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Abelian solutions of the soliton equations and geometry

of abelian varieties.

I. Krichever∗ T. Shiota†

March 31, 2008

Abstract

We introduce the notion of abelian solutions of the 2D Toda lattice equations and
the bilinear discrete Hirota equation and show that all of them are algebro-geometric.

1 Introduction

The first goal of this paper to extend a theory of the abelian solutions of the Kadomtsev-
Petviashvili (KP) equation developed recently in [23] to the case of the 2D Toda lattice

∂ξ∂ηϕn = eϕn−1−ϕn − eϕn−ϕn+1 (1.1)

We call a solution ϕn(ξ, η) of the equation abelian if it is of the form

ϕn(ξ, η) = ln
τ((n+ 1)U + z, ξ, η)

τ(nU + z, ξ, η)
, (1.2)

where n ∈ Z, ξ, η ∈ C and z ∈ C
d are the independent variables, 0 6= U ∈ C

d, and for all ξ,
η the function τ(·, ξ, η) is a holomorphic section of a line bundle L = L(ξ, η) on an abelian
variety X = Cd/Λ, i.e., it satisfies the monodromy relations

τ(z + λ, ξ, η) = eaλ·z+bλτ(z, ξ, η), λ ∈ Λ, (1.3)

for some aλ ∈ Cd, bλ = bλ(ξ, η) ∈ C.

A concept of abelian solutions of soliton equations provides an unifying framework for
the theory of elliptic solutions of soliton equations and the theory of their rank 1 algebro-
geometric solutions. The former corresponds to the case when the τ -function is a section of
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line bundle on an elliptic curve (d = 1), and the latter corresponds to the case when X is
the Jacobian of an auxiliary algebraic curve and τ is the corresponding Riemann θ-function.

Theory of elliptic solutions of the KP equation goes back to the work [1], where it
was found that the dynamics of poles of the elliptic solutions of the Korteweg-de Vries
equation can be described in terms of the elliptic Calogero-Moser (CM) system with certain
constraints. In [14] it was shown that when the constraints are removed this correspondence
becomes a full isomorphism between the solutions of the elliptic CM system and the elliptic
solutions of the KP equation.

Elliptic solutions of the 2D Toda lattice were considered in [24] where it was shown that
if τ(z, ξ, η) in (1.2) is an elliptic polynomial, i.e., if the τ -function of the 2D Toda lattice
equation is of the form

τ(z, ξ, η) = c(ξ, η)
N∏

i=1

σ(z − xi(ξ, η)) , (1.4)

then its zeros as functions of the variables ξ and η satisfy the equations of motion of the
Ruijsenaars-Schneider (RS) system [27]:

ẍi =
∑

s 6=i

ẋiẋs(V (xi − xs)− V (xs − xi)) , V (x) = ζ(x)− ζ(x+ η) ,

which is a relativistic version of the elliptic CM system. Here and below σ(z) = σ(z, 2ω, 2ω′)
and ζ(z) = ζ(z, 2ω, 2ω′) are the Weierstrass σ- and ζ-functions, respectively.

The correspondence between finite-dimensional integrable systems and pole systems of
various soliton equations has been extensively studied in [4, 17, 18, 22] (see [5, 10, 19] and
references therein for connections with the Hitchin type systems).

A general scheme of constructing Lax representations with a spectral parameter, for
systems using a specific inverse problem for linear equations with elliptic coefficients, is
presented in [17]. Roughly speaking, this inverse problem is the problem of characterization
of linear difference or differential equations with elliptic coefficients having solutions that are
meromorphic sections of some line bundle on the corresponding elliptic curve (double-Bloch
solutions).

Analogous problems for linear equations with coefficients that are meromorphic functions
expressed in terms of the Riemann theta function of an indecomposable principally polarized
abelian variety (ppav) X were a starting point in the recent proof in [20, 21] of Welters’
remarkable trisecant conjecture: an indecomposable principally polarized abelian variety X
is the Jacobian of a curve if and only if there exists a trisecant of its Kummer variety K(X).

Welters’ conjecture, first formulated in [30], was motivated by Gunning’s celebrated the-
orem [9] and by another famous conjecture: the Jacobians of curves are exactly the in-
decomposable principally polarized abelian varieties whose theta-functions provide explicit
solutions of the KP equation. The latter was proposed earlier by Novikov and was unsettled
at the time of the Welters’ work. It was proved later in [25].

Let B be an indecomposable symmetric matrix with positive definite imaginary part. It
defines an indecomposable principally polarized abelian variety X = Cg/Λ, where the lattice
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Λ is generated by the basis vectors em ∈ C
g and the column-vectors Bm of B. The Riemann

theta-function θ(z) = θ(z|B) corresponding to B is given by the formula

θ(z) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · ·+mgzg . (1.5)

The Kummer variety K(X) is an image of the Kummer map

K:X ∋ Z 7−→ (Θ[ε1, 0](Z) : · · · : Θ[ε2g , 0](Z)) ∈ CP
2g−1 (1.6)

where Θ[ε, 0](z) = θ[ε, 0](2z|2B) are level two theta-functions with half-integer characteris-
tics ε.

A trisecant of the Kummer variety is a projective line which meets K(X) at least at
three points. Fay’s well-known trisecant formula [8] implies that if B is a matrix of b-periods
of normalized holomorphic differentials on a smooth genus g algebraic curve Γ, then a set
of three arbitrary distinct points on Γ defines a one-parameter family of trisecants parame-
terized by a fourth point of the curve. In [9] Gunning proved under certain non-degeneracy
assumptions that the existence of such a family of trisecants characterizes Jacobian varieties
among indecomposable principally polarized abelian varieties.

Gunning’s geometric characterization of the Jacobian locus was extended by Welters
who proved that the Jacobian locus can be characterized by the existence of a formal one-
parameter family of flexes of the Kummer varieties [29, 30]. A flex of the Kummer variety
is a projective line which is tangent to K(X) at some point up to order 2. It is a limiting
case of trisecants when the three intersection points come together.

In [2] Arbarello and De Concini showed that the Welters’ characterization is equivalent
to an infinite system of partial differential equations representing the KP hierarchy, and
proved that only a finite number of these equations is sufficient. Novikov’s conjecture that
just the first equation of the hierarchy is sufficient for the characterization of the Jacobians
is much stronger. It is equivalent to the statement that the Jacobians are characterized by
the existence of length 3 formal jet of flexes.

Welter’s conjecture that requires the existence of only one trisecant is the strongest. In
fact, there are three particular cases of the Welters’ conjecture, which are independent and
have to be considered separately. They correspond to three possible configurations of the
intersection points (a, b, c) of K(X) and the trisecant:

(i) all three points coincide,

(ii) two of them coincide;

(iii) all three intersection points are distinct.

In all of these cases the classical addition theorem for the Riemann theta-functions directly
imply that secancy conditions are equivalent to the existence of certain solutions for the
auxiliary linear problems for the KP, the 2D Toda, and the bilinear discrete Hirota equations,
respectively.

For example, one of the Lax equations for the 2D Toda equation is the differential-
difference equation

∂tψn(t) = ψn+1(t)− un(t)ψn(t) (1.7)
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with the potential u of the form

un(t) = ∂t ln τ(n, t)− ∂t ln τ(n + 1, t) (1.8)

Let us assume that
τ(n, t) = θ(nU + tV + z) (1.9)

and equation (1.7) has a solution of the form

ψn(t) =
θ(A+ nU + tV + Z)

θ(nU + tV + z)
enp+tE , (1.10)

where p, E are constants and z is arbitrary. Then a direct substitution of (1.9) and (1.10)
into (1.7) gives the equation

Eθ(A+z)θ(U +z)−epθ(A+U +z)θ(z) = ∂V θ(U +z)θ(A+z)−∂V θ(A+z)θ(U +Z) (1.11)

which is equivalent to the condition that the projective line passing through the points
{K((A±U)/2)} is tangent to the Kummer variety at the point K((A−U)/2) (the case (ii)
above).

