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Introduction
Wide interest in integrable systems; many mathematically and
physically interesting systems; some of the best known are
listed below

1 + 1 dimension

KdV: ut + 6uux + uxxx = 0

mKdV: ut ± 6u2ux + uxxx = 0

NLS: iut + uxx ± 2|u|2u = 0

2 + 1 dimension

KP: (ut + 6uux + uxxx)x ± 3uyy = 0

DS: iut + uxx + σ1uyy + φu = 0

φxx − σ1φyy = 2σ2(|u|2)xx σ j = ±1; j = 1, 2



Solutions
Rapid decay:
Riemann-Hilbert BVP; DBAR⇒
Linear integral equations
Soliton solutions

Periodic/quasi-periodic solutions
=> expressed via multidimensional theta functions

Self-similar solutions:
ODE-Painlevé type

Automorphic functions:
Darboux-Halphen-Chazy-Ramanujan class



KdV: Self-similar Sol’n

ut + 6uux + uxxx = 0

Self-similar (similarity) solution

u(x, t) ∼ 1
(3t)2/3 f (z), z = x

(3t)1/3

f ′′′ + 6 f f ′ − (z f ′ + 2 f ) = 0 (E)

1973: MJA & A. Newell: t→∞ for | x
(3t)1/3 | = O(1) => Eq. (E)

Note: f = −(w′ + w2) => 2nd Painlevé equation:

w′′ − (zw + 2w3) = α PII

α =const



mKdV => PII
Prototype

ut − 6u2ux + uxxx = 0

Asymptotic analysis t→∞ => slowly varying (modulated)
self-similar sol’n (cf. MJA & H. Segur, ’77-’81)

u(x, t) ∼ 1
(3t)1/3 w(z; c1, c2), z = x

(3t)1/3 where ci = ci(ξ), ξ = x/t

w′′ − (zw + 2w3) = 0

From slowly varying similarity solution: when ξ = x/t→ 0 =>
connection formulae for PII



Connection Formulae– PII

w′′ − (zw + 2w3) = 0

w(z) ∼ r0Ai(z), z→∞

w(z) ∼ d0

|z|1/4
sinθ, z→ −∞

where: θ = 2
3
|z|3/2 − 3

2
d2

0log|z| + θ0; |r0| < 1

Find connection formulae (here PII => ‘NL Airy’ fcn)
d0(r0) = − 1

π log(1 − |r0|
2)

θ0(r0) = π
4
−

3log2

2
d2

0(r0) − arg{Γ(1 − id0(r0)2

2
)}

Thus given the constant r0 as z→∞ we have explicit
formulae for the values of the constants as z→ −∞, i.e.
d0 = d0(r0)
θ0 = θ0(r0)
(cf. MJA & H. Segur, ’81)



Applicability of Similarity Sol’ns
self-similar solutions arise frequently in physics and math
t→∞ analysis => self-similar solutions
e.g. linear wave problems, integrable systems: KdV, mKdV,
NLS, and their hierarchies; (note: asymptotic techniques of
Deift, Zhou, co-workers...)

Broad context of slowly varying (modulated) similarity
solutions associated with asymptotic solutions of NL PDEs is
still open



Integrable systems–ODE’s of P-Type
Self-similar reductions of integrable systems
MJA, Ramani, Segur: ’77-’81
Reductions: KdV=> PI, mKdV => PII; Sine-Gordon => PIII;
... SDYM => all six Painlevé equations in gen’l position
(Mason and Woodhouse ’93), hierarchies of KdV=>
hierarchies of Painlevé eq.,...

Painlevé (P) type equations have no movable branch points

NLPDE’s solvable by inverse scattering transform (IST)
deeply connected to P- type equations

Sol’ns of the underlying linear integral equations only yield
movable poles



P-Type Equations
P-Type: ODE has no movable branch points
Fuch’s, Kovalevskaya (cf. Golubev), Painlevé, Chazy, ...

1st order ODE:
y′ = F(z, y)

Rational in y, locally analytic (l.a.) in z
Find: only Ricatti equation of P-Type:

dy

dz
= a0(z) + a1(z)y + a2(z)y2

2nd order ODE:

y′′ = F(z, y, y′)

Rational in y, y′, l.a. in z. Some 50 classes of equations;
including linear eq., reductions to Ricatti, Eq. with elliptic
fcn sol’ns, and and 6 Painlevé eq.



