
$$

Set $V=\frac{\left(1-\alpha^{2}\right)}{16} \wp^{\prime}(v)^{2} \mathcal{T}$, where $\mathcal{T}=\frac{\left(3 \zeta^{\prime}(t)+\alpha \wp^{\prime}(v)\right)}{(\wp(t)-\wp(v))^{3}}$.
The addition formula gives the operator

$$
L_{3}=2 \partial^{3}-3 U \partial-U_{0}
$$

where $U_{0}=\frac{3}{2} U^{\prime}+2 V$, such that $L_{3} \Psi(t)=-\alpha \wp^{\prime}(v) \Psi(t)$. We have

$$
\left[L_{2}, L_{3}\right]=-\frac{1}{4}\left(1-\alpha^{2}\right) \wp^{\prime}(v)^{2}\left(\frac{\partial}{\partial t} \mathcal{T}\right) L_{1} .
$$

The Hirzebruch genera.

Let $f(t)=t+\sum f_{k} t^{k+1}$, where $f_{k} \in A \otimes \mathbb{Q}$.

$$
\text { Set } \quad L_{f}\left(\sigma_{1}, \ldots, \sigma_{n}\right)=\prod_{i=1}^{n} \frac{t_{i}}{f\left(t_{i}\right)}, n=1,2,3, \ldots
$$

where σ_{k} is the k-th elementary symmetric polynomial of t_{1}, \ldots, t_{n}.
The Hirzebruch genus L_{f} of a stably complex manifold $M^{2 n}$ with tangent Chern classes $c_{i}=c_{i}\left(\tau\left(M^{2 n}\right)\right)$ and fundamental cycle $\left\langle M^{2 n}\right\rangle$ is defined by the formula

$$
L_{f}\left(M^{2 n}\right)=\left(L_{f}\left(c_{1}, \ldots, c_{n}\right),\left\langle M^{2 n}\right\rangle\right) \in A \otimes \mathbb{Q} .
$$

The Hirzebruch genus L_{f} is called A-integer if $L_{f}\left(M^{2 n}\right) \in A$ for any stably complex manifold $M^{2 n}$.

A formal group law over A corresponds to a ring homomorphism $\Omega_{U} \rightarrow A$, that defines an A-integer Hirzebruch genus.

