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The Jaynes-Cummings n-spin model.

We consider a system of n spins and a harmonic oscillator with
Hamiltonian [Jaynes-Cummings (1963), Gaudin (1982), Yurbashyan,
Kuznetsov, Altshuler (2005)....]:

H =
n
∑

j=1

2ǫjs
z
j + ωb̄b+ g

n
∑

j=1

(

b̄s−j + bs+j
)

with Poisson brackets
{b, b̄} = i,

{saj , sbj} = −ǫabcs
c
j , ~sj

2 = s2

This is a celebrated model in quantum optics, cold atoms....

Phase space has dimension 2(n+ 1).
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Lax matrix.

We can write these equations in the Lax form L̇ = [L,M ].

L(λ) = 2λσz + 2(bσ+ + b̄σ−) +
n
∑

j=1

sj

λ− ǫj

M(λ) = −i(λ+ ω
2 )σ

z − i(bσ+ + b̄σ−)

Letting

L(λ) =

(

A(λ) B(λ)
C(λ) −A(λ)

)

we have

A(λ) = 2λ+
n
∑

j=1

szj

λ− ǫj

B(λ) = 2b+
n
∑

j=1

s−j

λ− ǫj
, C(λ) = 2b̄+

n
∑

j=1

s+j

λ− ǫj
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Spectral curve
The consequence of this equation is that the spectral curve

Γ(λ, µ) ≡ det(L(λ)− µ) = 0

is independent of time. Since L(λ) is traceless, it reads

µ2 = A2(λ) +B(λ)C(λ) ≡ Q2n+2(λ)
∏n

j=1(λ− ǫj)2

Q2n+2(λ)
∏n

j=1(λ− ǫj)2
= 4λ2 + 4Hn+1 + 2

n
∑

j=1

Hj

λ− ǫj
+

n
∑

j=1

s2

(λ− ǫj)2

The genus of the curve is g = n. The (n+ 1) Poisson commuting
Hamiltonians are

Hn+1 = bb̄+
n
∑

j=1

szj

Hj = 2ǫjs
z
j + (bs+j + b̄s−j ) +

∑

k 6=j

sj · sk
ǫj − ǫk

, j = 1, · · · , n

The Hamiltonian of the system is H = ωHn +
∑

j Hj
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The moment map.
The Hamiltonians Hj , j = 1 · · ·n+ 1 define an application from phase
space M to Rn+1. It is called the moment map.

F : M → Rn+1, x ∈ M → (H1(x), H2(x), · · ·Hn(x)) ∈ Rn+1

Its image is a domain of Rn+1 which is a very important object. For
instance when the Hj define a toric action (all flows are 2π-periodic) on a
compact phase space, there is the famous theorem of Atiyah (1982), and
Guillemin and Sternberg (1982) stating that the image of the moment map
is a convex polytope.
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Rank Zero, Normal Forms.

We look for the points such that ∂xi
Hj = 0. In our case

∂bHj = s+j , ∂b̄Hn = b

so the points of rank zero are the points such that

Pi(e1, · · · , en) : szj = sej , ej = ±1, s±j = 0, b = b̄ = 0

Hence we have 2n points of rank zero.
To analyse the system around these points we have to expand the
Hamiltonians Hj to second order.

Hj = Hj(0) +
∑ ∂Hj

∂xk∂xl
(0)xkxl + · · ·

Normal forms are obtained by the simultaneous “diagonalisation” of these
quadratic forms. This is a non trivial problem because the
“diagonalisation” has to be done using real symplectic transformations.
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The result is Williamson theorem (1936): There exist canonical
coordinates q1, · · · qn, p1, · · · , pn such that the above quadratic forms can
be decomposed on the following quadratic polynomials

P
elliptic
i = p2i + q2i , i = 1, 2, · · · ,m1

P
hyperbolic
i = piqi, i = m1 + 1, · · ·m1 +m2

P
(1)focus−focus
i = piqi + pi+1qi+1, i = m1 +m2 + 1 · · ·

P
(2)focus−focus
i = piqi+1 − pi+1qi, · · ·m1 +m2 +m3

where m1 +m2 + 2m3 = n. The triple (m1,m2,m3) is the type of the
singular point.