The characterization of the Jacobian locus via (1.11) is the statement: an indecomposable,
principally polarized abelian variety (X, θ) is the Jacobian of a smooth curve of genus g if
and only if there exist non-zero g-dimensional vectors U 6= A ( mod Λ), V , such that equation
(1.11) holds ([21]).

The “only if” part of the statement follows from the construction of solutions of the 2D
Toda lattice equations in [15], from which it also follows that the vector A in (1.11) is a
point of Γ ⊂ J(Γ), the vector U is of the form U = P−−P+, where P± ∈ Γ are points on Γ,
and the vector V is a tangent vector to Γ at one of the points.

In geometric terms the spectral curves of the elliptic RS system, that give elliptic solutions
of (1.1) are singled out by the condition that there exist a pair of points such that the
corresponding vector U spans an elliptic curve in J(Γ).

For any curve Γ and any pair of points P± ∈ Γ the Zariski closure of the group {Un|n ∈
Z, U = P−−P+} in J(Γ) is an abelian subvariety X ⊂ J(Γ). When X is a proper subvariety,
i.e., dimX = d < g = dim J(G), the restrictions of θ(tV + z) and θ(A + tV + z) on the
corresponding linear subspace Cd ⊂ Cg, i.e., the component through the origin of π−1(X),
where π: Cg → J(Γ) is the covering map, can be seen as sections τ(z, t), τA(z, t) of some line
bundles on X, i.e. they satisfy the monodromy properties with respect to the lattice Λ ⊂ Cd

defining X

τ(z + λ, t) = eaλ·z+bλτ(z, t) , τA(z + λ, t) = eaλ·z+cλτA(z, t) , λ ∈ Λ, z ∈ C
d (1.12)

for some aλ ∈ Cd, bλ = bλ(t), cλ = cλ(t) ∈ C.

Equation (1.11) restricted to z ∈ Cd takes the form

E τA(z, t) τ(U + z, t)−ep τA(U + z, t) τ(z, t) = τ̇(z+U, t) τA(z, t)− τ(z+U, t) τ̇A(z, t) (1.13)

Here and below “dot” stands for the derivative with respect to the variable t.
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At first sight equation (1.13) considered as an equation for two unknown sections τ(z, t)
and τA(z, t) of some line bundles L(t) and LA(t) on an arbitrary abelian variety X is not as
restrictive as finite-dimensional equation (1.11). Nevertheless, our first main result is that at
least under certain genericity assumptions all the abelian solutions of equation (1.13) arise
in way described above, i.e., they are rank one algebro-geometric, and we have X ⊂ J(Γ)
for some algebraic curve Γ, which in general might be singular.

Theorem 1.1 Suppose that the equation (1.13) with some p, E ∈ C and 0 6= U ∈ Cn, is sat-
isfied with τ(z, t), τA(z, t), such that for all t the functions τA(z, t) and τ(z, t) are holomorphic
functions satisfying the monodromy properties (1.12). Assume, moreover, that

(i) Λ is maximal with this property, i.e., any λ ∈ Cn satisfying (1.12) for some aλ ∈ Cn

and bλ(t), cλ(t) ∈ C must belong to Λ, and that,

(ii) for each t the divisor T t := {z ∈ X | τ(z, t) = 0} is reduced and irreducible;

(iii) the group {Un|n ∈ Z} is Zariski dense in X.

Then there exist a unique irreducible algebraic curve Γ, smooth points P± ∈ Γ, an injective

homomorphism j0:X → J(Γ) and a torsion-free rank 1 sheaf F ∈ Picg−1(Γ) of degree g− 1,
where g = g(Γ) is the arithmetic genus of Γ, such that setting j(z) = j0(z)⊗F we have

τ(Un + z, t) = ρ(t) τ̂n(t, 0 | Γ, P, j(z)) , (1.14)

where, τ̂n(t+1 , t
−
1 | Γ, P,F) is the 2D Toda tau-function defined by the data (Γ, Pi,F).

Note that when Γ is smooth:

τ̂n(t+1 , t
−
1 | Γ, P, j(z)) = θ

(
nU + t+1 V+ + t−1 V− + j(z)

∣∣∣ B(Γ)
)
eQ(n,t+

1
,t−

1
) , (1.15)

where V± ∈ Cn, Q is a quadratic form, B(Γ) is the matrix of B-periods of Γ, and θ is
the Riemann theta function. Linearization in the Jacobian J(Γ) of nonlinear t-dynamics
for τ(z, t) provides some evidence that there might be underlying integrable systems on the
spaces of higher level theta-functions on ppav. The RS system is an example of such a system
for d = 1.

Almost till the very end the proof of Theorem 1.1 goes along the lines of [21]. We
would like to stress that the proof of the trisecant conjecture in [21] uses nighter of the
assumptions above. We include the assumption (iii) in the statement of the theorem only to
avoid unnecessary at this stage analytical difficulties.

The second goal of this paper, discussed in the last section, is to study abelian solutions
of the BDHE. The latter is a difference equation of the form

τn(l+ 1, m)τn(l,m+ 1)− τn(l,m)τn(l + 1, m+ 1) + τn+1(l+ 1, m)τn−1(l,m+ 1) = 0 (1.16)

One of its auxiliary Lax equations is the two dimensional linear difference equation

ψ(m,n+ 1) = ψ(m+ 1, n) + u(m,n)ψ(m,n) (1.17)
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with the potential u of the form

u(m,n) =
τ(n + 1, m+ 1) τ(n,m)

τ(n + 1, m) τ(n,m+ 1)
(1.18)

Under the light-cone change of variables

x = m− n, ν = m+ n (1.19)

and under the assumption that τ(n,m) is of the form τ(Wx+z, ν) with z,W ∈ Cd, equation
(1.7) get transformed to the difference-functional equation

ψ(z −W, ν) = ψ(z +W, ν) + uψ(z, ν − 1) . (1.20)

with

u(z, ν) =
τ(z, ν + 1) τ(z, ν − 1)

τ(z −W, ν) τ(z +W, ν)
(1.21)

Equation (1.20) for ψ of the form

ψ(x, ν) =
τA(z, ν)

τ(z, ν)
ep·z+νE (1.22)

is equivalent to the discrete analog of (1.13)

e−p·W τ(z+W, ν)τA(z−W, ν) = ep·Wτ(z−W, ν)τA(z+W, ν)+e−Eτ(z, ν+1)τA(z, ν−1) , (1.23)

where, as before, τ(z, ν) and τA(z, ν) are sections of some line bundles on X, i.e. they are
holomorphic functions satisfying the monodromy properties

τ(z + λ, ν) = eaλ·z+bλ(ν)τ(z, ν) , τA(z + λ, ν) = eaλ·z+cλ(ν)τA(z, ν) , λ ∈ Λ, (1.24)

with respect to the lattice Λ of an abelian variety X = C
n/Λ. If X is ppav and τ(z, ν) =

θ(z + V ν), τA(z, ν) = θ(A+ z + V ν) then (1.23) is equivalent to the trisecant equation

e−p·Wθ(z+W )θ(z+A−W ) = ep·Wθ(z+A+W )θ(z−W )+e−Eθ(z+V )θ(z+A−V ) . (1.25)

We conjecture that under the assumption that τ(z, ν), τA(z, ν) are meromorphic quasiperiodic
functions of the variable ν all the abelian solutions of equation (1.23) are rank one algebro-
geometric, and we have X ⊂ J(Γ) for some algebraic curve Γ, (which in general might
be singular). The main result of the last section is a proof of this conjecture in the case
when τ(z, ν) is periodic in the variable ν with some sufficiently large prime period N . More
precisely,