Painlevé equations

y′′ = 6y2
+ z, PI

y′′ = zy + y3
+ α, α const., PII

y′′ =
y′2

y
−

y′

z
+
αy2
+ β

z
+ γy3

+
δ

y
, α, ...δ const., PIII

... Third order equations: full classification of

y′′′ = F(y, y′, y′′, z)

still open. Chazy (1909-1911), Bureau (1987) found
interesting systems with movable natural boundaries



Painlevé

Painlevé (1863-1933): Studied/taught at at École Normale;
member French Academy of Sciences; President of the
French Mathematical Society: 1903
Held major political offices: Minister of War and Prime
Minister; an aircraft carrier was named in his honor



Reduction SDYM
SDYM:

Fαβ = 0, Fᾱβ̄ = 0

Fαᾱ + Fββ̄ = 0

where
Fαβ = ∂αγβ − ∂βγα − [γα, γβ]

and [γα, γβ] = γαγβ − γβγα
Cartesian cood.: α = t + iz, ᾱ = t − iz, β = x + iy, β̄ = x − iy

Reductions of SDYM:

1. γa(α, ᾱ, β, β̄)− > γa(α), γa(α, β), ...

2. choice of algebra: gl(N), su(N)...

3. gauge freedom: γa− > ( fγa − ∂a f ) f−1



1D Reductions of SDYM
Use:
γα = γt + iγz = γ0 + iγ3

γβ = γx + iγy = γ1 + iγ2

Take one indep. variable: t and use guage: γ0 = 0 =>
γ j = γ j(t), j = 1, 2, 3

Fαβ = ∂αγβ − ∂βγα − [γα, γβ] = ∂t(γ1 + iγ2) − [iγ3, γ1 + iγ2] = 0

Formally, real, imaginary parts => Nahm system:

∂tγ1 = [γ2, γ3], 1, 2, 3 cyclic

Simplest case: γl(t) = ωl(t)Xl; su(2) : [X j,Xk] =
∑

l ǫ jklXl

where ǫ jkl is antisym tensor ( ǫ123 = 1); find

∂tω1 = ω2ω3, 1, 2, 3 cyclic



1D Reductions of SDYM–con’t

∂tω1 = ω2ω3, 1, 2, 3 cyclic

Note:

ω1 = E coshφ(t), ω2 = E sinhφ(t), ω3 =
dφ(t)

dt

E=const. find:
d2φ

dt2
=

E2

2
sinhφ

Solution is in terms of elliptic functions



Darboux-Halphen Systems

∂tγ1 = [γ2, γ3], 1, 2, 3 cyclic

Set γl(t) =
∑

j,k Ol jM jk(t)Xk where:

[X j,Xk] =
∑

l ǫ jklXl, OOT
= I, O ∈ so(3)

Xl(O jk) =
∑

p ǫlkpO jp, sdi f f (S3)

Find M = {M jk(t)} satisfies:

dM
dt
= (detM)(M−1)T

+MTM − (TrM)M (DH-9)

(Chakravarty, MJA, Takhtajan, ’92) If M = diag(ω1, ω2, ω3) find

∂tω1 = ω2ω3 − ω1(ω2 + ω3), 1, 2, 3 cyclic (DH)

(Chakravarty, MJA, Clarkson, ’90)



DH and Chazy Eq.
From DH eq. let y = −2(ω1 + ω2 + ω3) find classical Chazy eq.
(Chazy 1909)

d3y

dt3
− 2y

d2y

dt2
+ 3(

dy

dt
)2
= 0 (C)

Later discuss automorphic character of (C) and relation to
modular forms

Other cases of reductions to eq. with automorphic solutions:

Gibbons and Pope (’79), Hitchin ’85 relativity: Bianchi IX
cosmological models; Dubrovin Top. field th’y ’96

Buchstaber, Leikin, Pavlov ’03; Pavlov ’04; Ferapontov and
Marshall ’07: Egorov Chains

Ferapontov, Odesski ’10: integrable Lagrangian flows;
Burovskiy, Ferapontov, Tsarev, ’09 integrable 2+1d flows



Chazy
J. Chazy (1882–1955): Studied at École Normale and taught
at the Sorbonne
Major contributions to study of differential eq. and celestial
mechanics
Member of French Academy of Sciences
1912 shared Grand Prix des Sciences (differential eq.) with
P. Boutroux and R. Garnier and in 1922 awarded Prix
Benjamin Valz (Celestial Mechanics)