How to achieve this decomposition ? Clearly, theses coordinates also
depict the spectrum of the quantum system around the critical points. But
to analyse the quantum spectrum, the tool is well known : Bethe Ansatz.

Can we adapt the algebraic Bethe Ansatz technique to compute the
normal forms ?

Moment map and Bethe Ansatz in the Jaynes-Cummings Model. – p.8/32



Classical Bethe Ansatz.

Recall the Lax matrix

L(λ) =

(

A(λ) B(λ)
C(λ) −A(λ)

)

We have the Poisson commutation relations

{L1(λ), L2(µ)} = −i

[

P12

λ− µ
, L1(λ) + L2(µ)

]

or explicitely

{A(λ), B(µ)} =
i

λ− µ
(B(λ)−B(µ))

{A(λ), C(µ)} = − i

λ− µ
(C(λ)− C(µ))

{B(λ), C(µ)} =
2i

λ− µ
(A(λ)− A(µ))
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It follows that 1
2Tr (L

2(λ)) = A2(λ) + B(λ)C(λ) has the nice commutaion
relation

{

1

2
Tr L2(λ), C(µ)

}

=
2i

λ− µ

(

A(λ)C(µ)−A(µ)C(λ)
)

When we expand around a critical configuration, the quantities (b, b̄, s±j )
are first order, but szj is second order because

szj = ej

√

s2 − s+j s
−
j = sej −

ej

2s
s+j s

−
j + · · · , ej = ±1

Notice that C(µ) = 2b̄
g +

∑n−1
j=0

s+
j

µ−ǫj
is first order while

A(λ) = 2λ
g2 − ω

g2 +
∑n−1

j=0

szj
λ−ǫj

is constant plus second order. So in the

right-hand side we can replace A(λ) and A(µ) by their zeroth order
expression :

A(λ) ≃ a(λ) = 2λ+
n
∑

j=1

sej

λ− ǫj
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We arrive at
{

1

2
Tr L2(λ), C(µ)

}

=
2i

λ− µ

(

a(λ)C(µ)− a(µ)C(λ)
)

This will be precisely of the wanted form if we can kill the unwanted term
C(λ). This is achieved by imposing the condition (“classical Bethe
equation”)

a(µ) = 0 (⋆)

This is an equation of degree n+ 1 for µ. Let us call µi its solutions.
Hence we construct in this way n+ 1 variables C(µi). To construct the
conjugate variables, we consider commutation relation of B(λ) and C(µ).
In our linear approximation it reads

{B(µi), C(µj)} =
2i

µi − µj
(a(µi)− a(µj))

If µi and µj are different solutions of eq.( ⋆ ), then obviously

{B(µi), C(µj)} = 0, µi 6= µj

If however µj = µi then
{B(µi), C(µi)} = 2ia′(µi)

We have indeed constructed canonical coordinates !
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It is simple to express the quadratic Hamiltonians in theses coordinates:

1

2
Tr L2(λ) = a2(λ) +

∑

i

a(λ)

a′(µi)(λ− µi)
B(µi)C(µi)

Note that there is no pole at λ = µi because a(µi) = 0.
If µi is real we have C(µi) = B(µi). We have an elliptic term.

C(µi) ≃
√

|a′(µi)|(pi + iqi), B(µi) ≃
√

|a′(µi)|(pi − iqi),

B(µi)C(µi) ≃ |a′(µi)|(p2i + q2i )

If µi+1 = µ̄i is a pair of complex conjugate solutions, we have
C(µi+1) = B(µi).

C(µi) ≃ (pi + ipi+1), B(µi) ≃ −ia′(µi)(qi − iqi+1),

C(µi+1) ≃ ia′(µi+1)(qi + iqi+1), B(µi+1) ≃ (pi − ipi+1)

Re

(

C(µi)B(µi)

ia′(µi)

)

≃ piqi+pi+1qi+1, Im

(

C(µi)B(µi)

ia′(µi)

)

≃ piqi+1−pi+1qi
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So in order to compute the type of the singularity we have to study the
Classical Bethe equation

µi = −s

2

n
∑

j=1

ej

µi − ǫj
, (⋆⋆)

ǫ1

I
n
s
t
a
b
le

S
t
a
b
le
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Rank > 0, Spectral curve.