Theorem 1.2 Suppose that the equation (1.23) with some p, E ∈ C and 0 6= W ∈ C
n,

is satisfied with τ(z, ν), τA(z, ν), such that for all ν the functions τA(z, ν) and τ(z, ν) are
holomorphic functions satisfying the monodromy properties (1.24) with respect to the lattice
Λ of an abelian variety X = Cn/Λ. Assume, moreover, that
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(i) Λ is maximal with this property, i.e., any λ ∈ C
n satisfying (1.24) for some aλ ∈ C

n

and bλ(ν), cλ(ν) ∈ C must belong to Λ, and that,

(ii) for each ν the divisor T ν := {z ∈ X | τ(z, ν) = 0} is reduced and is irreducible;

(iii) the Zariski closure of the group {2Wm|m ∈ Z} in X coincides with X;

(iv) the functions τ(z, ν), τA(z, ν) are meromorphic functions of the variable ν ∈ C and
τ(z, ν) is a quasiperiodic function of ν, satisfying the monodromy relation

τ(z, ν +N) = ea·z+c ντ(z, ν) (1.26)

with an integer prime period N > dimH0(T ν) and with some a ∈ Cn, c ∈ C.

Then there exist a unique irreducible algebraic curve Γ, smooth points P0, P1, P2 ∈ Γ,

an injective homomorphism j0:X → J(Γ) and a torsion-free rank 1 sheaf F ∈ Picg−1(Γ) of
degree g− 1, where g = g(Γ) is the arithmetic genus of Γ, such that setting j(z) = j0(z)⊗F
we have

τ(Wx+ z, ν) = ρ(ν) τ̂ (x, ν, 0, . . . | Γ, P, j(z)) , (1.27)

where, τ̂ (t1, t2, t3, . . . | Γ, P,F) is the BDHE tau-function defined by the data (Γ, Pi,F).

2 Construction of the wave function

Equation (1.13) is equivalent to equation (1.7) with

un = −∂t ln
τ((n + 1)U + z, t)

τ(nU + z, t)
, ψn =

τA(nU + z, t)

τ(nU + z, t)
eP ·z+Et, (2.1)

where P ∈ Cd is a vector such that P · U = p. In the core of the proof of Theorem is
the construction of quasiperiodic wave function as in (2.9,2.10) below, which contains much
more information than the function ψ in (2.1) having no spectral parameter. We would like
to emphasize once again that the construction of wave function follows closely the argument
from the beginning of Section 2 in [21] but is drastically simplified by the assumption (ii) in
the formulation of the theorem.

The construction is presented in two steps. First we show that the existence of a holo-
morphic solutions of equation (1.23) implies certain relations on the tau divisor T t.

Lemma 2.1 If equation (1.23) has holomorphic solutions whose divisors have no common
components (or if the τ -divisor is irreducible), then the equation

∂2
t τ(z, t) τ(z + U, t) τ(z − U, t) = ∂tτ(z, t) ∂t (τ(z + U, t) τ(z − U, t)) (2.2)

is valid on the divisor T t = { z ∈ Cd | τ(z, t) = 0}.

In [21] equation (2.2) was derived with the help of pure local consideration. Let us show
that they can be easy obtained globally.
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Proof. The evaluations of (1.13) at the divisors T t and T t − U give

(τ̇A(z) + EτA(z))τ(z + U) = τ̇(z + U)τA(z), z ∈ T t, (2.3)

τA(z)τ(z − U) + τ̇(z)τA(z − U)e−p = 0, z ∈ T t . (2.4)

Here and below for brevity we omit the notations for explicit dependence of functions on the
variable t, i.e. τ(z) = τ(z, t), τA(z) = τA(z, t).

The evaluation of the derivative of (1.13) at T t − U gives an another equation

(EτA(z) + τ̇A(z))τ(z − U) + τ̇(z − U)τA(z) + τ̈(z)τA(z − U)ep = 0, z ∈ T t (2.5)

Eliminating τA(z − U) and τ̇A(z) from (2.3-2.5) we obtain the equation

[τ̈ (z) τ(z + U) τ(z − U)− τ̇ (z, t) ∂t (τ(z + U) τ(z − U))] τA(z) = 0, z ∈ T t. (2.6)

which implies (2.2) due to the assumption that the divisors of τ and τA have no common
components (or under the assumption that T t is irreducible).

In [21] it was shown that equation (2.2) is sufficient for the existence of local meromorphic
wave solutions of (1.7) which are holomorphic outside of zeros of τ . Let us show that in a
global setting they are sufficient for the existence of quasi-periodic wave solutions of the
differential-functional equation:

∂tψ(z, t) = ψ(z + U, t)− u(z, t)ψ(z, t) (2.7)

with
u = ∂t ln τ(z, t)− ∂t ln τ(z + U, t) , (2.8)

which restricted to the points z + Un takes the form (1.7).

The wave solution of (2.7) is a formal solution of the form

ψ = kl·zektφ(z, t, k) , (2.9)

where l is a vector l ∈ Cd such that l · U = 1 and φ is a formal series

φ(z, t, k) = ebt

(
1 +

∞∑

s=1

ξs(z, t) k
−s

)
(2.10)

Lemma 2.2 Let equation (2.2) for τ(z, t) holds, and let λ1, . . . , λd be a set of linear inde-
pendent vectors of the lattice Λ Then equation (2.7) with u as in (2.8) has a unique, up to
a z-independent factor, wave solution such that:

(i) the coefficients ξs(z, t) of the formal series (2.10) are meromorphic functions of the
variable z ∈ Cd with a simple pole at the divisor T t, i.e.

ξs(z, t) =
τs(z, t)

τ(z, t)
; (2.11)

and τs(z, t) is a holomorphic function of z;
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(ii) φ(z, t, k) is quasi-periodic with respect to the lattice Λ

φ(z + λ, t, k) = φ(z, t, k)B λ(k), λ ∈ Λ; (2.12)

and is periodic with respect to the vectors λ1, . . . , λd, i.e.,

B λi(k) = 1, i = 1, . . . , d. (2.13)

Proof. The functions ξs(z) are defined recursively by the equations

∆U ξs+1 = ξ̇s + (u+ b) ξs. (2.14)

Here and below ∆U stands for the difference derivative e∂U − 1. The quasi-periodicity con-
ditions (2.12) for φ are equivalent to the equations

ξs(z + λ, t)− ξs(z, t) =

s∑

i=1

B λ
i ξs−i(z, t) , ξ0 = 1. (2.15)

The general quasi-periodic solution of the first equation ∆U ξ1 = u+b is given by the formula

ξ1 = −∂t ln τ + l1(z, t) b+ c1(t), (2.16)

where l1(z, t) is a linear form on C
d such that l1(U, t) = 1. It satisfies the monodromy

relations (2.15) with

Bλ
1 = l1(λ) b− ∂t ln τ(z + λ, t) + ∂t ln τ(z, t) = l1(λ, t) b− ḃλ(t) , (2.17)

where bλ = bλ(t) are defined in (1.12). The normalizing conditions Bλi

1 = 0, i = 1, . . . , d
uniquely define the constant b and the linear form l1(z).

Let us assume that the coefficient ξs−1 of the series (2.10) is known, and that there
exists a solution ξ0

s of the next equation, which is holomorphic outside of the divisor T t, and

which satisfies the quasi-periodicity conditions (2.15) with B
λj
s = 0 and possibly t-dependent

coefficient Bλ
s (t), for λ 6= λj, i.e.

ξs(z + λ, t)− ξs(z, t) = Bλ
s (t) +

s−1∑

i=1

B λ
i ξs−i(z, t), Bλj

s = 0. (2.18)

We assume also that ξ0
s is unique up to the transformation ξs = ξ0

s + cs(t), where cs(t) is a
time-dependent constant.