President French Mathematical Society: 1934



Solution of DH-9
dM

dt
= (detM)(M−1)T

+MTM − (TrM)M (DH-9)

(MJA,Chakravarty, Halburd, ’99)

If M = P(D + a)P−1 find P,D, a satisfy:

dP
dt
= −Pa, D = diag(ω1, ω2, ω3), ai j =

∑
k ǫi jkτk

∂tω1 = ω2ω3 − ω1(ω2 + ω3) + τ2, 1, 2, 3 cyclic

τ2
=

∑

k

τ2
k , ∂tτ1 = −τ1(ω2 + ω3), 1, 2, 3 cyclic



Solution of DH-9– con’t

ω1 = −
1

2

d

dt
log

ṡ

s(s − 1)
, ω2 = −

1

2

d

dt
log

ṡ

s − 1
, ω3 = −

1

2

d

dt
log

ṡ

s

τ1 =
κ1ṡ

[s(s − 1)]1/2
, τ2 =

κ2ṡ

s(s − 1)1/2
, τ3 =

κ3ṡ

s1/2(s − 1)

κ j = const, j = 1, 2, 3 where s(t) satisfies:

{s, t} +
ṡ2

2
V(s) = 0

where

{s, t} = ( s′′

s′
)′ − 1

2
( s′′

s′
)2, V(s) =

1−β2

s2 +
1−γ2

(s−1)2 +
β2
+γ2−α2−1

s(s−1)

α = −2κ2
1
, β = 2κ2

2, γ = −2κ2
3



Schwarzian Eq.
Schwarzian ‘triangle’ functions s(t) = s(α, β, γ, t) satisfy

{s, t} +
ṡ2

2
V(s) = 0

where {s, t} = ( s′′

s′
)′ − 1

2
( s′′

s′
)2, V(s) =

1−β2

s2 +
1−γ2

(s−1)2 +
β2
+γ2−α2−1

s(s−1)

Schwarzian triangle function are automorphic functions. If s(t)
is a sol’n of Schwarzian eq., so is

s̃(t) = s(γ(t)), γ(t) =
at + b

ct + d
, ad − bc = 1, γ ∈ SL2(C)

Schwarzian eq. can be linearized.

Use inversion of variables {s, t} = −ṡ2{t, s} =>



Linearization of Schwarzian

{t, s} −
V(s)

2
= (

t′′

t′
)′ −

1

2
(
t′′

t′
)2 −

V(s)

2
= 0

Then solution in terms of: t(s) =
y1(s)

y2(s)
where y1, y2 are 2 l.i.

solutions of:

y′′ +
1

4
V(s)y = 0

Note: t′(s) =
y2 y′

1
−y1 y′

2

y2
2

=
W
y2

2

, W = const.; t′′

t′
= −2

y′
2

y2

s(t) single valued if

α = 1
l
, β = 1

m
, γ = 1

n
, l,m,n ǫ Z

+ and 0 ≤ α + β + γ < 1

Moreover find s(t) has a movable natural boundary which is a
circle. Radius and center depend on I.C.’s



Darboux-Halphen -Chazy
When M = diag(ω1, ω2, ω3), α = β = γ = 0 DH-9 reduces to:

∂tω1 = ω2ω3 − ω1(ω2 + ω3), 1, 2, 3 cyclic (DH)

With y = −2(ω1 + ω2 + ω3) find classical Chazy eq.

d3y

dt3
− 2y

d2y

dt2
+ 3(

dy

dt
)2
= 0 (C)

When: α = β = γ = 2
n

(DH-9) yields:

d3y

dt3
− 2y

d2y

dt2
+ 3(

dy

dt
)2
=

4

36 − n2
(6

dy

dt
− y2)2 (GC)

GC: Generalized Chazy eq.: n = ∞ => (C)
C and GC eq. has movable natural boundary–circle
y(t) single valued for n > 6, integer



Chazy Eq. – Modular Forms

d3y

dt3
− 2y

d2y

dt2
+ 3(

dy

dt
)2
= 0 (C)

(C) admits symmetry:

y −→ ỹ =
1

(ct + d)2
y(γ(t)) −

6c

ct + d
, γ(t) =

at + b

ct + d

ad − bc = 1; γ ∈ SL2(C); special solution of (C)

y(t) = iπE2(t) = iπ(1 − 24

∞∑

n=1

σ1(n)qn), q = e2πit

σ1(n) =
∑

d/n d = sum of divisors of n; E2(t) ∈ SL2(Z) satisfies
above symmetry —it is a quasi-modular form weight 2
(MJA, Chakravarty,Takhtajan ’91)