The analysis of the other strata of the bifurcation diagram become rapidly
very cumbersome. However it was remarked by Michèle Audin (1996)
that all this was encoded into the degeneracies of the spectral curve. Let
me explain why.
The spectral curve reads det(L(λ)− µ) = 0 or

µ2 =
Q2n+2(λ)

∏n
j=1(λ− ǫj)2

= 4λ2 + 0λ+ 4Hn+1 + 2
n
∑

j=1

Hj

λ− ǫj
+

n
∑

j=1

s2

(λ− ǫj)2

hence Q2n+2(λ) is a polynomial of degree 2n+ 2 subjected to n+ 2
constraints
Defining y = µ

∏

j(λ− ǫj), the equation of the curve becomes

y2 = Q2n+2(λ)
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It is a fundamental fact that one can reconstruct everything from the data
of the spectral curve and g points on it (separated variables). If we call λk

the coordinates of these points the equations of motion for the flow
generated by Hj take the form (in our case)

∑

k

∂tjλk ωj(λk) = −iδij

where ωj(λ) are the g holomorphic differentials on Γ. For generic points
λk the matrix ωj(λk) is invertible. Hence so is the matrix ∂tjλk. This
means that the flows ∂tj are independent and therefore the moment map
has maximal rank as long as the curve is non degenerate. The curve
degenerates when Q2n+2(λ) has a double zero

Q2n+2(λ) = (λ− E)2Q̃2n(λ)

Repeating the process of adding a double zero we construct the different
strata of the bifurcation diagram.
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For instance, we can repeat the process until Q2n+2(λ) is a perfect square

Q2n+2(λ) =





n+1
∑

j=0

ajλ
j





2

we have n+ 2 coefficients aj but we have n+ 2 constraints on Q2n+2(λ)
hence they are completely determined. This is an easy calculation. We
find

Q2n+2(λ)
∏

j(λ− ǫj)2
=



2λ+

n
∑

j=1

sej

λ− ǫj





2

= a2(λ)

We recover the rank zero critical points. More generally the degeneracies
we look at are of the form

Q2n+2(λ) =

(

n+1−r
∑

i=0

aiλ
i

)2




2r
∑

j=0

bjλ
j



 , an+1−r = 1

We have (n+ 1− r) + 2r+ 1 = n+ r+ 2 coefficients on which we impose

n + 2 constraints. Hence the leaf of rank r is of dimension r. We remark

that the conditions are linear equations on the bj so that we always start

by solving them. If 2r > n + 1 it remains 2r − n − 1 free coefficients bjMoment map and Bethe Ansatz in the Jaynes-Cummings Model. – p.16/32



Examples: One spin...

In this case the polynomial Q2n+2(λ) reads :

Q4(λ)

(λ− ǫ1)2
= 4λ2 + 4H2 +

2H1

λ− ǫ1
+

s2

(λ− ǫ1)2

The most degenerate case is when Q4(λ) is a perfect square. Next we
assume that

Q4(λ) = (λ− ǫ1 +
x
2 )

2(b2λ
2 + b1λ+ b0), b2 6= 0

We impose the three constraints on Q4(λ) and we find

b2 = 4, b1 = −4x, b0 = −4

(

ǫ21 − xǫ1 −
s2

x2

)

The values of the Hamiltonians are

H1 = −x4 − 2 ǫ1 x
3 − 4 s2

2x
, H2 = −3x4 − 8 ǫ1 x

3 + 4 ǫ21 x
2 − 4 s2

4x2
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One spin. Two stable points (•)

s = 20, ǫ1 = −2.0
H1

H2
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One spin. One stable point (•) and one unstable point (•)

H1

H2
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The preimage of the unstable (focus-focus) point is a pinched torus.

These pinched tori are obstructions to the existence of global action-angle

variables Duistermaat (1980).
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Two spins. Two stable points (•) and two unstable points (•).