Let us define a function τ 0
s+1(z) on T t with the help of the formula

τ 0
s+1 = −∂tτs(z, t)− bτs(z, t) +

∂tτ(z + U, t)

τ(z + U, t)
τs(z, t), z ∈ T t. (2.19)

Let us show that the formula (2.19) can be written also in the alternative form:

τ 0
s+1 = −∂tτ(z, t)

τs(z − U, t)

τ(z − U, t)
, z ∈ T t. (2.20)
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By the induction assumption, ξs = (τs/τ) is a solution of (2.14) for s − 1, i.e. the function
τs satisfies the equation

[τ̇s−1(z − U) + τs(z − U) + bτs−1(z − U)] τ(z) = τs(z)τ(z − U) + τ̇(z) τs−1(z − U), (2.21)

where once again we omit notations for explicit dependence of all the functions on the variable
t.

From (2.21) it follows that

τs(z)τ(z − U) + τ̇ (z) τs−1(z − U) = 0. z ∈ T t . (2.22)

The evaluation of the derivative of (2.21) at T t implies

(τs(z−U) + bτs−1(z−U)) τ̇ (z) = τ̇s(z) τ(z−U) + τs(z) τ̇ (z−U) + τ̈ (z)τs−1(z−U), z ∈ T t.
(2.23)

Then, using (2.2) and (2.22) we obtain the equation

τ̇(z)τs(z − U)

τ(z − U)
= bτs(z) + τ̇s(z)−

τ̇(z + U)τs(z) .

τ(z + U)
(2.24)

Hence, the expressions (2.19) and (2.20) do coincide.

The expression (2.19) is certainly holomorphic when τ(z + U) is non-zero, i.e. is holo-
morphic outside of T t∩ (T t−U). Similarly from (2.20) we see that τ 0

s+1(z, t) is holomorphic
away from T t ∩ (T t + U).

We claim that τ 0
s+1(z, t) is holomorphic everywhere on T t. Indeed, by the assumption

the abelian subgroup generated by U is Zariski dense. Therefore, for any point z0 ∈ T
t there

exists an integer k > 0 such that zk = z0 − kU is in T t, and τ(zk+1, t) 6= 0. Then, from
equation (2.20) it follows that τ 0

s+1 is regular at the point z = zk. Using equation (2.19) for
z = zk, we get that ∂tτ(zk−1, t)τs(zk, t) = 0. The last equality and the equation (2.20) for
z = zk−1 imply that τ 0

s+1 is regular at the point zk−1. Regularity of τ 0
s+1 at zk−1 and equation

(2.19) for z = zk−1 imply ∂tτ(zk−2, t)τs(zk−1, t) = 0. Then equation (2.20) for z = zk−2

implies that τ 0
s+1 is regular at the point zk−2. By continuing these steps we get finally that

τ 0
s+1 is regular at z = z0. Therefore, τ 0

s+1 is regular on T t.

Recall, that an analytic function on an analytic divisor in Cd has a holomorphic extension
onto Cd ([28]). Therefore, there exists a holomorphic function τ̃(z, t) such that τ̃s+1|T t = τ 0

s+1.
Consider the function χs+1 = τ̃s+1/τ . It is holomorphic outside of the divisor T t. From (2.15)
and (2.20) it follows that the function fλ

s+1(z) defined by the equation

χs+1(z + λ)− χs+1(z) = fλ
s+1(z) +

s∑

i=1

B λ
i ξs+1−i(z) , (2.25)

has no pole at T t, i.e. it is a holomorphic function of z ∈ Cd. It satisfies the twisted
homomorphism relations

fλ+µ
s+1 (z) = fλ

s+1(z + µ) + fµ
s+1(z), (2.26)

i.e., it defines an element of the first cohomology group of ΛU with coefficients in the sheaf
of holomorphic functions, f ∈ H1

gr(ΛU , H
0(C,O)). The same arguments, as that used in the
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proof of the part (b) of the Lemma 12 in [25], show that there exists a holomorphic function
hs+1(z) such that

fλ
s+1(z) = hs+1(z + λ)− hs+1(z) + B̃λ

s+1, (2.27)

where B̃λ
s+1 = B̃λ

s+1(t) is a time-dependent constant. Hence, the function ζs+1 = χs+1 + hs+1

has the following monodromy properties

ζs+1(z + λ)− ζs+1(z) = B̃λ
s+1 +

s∑

i=1

B λ
i ξs+1−i(z), (2.28)

Let us consider the function

Rs+1 = ζs+1(z + U)− ζs+1(z)− ξ̇s(z)− (u(z) + b) ξs(z) (2.29)

From equation (2.19,2.20) it follows that it has not poles at T t and T t − U , respectively.
Hence, Rs+1(z) is a holomorphic function.

From (2.28) it follows that it satisfies the following monodromy properties

Rs+1(z + λ) = Rs+1(z)− Ḃ
λ
s . (2.30)

Recall, that by the induction assumption B
λj
s = 0, where λj, j = 1, . . . , d, are linear in-

dependent. Therefore, Rs+1 is a constant (z-independent) and Bλ
s for all λ are in fact

t-independent.

The function
ξ̃s+1(z, t) = ζs+1(z, t) + ls+1(z, t) + cs+1(t) , (2.31)

where ls+1 is a linear form such that

ls+1(U, t) = −Rs+1(t) ,

is a solution of (2.14).

Under the transformation ξs 7−→ ξs(z, t) + cs(t) which does not change the monodromy

properties of ξs, the solution ξ̃s+1 gets transformed to

ξs+1 = ξ̃s+1 + ċs(t)l1(z, t) + cs(t)ξ1(z, t), (2.32)

where l1(z, t) is the linear form defined above in the initial step of the induction. The new
solution ξs+1 satisfies the monodromy relations (2.15) with constant Bλ

i for i ≤ s and with
t-dependent coefficient

B λ
s+1(t) = B̃ λ

s+1(t) + ls+1(λ, t) + ċs(t)l1(λ, t) + cs(t)B
λ
1 . (2.33)

The normalization condition (2.13) for Bλi

s+1 = 1, i = 0, . . . , d defines uniquely ls+1 and ∂tcs,
i.e. the time-dependence of cs(t). The induction step is completed.

Note that the remaining ambiguity in the definition of ξs on each step is the choice of
a time-independent constant cs. That corresponds to the multiplication of ψ by a constant
formal series and thus the lemma is proven.
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3 Commuting difference operators.

Our next goal is to construct rings Az of commuting difference operators parameterized by
points z ∈ X. In fact the construction of such operators completes the proof of Theorem 1.1
because as shown in ([26, 13]) there is a natural correspondence

A ←→ {Γ, P±,F} (3.1)

between commutative rings A of ordinary linear difference operators containing a pair of
monic operators of co-prime orders, and sets of algebro-geometric data {Γ, P±, [k

−1]1,F},
where Γ is an algebraic curve with a fixed first jet [k−1]1 of a local coordinate k−1 in the
neighborhood of a smooth point P+ ∈ Γ and F is a torsion-free rank 1 sheaf on Γ such that

h0(Γ,F(nP+ − nP−)) = h1(Γ,F(nP+ − nP−)) = 0. (3.2)

The correspondence becomes one-to-one if the rings A are considered modulo conjugation
A′ = g(x)Ag−1(x).

The construction of the correspondence (3.1) depends on a choice of initial point x0 = 0.
The spectral curve and the sheaf F are defined by the evaluations of the coefficients of
generators of A at a finite number of points of the form x0 + n. In fact, the spectral curve
is independent on the choice of x0, but the sheaf does depend on it, i.e. F = Fx0

.