Modular Forms
If f (z) (note t→ z) satisfies

f (z) =
1

(cz + d)k
f (γ(z)), γ(z) =

az + b

cz + d

where ad − bc = 1; γ ∈ SL2(Z) and f (z) has a q exp’n

f (z) =

∞∑

n=0

anqn, q = e2πiz

i.e. it is analytic in upper half z plane, then f (z) is said to be a
modular form of weight k

E2(z) satisfies: E2(z) = 1
(ct+d)2 E2(γ(z)) − 6c

cz+d

E2(z) is said to be a quasi-modular form weight 2



Chazy Eq. – Modular Form.–con’t
From properties of q series find sol’n of Chazy ( E2(z)) may be
written as:

y(z) = 1
2

d
dz

log∆(z)
where

∆(z) =
∆(γ(z))

(cz + d)12
= Cq

∞∏

1

(1 − qn)24
= C

∞∑

1

τ(n)qn

γ ∈ SL2(Z), q = e2πiz, C = (2π)12, τ(n) = Ramanujan coef.

∆(z) is a modular form weight 12; from Chazy eq. it satisfies a
homogeneous NL ODE, 4th order in derivatives and powers:

∆
′′′′
∆

3 − 5∆′′′∆′∆2 − 3
2
∆
′′2
∆

2
+ 12∆∆′2∆′′ − 13

2
∆
′4
= 0

(Rankine: ’56)



Eisenstein series
Consider the Eisenstein series

Ek(z) = 1 −
2k

Bk

∞∑

1

σk−1(n)qn

k ≥ 2, even integer, Bk is the k-th Bernoulli number, q = e2πiz

and

σk(n) =
∑

d/n dk= sum of divisors of n to kth power

Ek(z) are modular forms weight k for k ≥ 4; E2(z) is
quasi-modular form weight 2

Ramanujan (1916) showed that E2,E4,E6 satisfies a 3rd order
coupled system of ODEs



Chazy and Ramanujan Eq.
Ramanujan found:
P(q) = E2(q), Q(q) = E4(q), R(q) = E6(q) satisfy

qP′(q) = P2−Q

12
(i)

qQ′(q) = PQ−R

3
(ii)

qR′(q) = PR−Q2

2
(iii)

From (i): Q = P2 − 12qP′(q); then (ii) => R = R[P,P′,P′′]

So eq. (iii) is a 3rd order eq. for P(q)

Using q = e2πiz and letting P(z) = 1
iπy(z) =>

y′′′ − 2yy′′ + 3(y′)2
= 0 Chazy!

(MJA, Chakravarty, Halburd, ’03)



Number Theoretic Fcn’s–Γ0(2)

There are other interesting ODEs associated with number
theoretic functions. With the subgroup Γ0(2):

Γ0(2) =

γ =


a b

c d


 ∈ SL2(Z)| c ≡ 0 (mod 2)



are Eisenstein series; with q = e2πiz for even integer k ≥ 2:

Ek(q) = 1 +
2k

(1 − 2k)Bk

∞∑

1

(−)nnk−1qn

1 − qn

which are modular forms of weight k ≥ 4; further E2(z) is a
quasi-modular form



E-Fcn’s in Γ0(2)-con’t
Another function Ẽ2(z)

Ẽ2(z) = 1 + 24
∑∞

1
nqn

1+qn , q = e2πiz

Ẽ2(z) is modular form of wt. 2 ∈ Γ0(2)

Ramamani (’70) showed that:

P = E2, Q = E4, P̃ = Ẽ2

associated with Γ0(2) satisfy a 3rd order coupled ODE system



ODEs andΓ0(2)

qP′(q) = P
2−Q
4

(i)

qQ′(q) = PQ − P̃Q (ii)

qP̃′(q) = P̃P−Q
2

(iii)

From (i) Q = P2 − 4qP′

From (ii) P̃ = P − qQ′/Q so P̃ = fcn of (P,P′,P′′)