ǫ1 = −1.20

ǫ2 = −1.73
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The Quantum model.

As before the Hamiltonian reads

H =
n
∑

j=1

2ǫjs
z
j + ωb̄b+ g

n
∑

j=1

(

b̄s−j + bs+j
)

with commutation relations [b, b̄] = ~, [saj , s
b
j] = i~ ǫabc s

c
j We consider

spin s representations. The semi-classical limit is defined as

~
2s(s+ 1) = 1, ~ → 0

In the one spin case we have two commuting Hamiltonians, H1, H2

H2 = sz1 + b†b = −s+ ~M, M integer

On the subspace M fixed, H1 can be written as a Jacobi matrix and is

easy to diagonalize numerically.
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One spin. Two stable points (•)

s = 20, ǫ1 = −2.0
H1

H2
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One spin. One stable point (•) and one unstable point (•)

H1

H2

s = 10
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The moment map: (pi, qi) → (H1, · · · , Hn) induces a fibration of phase
space by tori. Take a cycle basis γ1, · · · , γn for the torus above
(H1, · · · , Hn). After a closed loop in the (H1, · · · , Hn) space

γi → γ′
i =

n
∑

j=1

Mjiγi

The local action variables Ji =
1
2π

∮

γi

∑

α pαdqα transform as

Ji → J ′
i =

n
∑

j=1

MjiJi

Bohr Sommerfeld quantization condition: Ji = ~ni. δHj =
∂Hj

∂Ji
δ(~ni)

~ei =
∂ ~H

∂Ji
, ~ei

′ =
∂ ~H

∂J ′
i

= (M−1)ij~ej

So we can read the monodromy matrix on the lattice of joint spectrum. San

Vu Ngoc (1999).
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The result is summarized on the following picture :

10 20 30 40
M

-2hΚs

H0
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Bethe Ansatz.

Classical Bethe Ansatz suggets Fock space quantization (elliptic case)

|Ψ〉 = C(µcl
1 )

m1 · · ·C(µcl
n+1)

mn+1 |0〉, a(µcl
i ) = 0

Quantum Bethe Ansatz

|Ψ〉 = C(µ1) · · ·C(µM )|0〉, a(µi) =
M
∑

j=1

~

µi − µj
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Bethe roots.

Bethe roots are located (semiclassically) on the curves

dµ

dt
= − iπ

√

Λ(µ)
, Λ(µ) =

Q2n+2(µ)
∏

(µ− ǫj)2

Notice that around a branch point µ− µb ≃ at2/3 so that we have three
branches.

s = 20, M = 45, N = 0

ǫ = −2.0

s = 30, M = 65, N = 0

ǫ = −0.707

Stable case Unstable case
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Polytopes.

Stable case Unstable case
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The quantization of the system around such a singularity is a non trivial
problem. In particular, in the semi classical regime, the Bohr-Sommerfeld
quantisation relations have to be modified (Colin de Verdière, San Vu
Ngoc). By studying the Schroedinger equation around the singularity and
gluing this “small x” analysis to the WKB wave function, we find the
quantization condition:

ΦSing(ǫn) = 2π~

(

n+
1

2

)

, n ∈ Z, En = 2κscl + ~ǫn

where: (Ω =
√
2scl − κ2)

ΦSing(ǫ) = 2(2s+1)~ν+2κΩ− i~ log
Γ
(

1
2 − i ǫ−κ

2Ω

)

Γ
(

1
2 + i ǫ−κ

2Ω

) + ~
ǫ− κ

Ω
log

(

8Ω3

~
√
2scl

)

and

4s~ν +
2κΩ

~
=

∮

pdq
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Conclusions

The Jaynes-Cummings-Gaudin model, one of the simplest
integrable models, has an extremely rich physical and mathematical
containt.

Lax pair techniques, are very powerful:
Classical Bethe Ansatz allow a very easy computation of the
normal forms.
The spectral curve and its degeneracies encode very efficiently
the bifurcation diagram.

Bethe equations "know" the geometry of the bifurcation diagram.

Much more work to do.
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HAPPY BIRTHDAY, IGOR
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