Using the shift of the initial point it is easy to show that the correspondence (3.1) extends
to the commutative rings of operators whose coefficients are meromorphic functions of x. The
rings of operators having poles at x = 0 correspond to sheaves for which the condition (3.2)
for n = 0 is violated.

The algebraic curve Γ is called the spectral curve of A. The ring A is isomorphic to the
ring A(Γ, P+, P−) of meromorphic functions on Γ with the only pole at the points P+ and
which vanish at P−. The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(Γ, P+, P−). (3.3)

Here ψ0 is a common eigenfunction of the commuting operators. At x = 0 it is a section of
the sheaf F ⊗O(P+).

In order to construct rings of commutative operators we first introduce a unique pseudo-
difference operator

L(z, t) = T +

∞∑

s=0

ws(z, t)T
−s, T = e∂U , (3.4)

such that the equation
(
T +

N∑

s=0

ws(z, t)T
−s

)
ψ(z, t) = kψ(z, t) , (3.5)

with ψ is given by (2.9), holds. The coefficients ws(z, t) of L are difference polynomials in
terms of the coefficients of φ. Due to quasiperiodicity of ψ they are meromorphic functions
on the abelian variety X.
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Consider now the strictly positive difference parts of the operators Lm. Let Lm
+ be the

difference operator such that Lm
− = Lm − Lm

+ = Fm + F 1
mT

−1 + O(T−2). By definition the
leading coefficient Fm of Lm

− is the residue of Lm:

Fm = resT L
m, F 1

m = resT L
m T. (3.6)

From the construction of L it follows that [∂t − T + u,Ln] = 0. Hence,

[∂t − T + u,Lm
+ ] = −[∂t − T + u,Lm

− ] = (∆UFm)T. (3.7)

Indeed, the left hand side of (3.7) shows that the right hand side is a difference operator with
non-vanishing coefficients only at the positive powers of T . The intermediate equality shows
that this operator is at most of order 1. Therefore, it has the form fmT . The coefficient
fm is easy expressed in terms of the leading coefficient Lm

− . Note, that the vanishing of the
coefficient at T 0 and T−1 implies the equation

∆U F
1
m = ∂tFm, (3.8)

∆U F
2
m = ∂tF

1
m + uF1 − F1(T

−1u), (3.9)

which we will use later.

The functions Fm(z) are difference polynomials in the coefficients ws of L. Hence, Fm(z)
are meromorphic functions on X.

Lemma 3.1 There exist holomorphic functions qm(z, t) such that the equation

Fm =
qm(z + U, t)

τ(z + U, t)
−
qm(z, t)

τ(z, t)
. (3.10)

holds.

Proof. If ψ is as in Lemma 3.1, then there exists a unique pseudo-difference operator Φ such
that

ψ = ΦkP ·zekt, Φ = 1 +
∞∑

s=1

ϕs(s, t)T
−s. (3.11)

The coefficients of Φ are universal difference polynomials in ξs. Therefore, ϕs(z, t) is a
meromorphic function of z. Note, that L = ΦTΦ−1.

Consider the dual wave function defined by the left action of the operator Φ−1: ψ+ =(
k−P ·ze−kt

)
Φ−1. Recall that the left action of a pseudo-difference operator is the formal

adjoint action under which the left action of T on a function f is (fT ) = T−1f . If ψ is a
formal wave solution of (2.7), then ψ+ is a solution of the adjoint equation

(−∂t − T
−1 + u)ψ+ = 0. (3.12)

The same arguments, as before, prove that if equation (2.2) holds then ξ+
s have simple poles

on the divisor T t−U . Therefore, if ψ as in Lemma 2.2, then the dual wave solution is of the
form ψ+ = k−P ·ze−ktφ+(Ux+ Z, t, k), where the coefficients ξ+

s (z +Z, t) of the formal series

φ+(z, t, k) = e−bt

(
1 +

∞∑

s=1

ξ+
s (z, t) k−s

)
(3.13)
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have simple poles along the divisor T t − U .

The ambiguity in the definition of ψ does not affect the product

ψ+ψ =
(
k−xe−ktΦ−1

) (
Φkxekt

)
. (3.14)

Therefore, the coefficients Js of the product

ψ+ψ = φ+(z, t, k)φ(z, t, k) = 1 +

∞∑

s=1

Js(z, t) k
−s (3.15)

are meromorphic functions on X. The factors in the left hand side of (3.15) have the
simple poles on T t and T t − U . Hence, Js(z) is a meromorphic function on X with the
simple poles at T t and T t − U . Moreover, the left and right action of pseudo-difference
operators are formally adjoint, i.e., for any two operators the equality (k−xD1) (D2k

x) =
k−x (D1D2k

x) + (T − 1) (k−x (D3k
x)) holds. Here D3 is a pseudo-difference operator whose

coefficients are difference polynomials in the coefficients of D1 and D2. Therefore, from
(3.14-3.19) it follows that

ψ+ψ = 1 +
∞∑

s=1

Jsk
−s = 1 + ∆

(
∞∑

s=2

Qsk
−s

)
. (3.16)

The coefficients of the series Q are difference polynomials in the coefficients ϕs of the wave
operator. Therefore, they are meromorphic functions of z with poles on T t, i.e. Qs = qs/τ .

From the definition of L it follows that

resk

(
ψ+(Lnψ)

)
k−1dk = resk

(
ψ+knψ

)
k−1dk = Jn. (3.17)

On the other hand, using the identity

resk

(
k−xD1

)
(D2k

x) k−1dk = resT (D2D1) , (3.18)

we get
resk(ψ

+Lnψ)k−1dk = resk

(
k−xΦ−1

)
(LnΦkx) k−1dk = resT L

n = Fn. (3.19)

Therefore, Fn = Jn and the lemma is proved.

Important remark. In [21] the statement that Fm has poles only along T t and T t−U
was crucial for the proof of the existence of commuting difference operators associated with
u. Namely, it implies that for all but a finite number of positive integers i /∈ A there exist
constants cn,α such that

Fi(z, t)−
∑

α∈A

ci,αFα(z, t) = 0 , (3.20)

hence (3.7) would imply that the corresponding linear combinations Li := Li
+ −

∑
ci,αL

α
+

commutes with P := ∂t − T − u. Not so: since these constants ci,α might depend on t, we
might not have [P, Ln] = 0, and we cannot immediately make the next step and claim the
existence of commuting operators (!).
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So our next goal is to show that these constants in fact are t-independent. For that let
us consider the functions F 1

i (z, t). From (3.8) and (3.10) it follows that

F 1
i = ∂t

(
qi(z, t)

τ(z, t)

)
(3.21)

Let {F 1
α | α ∈ A}, for finite set A, be a basis of the space F(t) spanned by {F 1

m}. Then for
all n /∈ A there exist constants cn,α(t) such that

F 1
n(z, t) =

∑

α∈A

cn,α(t)F 1
α(z, t) . (3.22)

Due to (3.21) it is equivalent to the equations

qn(z, t) =
∑

α

cn,α(t)qα(z, t) , z ∈ T t, (3.23)

q̇1
n(z, t) =

∑

α

cn,α(t)q̇1
α(z, t) z ∈ T t , (3.24)

from which we get ∑

α

(ċn,α)qα(z, t) = 0 z ∈ T t. (3.25)

From (3.9) we obtain

∆U

(
F 2

n −
∑

α∈A

cn,α(t)F 2
α(z, t)

)
= ċn,αF

1
α . (3.26)

The left hand side is ∆U derivative of a meromorphic function. The right hand side has pole
only at T t. Therefore, both sides of the equation must vanish. Then the assumption that
the set F 1

α is minimal imply ċn,α = 0.

Lemma 3.2 Let ψ be a wave function corresponding to u, and let Li, i /∈ A be the difference
operator given by the formula

Li = Li
+ −

∑

α∈A

ci,αL
α
+, i /∈ A, (3.27)

where the constants ci,α are defined by equations (3.22).