=> from (iii) find a 3rd order NL ODE for P

In terms of y(z) = iπP(z) = iπE2(z),

y′′′ − 2yy′′ + (y′)2
+ 2

(y′′ − yy′)2

y2 − 2y′
= 0

(MJA, Chakravarty and Hahn ’06); this eq. was also found by
Bureau (1987) in his study of 3rd order ODE of ‘Chazy-type’



ODEs and Number Theor. Fcn’s–con’t
Also from properties of q series:

y = iπE2(z) =
D′

2D
=

1

2
(logD(z))′

whereD is a modular form weight 4. D satisfies a homog.
NL ODE 6th order in derivatives and powers:

D′′′′(8D′′D4−10D′2D3)+8D′′′2D4
+D′′′(10D′3D2

+16D′′D′D3)

− 20D′′3D3 − 48D′′2D′2D2 − 60D′′D′4D + 25D′6 = 0



DH systems andΓ0(2)
The gDH system below can be related to the
P = E2, Q = E4, P̃ = Ẽ2 system in Γ0(2)

w′1 = −w2w3 + w1(w2 + w3) + τ2

w′2 = −w3w1 + w2(w3 + w1) + τ2

w′3 = −w1w2 + w3(w1 + w2) + τ2

τ2
= α2(w1−w2)(w2−w3)+β2(w2−w1)(w1−w3)+γ2(w3−w1)(w2−w3)

The w j, j = 1, 2, 3 can be written in terms of a Schwarz triangle
function s = s(α, β, γ, z)



DH systems andΓ0(2)-con’t
The triangle function satisfies

{s, z} +
s′2

2
V(s) = 0, {s, z} = (

s′′

s
)′ −

1

2

(
s′′

s′

)2

V(s) =
1 − α2

s2
+

1 − β2

(s − 1)2
+
α2
+ β2 − γ2 − 1

s(s − 1)

and the solution of gDH is given in terms of s below

w1 = −
1

2

[
log

(s′

s

)]′
,w2 = −

1

2

[
log

( s′

s − 1

)]′
,w3 = −

1

2

[
log

( s′

s(s − 1)

)]′



DH systems andΓ0(2) -con’t
The solution of the P = E2, Q = E4, P̃ = Ẽ2 system is given
by

y(z) = iπP(z) = −(w2 + w3)(z), iπP̃(z) = (w1 − w3)(z)

π2Q(z) = (w1 − w3)(w3 − w2)(z)

with α = 1
2
, β = γ = 0. Further the general solution is obtained

due to the automorphic nature of s(z):

s̃(z) = s

(
az + b

cz + d

)
=> ỹ(z) =

1

(cz + d)2
y

(
az + b

cz + d

)
−

c

cz + d

where a, b, c, d in γ ∈ SL2(C); w j, j = 1, 2, 3 have a similar
transformation property



Chazy and DH systems
Another direction: can find many representations of sol’ns of
the classical Chazy eq.

y′′′ − 2yy′′ + 3(y′)2
= 0 Chazy

in terms of solutions of a gDH system: w j, j = 1, 2, 3 and its
triangle fcn

y(z) = a1w1 + a2w2 + a3w3, a1 + a2 + a3 = 6

where a j are const. Employ the analytic properties of Chazy
solutions.



Chazy and DH systems–con’t

y(z) = a1w1 + a2w2 + a3w3, a1 + a2 + a3 = 6

Below some of them are given (Chakravarty, MJA ’10) in
terms of s = s(α, β, γ, z)

i) s(0, 1
2
, 1

3
, z); a1 = 3, a2 = 1, a3 = 2 Chazy’s case

ii) s(0, 1
3
, 1

3
, z); a1 = a2 = a3 = 2 Takhtajan ’93

iii) s(0, 1
2
, 0, z); a1 = 3, a2 = 2, a3 = 1

iv) s(0, 1
3
, 0, z); a1 = 2, a2 = 3, a3 = 1

v) s(0, 2
3
, 0, z); a1 = 4, a2 = 1, a3 = 1 may transf y to case (i)

vi) s(0, 0, 0, z); a1 = a2 = a3 = 2



Chazy and Hypergeometric
Another form of linearization of Chazy. Consider:

s(s − 1)χ′′ + [(a + b + 1)s − c]χ′ + abχ = 0,

with a = (1 − α − β − γ)/2, b = (1 − α − β + γ)/2, c = 1 − α

Let z(s) = χ2

χ1
, χ j, j = 1, 2 are two l.i. sol’ns

One sol’n is: χ1 = 2F1(a, b, c, s); χ2 is obtained from χ1

z′(s) = 1/s′(z) =W/χ2
1
, W = Csα−1(s − 1)β−1 is the Wronskian,

C , 0

Use gDH with y = a1w1 + a2w2 + a3w3, a1 + a2 + a3 = 6 =>



Chazy and Hypergeometric–con’t
gDH =>

y(s(z)) = 3
C

s−α(s − 1)−β
(
2s(s − 1)χ1χ′1 − [(b̃1 + b̃2)s − b̃2]χ2

1

)

where b̃ j depend on α, β, a j and χ1 = 2F1(a, b, c, s)