Then the equation

Li ψ = ai(k)ψ, ai(k) = ki +
∞∑

s=1

as,ik
n−s (3.28)

where as,i are constants, hold.
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Proof. First note that from (3.7) it follows that

[∂t − T − u, Li] = 0. (3.29)

Hence, if ψ is the wave solution of (1.7) then Liψ is also a wave solution of the same equation.
By uniqueness of the wave function up to a constant in z-factor we get (3.28) and thus the
lemma is proven.

The operator Li can be regarded as a z-parametric family of ordinary difference operators
Lz

i .

Corollary 3.1 The operators Lz
i commute with each other,

[Lz
i , L

z
j ] = 0 . (3.30)

From (3.28) it follows that [Lz
i , L

z
j ]ψ = 0. The commutator is an ordinary difference operator.

Hence, the last equation implies (3.30).

4 The fully discrete case

The main goal of this section is to characterize under some nondegeneracy assumptions all
the abelian solutions of equation (1.23. As above we begin with the construction of the
corresponding quasiperiodic wave function. We would like to emphasize once again that the
construction of wave function follows closely the argument from the beginning of Section 5
in [21] but is simplified by the assumption (iii) in the formulation of Theorem 1.2.

4.1 Construction of the wave function

First let us show that the existence of a holomorphic solutions of equation (1.23) implies
certain relations on T ν .

Lemma 4.1 ([21]) If equation (1.23) has holomorphic solutions, then the equation

τ(z +W, ν + 1) τ(z − 2W, ν) τ(z +W, ν − 1)

τ(z −W, ν + 1) τ(z + 2W, ν) τ(z −W, ν − 1)
= −1 (4.1)

is valid on the divisor T ν = { z ∈ C
m | τ(z, ν) = 0}.

Proof. The evaluations of (1.23) at the divisors T ν ±W give two different expressions for
the restriction of τA(z, ν) on T ν :

τA(z, ν) = ep·W−E τ(z +W, ν + 1) τA(z +W, ν − 1)

τ(z + 2W, ν)
, z ∈ T ν , (4.2)

τA(z, ν) = −e−p·W−E τ(z −W, ν + 1) τA(z −W, ν − 1)

τ(z − 2W, ν)
, z ∈ T ν . (4.3)
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The evaluation of equation (1.23) for ν − 1 at T ν implies

e−p·W τ(z+W, ν−1) τA(z−W, ν−1) = ep·W τ(z−W, ν−1)τA(z+W, ν−1), z ∈ T ν . (4.4)

Taking the ratio of (4.2,4.3) and using (4.4) we get (4.1). The lemma is proved.

Equation (4.1) is all what we need for the rest.

Lemma 4.2 Let τ(z, ν) be a sequence of non-trivial quasiperiodic holomorphic functions on
Cm. Suppose that the group {2Wν| ν ∈ Z} is Zariski dense in X and equation (4.1) holds.
Then there exist wave solutions ψ(z, ν, k) = kνφ(z, ν, k) of the equation (1.20) with u as in
(1.21) such that:

(i) the coefficients ξs(z, ν) of the formal series

φ(z, ν, k) = ξ0(ν) +
∞∑

s=1

ξs(z, ν) k
−s (4.5)

are meromorphic functions of the variable z ∈ Cm with simple poles at the divisor T ν, i.e.

ξs(z, ν) =
τs(z, ν)

τ(z, ν)
, (4.6)

where τs(z, ν) is now a holomorphic function;

(ii) ξs(z, ν) satisfy the following monodromy properties

ξs(z + λ, ν)− ξs(z, ν) =

s∑

i=1

B λ
i, ν−s+i ξs−i(z, ν) , λ ∈ Λ, (4.7)

where B λ
i, ν are z-independent.

Proof. The functions ξs(z, ν) are defined recursively by the equations

ξs+1(z −W, ν)− ξs+1(z +W, ν) = u(z, ν) ξs(z, ν − 1). (4.8)

The first equation for s = −1 is satisfied by an arbitrary z-independent function ξ0 = ξ0(ν).
In what follows it will be assumed that ξ0(ν) 6= 0.

We will now prove lemma by induction in s. Let us assume inductively that for r ≤ s
the functions ξr are known and satisfy (4.7). Note, that the evaluation of (4.8) for s− 1 and
ν − 1 at the divisor T ν gives the equation

τs(z −W )τ(z +W ) = τs(z +W )τ(z −W ) , z ∈ T ν . (4.9)

From (4.1) and (4.9) it follows that the two formulae by which we define the residue of ξs+1

on T ν

τ 0
s+1(z, ν) =

τ(z +W, ν + 1) τs(z +W, ν − 1)

τ(z + 2W, ν)
, z ∈ T ν , (4.10)

−τ 0
s+1(z, ν) =

τ(z −W, ν + 1) τs(z −W, ν − 1)

τ(z − 2W, ν)
, z ∈ T ν . (4.11)
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do coincide.

The expression (4.10) is certainly holomorphic when τ(z + 2W ) is non-zero, i.e. is holo-
morphic outside of T ν∩(T ν−2W ). Similarly from (4.11) we see that τ 0

s+1(z, ν) is holomorphic
away from T ν ∩ (T ν + 2W ).

We claim that τ 0
s+1(z, ν) is holomorphic everywhere on T ν . Indeed, by assumption the

closure of the abelian subgroup generated by 2W is everywhere dense. Thus for any z ∈ T ν

there must exist some N ∈ N such that z−2(N +1)W 6∈ T ν ; let N moreover be the minimal
such N . From (4.11) it then follows that τ 0

s+1(z, ν) can be extended holomorphically to
the point z − 2NW . Thus expression (4.10) must also be holomorphic at z − 2NW ; since
its denominator there vanishes, it means that the numerator must also vanish. But this
expression is equal to the numerator of (4.11) at z − 2(N − 1)W ; thus τ 0

s+1 defined from
(4.11) is also holomorphic at z−2(N−1)W (the numerator vanishes, and the vanishing order
of the denominator is one, since we are talking exactly about points on its vanishing divisor).
Note that we did not quite need the fact z − 2(N + 1)W 6∈ T ν itself, but the consequences
of the minimality of N , i.e., z−2kW ∈ T ν , 0 ≤ k ≤ N , and the holomorphicity of τ 0

s+1(z, ν)
at z − 2NW .” Therefore, in the same way, by replacing N by N − 1, we can then deduce
holomorphicity τ 0

s+1(z, ν) at z − 2(N − 2)W and, repeating the process N times, at z.

Recall that an analytic function on an analytic divisor in C
d has a holomorphic extension

to all of Cd ([28]). Therefore, there exists a holomorphic function τ̃s+1(z, ν) extending the
τ 0
s+1(z, ν). Consider then the function χs+1(z, ν) = τ̃s+1(z, ν)/τ(z, ν), holomorphic outside

of T ν .