With different triangle fnc’s s(α, β, γ, z) all Chazy sol’ns can be
expressed in terms of hypergeometric fcn’s



Ramanujan - Hypergeometric
Ramanujan: ‘classical’:

P(z) = (1 − 5x)χ2
+ 12x(1 − x)χχ′ = 1

iπ
y

with χ(x) := 2F1( 1
2
, 1

2
, 1; x) and

z =
i

2

2F1( 1
2
, 1

2
1, 1 − x)

2F1( 1
2
, 1

2
, 1; x)

, q = e2πiz

Find x = x(z); via modular fc’ns (2F1(x)→ K(x)). He also
found ‘alternative parametrizations’ of P

zr =
i

2 sin(π
r
)

2F1( 1
r
, r−1

r
; 1; 1 − x)

2F1( 1
r
, r−1

r
; 1; x)

), r = 2, 3, 4, 6

with P(z) depending on χ, χ′

May relate R and C sol’ns (transf of hypergeometric fcns)...



Chazy - Ramanujan
Those solutions of P(z); i.e. sol’ns of Chazy eq., which were
written down by Ramanujan correspond to:

s(0, 1
2
, 0, z) : r = 4

s(0, 1
3
, 0, z) : r = 3

s(0, 2
3
, 0, z) : r = 6 may transform to s(0, 1

2
, 1

3
, z) (Chazy’s case)

s(0, 0, 0, z): r=2

A case the Ramanujan formulae do not correspond to:

s(0, 1
3
, 1

3
, z) : Takhtajan ’93



Conclusion
Reductions of integrable systems yield: Painlevé and
Chazy type equations

In particular, reduction of SDYM => 3x3 matrix system:
DH-9–which can be solved in terms of Schwarzian
triangle functions

Special cases include Classical Chazy and Generalized
Chazy eq.

Classical Chazy also has solution E2(z) from which gen’l
sol’n can be obtained



Conclusion–con’t
Ramanujan found a 3rd order system for E j(z), j = 2, 4, 6
which reduces to Classical Chazy (MJA,Chakravarty,
Halburd, ’03)

Chazy (1909-’11) and Ramanujan (’16) worked on the
same eqs.; but from different perspectives

Ramamani (1970) found number theoretic functions in
Γ0(2) satisfy a 3rd order system of eq.

From above system one can find a NL scalar eq. in
Bureau’s class of ‘Chazy-type’ eq.- and can find the gen’l
sol’n

The Ramamani system and Bureau’s eq. can be related
to gDH systems (MJA, Chakravarty, Hahn, ’06)

Can extend to other number theoretic fcn’s in
Γ0(N),N = 3, 4 (Maier ’10)



Conclusion–con’t
Classical Chazy sol’n represented by many different
triangle functions; they all can be linearized via
hypergeomtric f’cns (Chakravraty, MJA, ’10)

Many paramterizations were written down by
Ramanujan; they can be related to S triangle fcns



Water Wave Equations
Classical equations: Define the domain D by
D = {−∞ < x1, x2 < ∞, − h < y < η(x, t), x = (x1, x2), t > 0}

The water wave equations satisfy the following system for
φ(x, y, t) and η(x, t):

∆φ = 0 in D

φy = 0 on y = −h

ηt + ∇φ · ∇η = φy on y = η

φt +
1

2
|∇φ|2 + gη = σ∇ · (

∇η
√

1 + |∇η|2
) on y = η

where g: gravity, σ = T
ρ
: T surface tension, ρ: density.



WW-Nonlocal Spectral Eq
Work with A. Fokas, Z. Musslimani (JFM, 2006),
reformulation: 2 eq., 2 unk: η, q = φ(x, η), rapid decay: 1
nonlocal spectral eq. and 1 PDE; fixed domain

∫
dxeik·x(iηt cosh[κ(η + h)] + sinh

[
κ(η + h)

] k · ∇q

κ
) = 0 (I)

qt +
1

2
|∇q|2 + gη −

(ηt + ∇q · ∇η)2

2(1 + |∇η|2)
= σ∇ · (

∇η
√

1 + |∇η|2
) (II)

x = (x1, x2), k = (k1, k2), κ2
= k2

1
+ k2

2, q(x, t) = φ(x, t, η(x, t))



WW: figure

y = η

φ(x, y) , ρ

q = φ(x, η)

y = −h

Water wave configuration



Remarks
Variables: η, q used by Zakharov (’68) in Hamiltonian
formulation of WW

Craig & Sulem (’93) derive Dirichlet-Neumann (DN)
series in terms of η, q. Craig et al also investigate WW
and interfacial waves via DN series



Remarks–con’t
(MJA,AF ZM ‘06) Derived nonlocal formulation and
found:

Conserved quantities and new integral relations
Asymptotic reductions:

1+1: KdV, Nonlinear Schrodinger (NLS) eq; i.e.
find both shallow and deep water reductions
2+1 Benny-Luke (BL) and Kadomtsev-Petvashvili
(KP) eq

MJA and Haut (’08-’10):
nonlocal eqs for waves with 1 and 2 free interfaces
connect to DN series/operators
asymptotic reductions: 2+1 ILW-BL, ILW-KP
high order asympt. expn’s of 1-d and 2-d solitary
waves



WW- Linearized System
If |η|, |∇q| are small then eq. (I,II) simplify.

∫
dxeikx(iηt coshκh +

k · ∇q

κ
sinhκh) = 0 (1L)

recall κ2
= k2

1
+ k2

2. Use Fourier transform: η̂ =
∫

dxeikxη

iη̂t coshκh +
k · ∇̂q

κ
sinhκh = 0 (1L)

q̂t + (g + σκ2)η̂ = 0 (2L)

Then from eq. (1L), (2L)find:

η̂tt = −(gκ + σκ3) tanhκh η̂



WW-Nonlocal System-Remarks
Can find integral relations by taking k→ 0; first two
(recall: x→ (x1, x2)):

∂

∂t

∫
dx η(x, t) = 0 (Mass)

∂

∂t

∫
dx(x jη) =

∫
dx qx j

(η + h) j = 1, 2

LHS: COM in x j direction -RHS related to x j momentum:
conserved; Higher order virial identities can also be
found; e.g.

∂

∂t

∫
dx (

x2
j
η

2
− (
η3

6
+
η2h

2
)) =

∫
dx (x jqx j

(η + h)) j = 1, 2



Nondimensional Variables
We can make all variables nondimensional (nd):

x′1 =
x1

l
, x′2 = γ

x2

l
, aη′ = η , t′ =

c0

l
t , q′ =

alg

c0
q , σ′ =

σ

gh2

l, a are characteristic horiz. length, amplitude, and γ is a nd

transverse length parameter; c0 =
√

gh; hereafter drop ′

Eq are written in terms of nd variables
ǫ = a

h
<< 1: small amplitude

µ = h
l
<< 1: long waves

γ << 1: slow transverse variation



WW-Asymptotic Systems
Expd cosh, sinh use nd paramters: ǫ = a

h
, µ = h

l

Find: Benney-Luke (BL, ’64) eq. (nmlz’d surface tension,
σ̃ = σ − 1/3):

qtt − ∆̃q + σ̃µ2
∆̃

2q + ǫ(∂t|▽̃q|2 + qt∆̃q) = 0 (BL)

∆̃ = ∂2
x1
+ γ2∂2

x2
|▽̃q|2 =

(
q2

x1
+ γ2q2

x2

)
.

If ǫ = µ2
= γ2 ≪ 1 then BL yields KP equation; after rescaling

KP eq in std form (x = (x1, x2)→ (x, y)):

∂x(ut + 6uux + uxxx) − 3 sgn(σ̃)uyy = 0

Note: σ̃ > 0 ‘strong’ surface tension: KPI Eq.

σ̃ < 0 ‘weak’ surface tension: KPII Eq.



KP Equation
KP eq in standard form:

∂x(ut + 6uux + uxxx) − 3 sgn(σ̃)uyy = 0

Note: σ̃ > 0 ‘strong’ surface tension: KPI Eq.