From (4.7) and (4.10) it follows that the function

fλ
s+1(z, ν) = χs+1(z + λ, ν)− χs+1(z, ν)−

s∑

i=1

B λ
i, ν−1−s+i ξs+1−i(z, ν) (4.12)

has no pole at the divisor T ν . Hence, it is a holomorphic function. It satisfies the twisted
homomorphism relations

fλ+µ
s+1 (z, ν) = fλ

s+1(z + µ, ν) + fµ
s+1(z, ν), (4.13)

i.e., it defines an element of the first cohomology group of Λ0 with coefficients in the sheaf
of holomorphic functions, f ∈ H1

gr(Λ0, H
0(Cm,O)). Once again using the same arguments,

as that used in the proof of the part (b) of the Lemma 12 in [25], we get that there exists a
holomorphic function hs+1(z, ν) such that

fλ
s+1(z, ν) = hs+1(z + λ, ν)− hs+1(z, ν) + B̃λ

s+1, νξ0(ν), (4.14)

where B̃λ,
s+1, ν is z-independent. Hence, the function ζs+1 = χs+1 + hs+1 has the following

monodromy properties

ζs+1(z + λ, ν)− ζs+1(z, ν) = B̃λ
s+1,ν ξ0(ν) +

s∑

i=1

B λ
i, ν−1−s+i ξs+1−i(z, ν) . (4.15)

Let us consider the function Rs+1 defined by the equation

Rs+1 = ζs+1(z −W, ν)− ζs+1(z +W, ν)− u(z, ν) ξs(z, ν − 1) . (4.16)
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Equation (4.10) and (4.11) imply that the r.h.s of (4.16) has no pole at T ν ±W . Hence,
Rs+1(z, ν) is a holomorphic function of z. From (4.7,4.15) it follows that it is periodic with
respect to the lattice Λ, i.e., it is a function on X. Therefore, Rs+1 is a constant.

Hence, the function

ξs+1(z, ν) = ζs+1(z, ν) + ls+1(z, ν)ξ0(ν) + cs+1(ν)ξ0(ν) , (4.17)

where cs+1(ν) is a constant, and ls+1 is a linear form such that

ls+1(2W, ν)ξ0(ν) = −Rs+1(ν) ,

is a solution of (4.8). It satisfies the monodromy relations (4.7) with

B λ
s+1, ν = B̃ λ

s+1, ν + ls+1(λ, ν) . (4.18)

The induction step is completed and thus the lemma is proven.

On each step the ambiguity in the construction of ξs+1 is a choice of linear form ls+1(z, ν)
and constants cs+1(ν). As in Section 2, we would like to fix this ambiguity by normalizing
monodromy coefficients Bλ

i, ν for a set of linear independent vectors λ1, . . . , λd ∈ Λ. As it was
revealed in [21] in the fully discrete case there is an obstruction for that. This obstruction is
a possibility of the existence of periodic solutions of (4.8), ξs+1(z+λ, ν) = ξs+1(z, ν), λ ∈ Λ,
for 0 ≤ s ≤ r − 1.

Note, that there are no periodic solutions of (4.8) for all s. Indeed, the functions ξs(z, ν)
as solutions of non-homogeneous equations are linear independent. Suppose not. Take
a smallest nontrivial linear relation among ξs(z, ν), and apply (5.24) to obtain a smaller
linear relation. The space of meromorphic functions on X with simple pole at T ν is finite-
dimensional. Hence, there exists minimal r such that equation (4.8) for s = r has no periodic
solutions.

Let λ1, . . . , λd be a set of linear independent vectors in Λ. Without loss of generality
throughout the rest of the paper it will be assumed that there is no linear form l(z), z ∈ Cm,
with l(λj) = 1 and l(2W ) = 0.

Lemma 4.3 Suppose equations (4.8) has periodic solutions for s < r and has a quasi-
periodic solution ξr whose monodromy relations for λj have the form

ξr(z + λj, ν)− ξr(z, ν) = b ξ0(ν), j = 1, . . . , d, (4.19)

where b 6= 0 is a constant. Then for all s equations (4.8) has solutions of the form (4.6)

satisfying (4.7) with B
λj

i, ν = b δi,r, i.e.,

ξs(z + λj , ν)− ξs(z, ν) = b ξs−r(z, ν). (4.20)

Proof. We will now prove the lemma by induction in s ≥ r. Let us assume inductively that
ξs−r is known, and for 1 ≤ i ≤ r there are solutions ξ̃s−r+i of (4.8) satisfying (4.7) with
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B
λj

i, ν = b δi,r. Then, according to the previous lemma, there exists a solution ξ̃s+1 of (4.8)
having the form (4.6) and satisfying monodromy relations (4.7), which for λj have the form

ξ̃s+1(z + λj, ν)− ξ̃s+1(z, ν) = b ξ̃s−r+1(z, ν) +B
λj

s+1, νξ0(ν) . (4.21)

If ξs−r is fixed, then the general quasi-periodic solution ξs−r+1 with the normalized mon-
odromy relations is of the form

ξs−r+1(z, ν) = ξ̃s−r+1(z, ν) + cs−r+1(ν)ξ0(ν) . (4.22)

It is easy to see that under the transformation (4.22) the functions ξ̃s−r+i get transformed to

ξs−r+i(z, ν) = ξ̃s−r+i(z, ν) + cs−r+1(ν − i+ 1) ξi−1(z, ν) . (4.23)

This transformation does not change the monodromy properties of ξs−r+i for i ≤ r, but
changes the monodromy property of ξs+1:

ξs+1(z + λj , ν)− ξs+1(z, ν) = b ξs−r+1(z, ν) +B
λj

s+1, ν ξ0(ν) +

b (cs−r+1(ν − r)− cs−r+1(ν)) ξ0(ν). (4.24)

Recall, that ξ̃s+1 was defined up to a linear form ls+1(z, ν) which vanishes on 2W . Therefore
the normalization of the monodromy relations for ξs+1 uniquely defines this form and the
differences (cs−r+1(ν − r) − cs−r+1(ν)). The induction step is completed and the lemma is
thus proven.

Note, the following important fact: if ξs−r is fixed then ξs−r+1, such that there exists
quasi-periodic solution ξs+1 with normalized monodromy properties, is defined uniquely up
to the transformation:

ξs−r+1(z, ν) 7−→ ξs−r+1(z, ν) + cs−r+1(ν)ξ0(ν), cs−r+1(ν + r) = cs−r+1(ν). (4.25)

Our next goal is to show that the assumption of Lemma 4.3 holds for some r, and then to fix
the remaining ambiguity (4.25) in the definition of the wave function. At this moment we
are going to use for the first time the assumption that τ is a meromorphic periodic function
of the variable ν.

Let r be the minimal integer such that there exist solutions ξ0
0 = 1, ξ0

1, . . . , ξ
0
r−1 of (4.8)

that are periodic functions of z with respect to Λ, and there is no periodic solution ξr of
(4.8). As it was noted above, the functions τs are linear independent. Hence, r ≤ h0(Y, θ|Y ).

If ξ0
r−1 is periodic, then the monodromy relation for ξr has the form

ξ0
r(z + λ, ν)− ξ0

r (z, ν) = B λ
r (z, ν) , λ ∈ Λ. (4.26)

The function Bλ
r is independent of the ambiguities in the definition of ξi, i < r, and therefore,

it is a well-defined holomorphic function of z ∈ X. Hence, it is z-independent, Bλ
r (z, ν) =

Bλ
r (ν). The function ξ0

r is defined up to addition of a linear form lr(z, ν) such that l(2W, ν) =

0. Therefore, there exist the solution ξ0
r such that B

λj
r (ν) = Br(ν). There is no ξ0

r which is
periodic for all ν. Hence, Br(ν) 6= 0 at least for one value of ν. By assumption the function
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τ is a meromorphic function of ν. Therefore, Br(ν) is a meromorphic function of ν. Shifting
ν → ν+ν0 if needed, we may assume without loss of generality that Br(ν) 6= 0 for all ν ∈ Z.
From (1.26) it follows that u(z, ν + N) = u(z, ν). Hence, Br(ν) is a periodic function of ν,
i.e.