σ̃ < 0 ‘weak’ surface tension: KPII Eq.



Lump Solution of KP
For σ̃ > 0 strong ST, KPI has lump solutions

u = 16
−4(x′ − 2kRy′)2

+ 16k2
I y′2 + 1

k2
I

[4(x′ − 2kRy′)2 + 16k2
I
y′2 + 1

k2
I

]2

where x′ = x − cxt, y′ = y − cyt, cx = 12(k2
R + k2

I ), cy = 12kR

KP



KP Equation: Line Solitons
KP equation in standard form with small surface tension (‘KP
II’)

∂x(ut + 6uux + uxxx) + 3uyy = 0

KP equation has line soliton solutions; simplest ones:

u = uN = 2
∂2logFN

∂x2

Where FN is a polynomial in terms of sum of exponentials:

F1 = 1 + eη1 , F2 = 1 + eη1 + eη2 + eη1+η2+A12

where η j = k j(x+ P jy− (k2
j
+ 3P2

j
)t+ η(0)

j
), eA12 =

(k1−k2)2−(P1−P2)2)

(k1+k2)2−(P1−P2)2

k j,P j, η
(0)

j
are constants



KP Equation–line solitons
Basic line solitons are solutions of KP (KdV) eq; they are
observed routinely: F1 = 1 + eη1



KP Eq: Basic line soliton solutions–IIA

Typical KP two-soliton ‘X-type’ interaction with ‘short
stem’: F2, eA12 = O(1)

Typical KP two-soliton interaction ‘X-type’ with ‘long
stem’; F2, eA12 << 1



KP Eq: Basic line soliton solutions–IIB

Typical KP ‘Y-type’ interaction; F2, eA12 → 0



Beaches and Line Solitons
Planar waves seen frequently. But what about ‘X’ and ‘Y’ type
waves? There was one photo of ‘X-type’ with ‘long stem’:
Shallow water waves off the coast of Oregon (MJA & Segur
1981)



Recent Beach Photos–I

X wave with short stem



Recent Beach Photos–IA

Another X wave with short stem



Recent Beach Photos–II

Depth of the shallow water waves can be understood by
noting the person walking on the beach–not noticing a nearby
an X interaction!



Recent Beach Photos–IIA

Double X short stem



Recent Beach Photos–III-A

Long stem X



Recent Beach Photos–III-B

Long stem connected to a nearby interaction



Recent Beach Photos–IV

Strong Y interaction



Recent Beach Photos–V

Mutli-interaction



Recent Beach Photos–VI

Mutli-interaction: ‘Triangle’



Recent Beach Photos–VI

Mutli-interaction: ‘Triangle’ — with color

Recent research on KP line ‘web’ structures...



Interfacial wave–rigid top (RT)

y = η

Φ(x, y) , ρ′

Q = Φ(x, η)

q = φ(x, η)

φ(x, y) , ρ

y = −h

y = H



Interfacial wave-RT–nonlocal form

∫

R2

eikx cosh(κ(η + h))ηt dx = i

∫

R2

eikx sinh(κ(η + h))

(
k

κ
· ∇q

)
dx

∫

R2

eikx cosh(κ(η −H))ηt dx = i

∫

R2

eikx sinh(κ(η −H))

(
k

κ
· ∇Q

)
dx

ρ


qt +

1

2
|∇q|2 + gη −

(
ηt + ∇q · ∇η

)2

2
(
1 + |∇η|2

)

−

ρ′

Qt +

1

2
|∇Q|2 + gη −

(
ηt + ∇Q · ∇η

)2

2
(
1 + |∇η|2

)

 = σ∇ ·




∇η
√

1 + |∇η|2




3 eq., 3 unkowns η, q,Q: fixed domain!
May derive DN operator, and asymptotic reductions AND
system with free top surface and free interface



Interfacial wave and free surface(FS)

y = η Φ(x, y)

y = H + β

P = Φ (x, β + H )

Q = Φ (x, η)

q = φ(x, η)

φ(x, y)

y = − h

ρ´

ρ

Two-fluids with two free interfaces: 5 Eq. 5 Unk



Conclusion-WW
May reformulate water wave equations as a nonlocal
spectral system

Asymptotic systems: shallow water find: BL,KP eq.;
deep water: NLS...

KPI has lump sol’ns; KPII has line soliton sol’ns;
Physical realization –long flat beaches..

Can extend theory to interfacial flows in multiple fluids
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