Br(ν +N) = Br(ν). (4.27)

Under the transformation
ξ0
0 = 1 7−→ ξ0(ν) (4.28)

the solutions ξ0
r get transformed to

ξs(z, ν) = ξ0
s(z, ν) ξ0(ν − s). (4.29)

From (4.26) it follows that the transformed function ξr satisfies the relations

ξr(z + λ, ν)− ξr(z, ν) = B λ
r (ν)ξ0(z, ν − r) , λ ∈ Λ. (4.30)

The equation
b ξ0(ν) = Br(ν)ξ0(ν − r), ξ0(ν +N) = ξ0(ν). (4.31)

restricted to the space of periodic functions ξ0 can be regarded as a finite-dimensional linear
equation. The vanishing of the determinant of this equation defines the constant b. With b
fixed equation (4.31) defines ξ0 uniquely up to multiplication by a function c0(ν) such that
c0(ν + N) = c0(ν + r) = c0(ν). By the assumption of Theorem 1.2 the period N is prime
and N > H0(T ν). As it was mentioned above r ≤ H0(T ν). Hence, two periods of c0 are
coprime, i.e.,(r,N) = 1. Therefore, ξ0 is defined uniquely up to a constant factor.

Lemma 4.4 Suppose that the assumptions of Theorem 1.2 hold. Then there exists a formal
solution

φ = ξ0(ν) +
∞∑

s=1

ξs(z, ν) k
−s (4.32)

of the equation

kφ(z −W, ν, k) = kφ(z +W, ν, k) + u(z, ν)φ(z, ν − 1, k) , (4.33)

with u as in (1.21) such that:

(i) the coefficients ξs of the formal series φ are of the form ξs = τs/θ, where τs(Z) are
holomorphic functions;

(ii) φ(z, ν, k) is quasi-periodic with respect to the lattice Λ and for the basis vectors λj in
Cm its monodromy relations have the form

φ(z + λj, ν, k) = (1 + b k−r)φ(z, ν, k), j = 1, . . . , m, (4.34)

where b are constants defined by (4.31);

(iii) φ(z, ν, k) is a quasi-periodic function of the variable ν, i.e.

φ(z, ν +N, k) = φ(z, ν, k)µ(k) (4.35)

(iv) φ is unique up to the multiplication by a constant in z factor ρ(k).
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Proof. We prove the lemma by induction in s. Let us assume inductively that ξs−r is known.
As shown above the normalization of the relations for ξs+1 uniquely defines ξs−r+1 up to
the transformation (4.25), i.e. up to a r-periodic function cs−r+1(ν + r) = cs−r+1(ν). The
quasiperiodicity condition (iii) is equivalent to the condition that this function of cs−r+1

is N -periodic. As it was mentioned above the periods r and N are coprime. Hence, on
each step ξs−r+1 is defined up to the additive constant. This ambiguity corresponds to the
multiplication of φ be a constant factor ρ(k), and thus the lemma is proven.

4.2 Commuting difference operators

As it Section 3 we are now going to construct rings Az of commuting difference operators.
First we introduce pseudo-difference operator in one of the original variable m depending on
the second variable n and a point z ∈ Cd. (Recall, that the variables n,m are related to x, ν
via (1.19).

The formal series φ(z, ν, k) defines a unique pseudo-difference operator

L(z, ν) = w0(ν)T +

∞∑

s=0

ws+1(z, ν)T
−s, T = e∂m , (4.36)

such that the equation
(
w0(m+ n)T +

N∑

s=0

ws(z + (m− n)W, (m+ n))T−s

)
ψ = kψ . (4.37)

holds. Here ψ = kn+mφ(z + (m − n)W, (m + n), k). The coefficients ws(z, ν) of L are
difference polynomials in terms of the coefficients of φ. Due to quasiperiodicity of ψ they
are meromorphic functions on the abelian variety X.

From equations (4.33, 4.37) it follows that

(
(∆1L

i)T1 − (∆Li)T − [u,Li]
)
ψ = 0 , (4.38)

where ∆1L
i and ∆Li are pseudo-difference operator in T , whose coefficients are difference

derivatives of the coefficients of Li in the variables n and m respectively. Using the equation
(T1 − T − u)ψ = 0, we get

((
∆1L

i
)
T −

(
∆Li

)
T +

(
∆1L

i
)
u− [u,Li]

)
ψ = 0. (4.39)

The operator in the left hand side of (4.39) is a pseudo-difference operator in the variable
m. Therefore, it has to be equal to zero. Hence, we have the equation

(
∆0L

i
)
T +

(
∆1L

i
)
u− [u,Li] = 0, ∆0 = T1 − T (4.40)

Let Li
+ be the strictly positive difference part of the operator Li, i.e.,

Li = Li
+ + Li

− = Li
+ +

∞∑

s=0

Fi,sT
−s (4.41)
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Then,

(
∆0L

i
+

)
T +

(
∆1L

i
+

)
u− [u,Li

+] = −
(
∆0L

i
−

)
T −

(
∆1L

i
−

)
u+ [u,Li

−] (4.42)

The left hand side of (4.42) is a difference operator with non-vanishing coefficients only at
the positive powers of T . The right hand side is a pseudo-difference operator of order 1.
Therefore, it has the form fiT . The coefficient fi is easy expressed in terms of the leading
coefficient Li

−. Finally we get the equation

(
∆0L

i
+

)
T +

(
∆1L

i
+

)
u− [u,Li

+] = −(∆0Fi)T, (4.43)

where Fi = Fi = res Li.

By definition of L we have that the functions Fi in (4.41) are of the form

Fi = resT L
i = Fi(z + (m− n)W, (m+ n)) (4.44)

where for each ν the functions Fi(z, ν) are abelian functions, i.e., periodic functions of the
variable z ∈ Cd.

Lemma 4.5 The abelian functions Fi have the form

Fi(z, ν) =
qi(z +W, ν + 1)

τ(z +W, ν + 1)
−
qi(z, ν)

τ(z, ν)
, (4.45)

where qi(z, ν) are holomorphic functions of the variable z ∈ Cd.

Proof. The wave solution ψ define the unique operator Φ such that

ψ = Φkn+m, Φ = 1 +
∞∑

s=1

ϕs((m− n)W + z, (m+ n)T−s , (4.46)

where ϕs(z, ν) are meromorphic functions of z ∈ Cd. The dual wave function

ψ+ = k−n−m

(
1 +

∞∑

s=1

ξ+
s ((n−m)W + z, (n +m)) k−s

)
(4.47)

is defined by the formula
ψ+ = k−n−m T1 Φ−1 T−1

1 . (4.48)

It satisfies the equation
(T−1

1 − T
−1 − u)ψ+ = 0, (4.49)

which implies that the functions ξ+
s (z, ν) have the form ξ+

s (z, ν) = τ+
s (z, ν)/θ(z +W, ν + 1),

where τ+
s (z, ν) are holomorphic functions of z ∈ Cd. Therefore, the functions Js(z, ν) such

that

(ψ+T1)ψ = k +
∞∑

s=1

Js((n−m)W + z, (n +m)) k−s+1 (4.50)
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are meromorphic function on X with the simple poles at T ν and T ν+1 −W .

The same arguments as that used for the proof of (3.16) show that

(ψ+T1)ψ = (k−xT1Φ
−1)(Φkx) = k + (∆Q) (4.51)

where the coefficients of the series Q are of the form

Q =

∞∑

s=0

Qs(n−m)W + z, (n +m))k−s , (4.52)

and the functions Qs(z, ν) are difference polynomials in the coefficients ϕs of the wave op-
erator. Therefore, they are well-defined meromorphic functions of z. As shown above, the
functions

Js(z, ν) = Qs(z +W, ν + 1)−Qs(z, ν) (4.53)

have simple poles at T ν and T ν+1 −W . Hence, Qs(z, ν) have poles only at T ν , i.e.

Qs =
qs(z, ν)

τ(z, ν)
, (4.54)

where qs(z, ν) are holomoprhic functions of z.

From the definition of L it follows that

resk

(
(ψ+T1) (Liψ)

)
k−2dk = resk

(
(ψ+ T1)ψ

)
ki−2dk = Ji. (4.55)

On the other hand, using (3.18) we get

resk((ψ
+ T1) (Liψ) k−2dk = resk

(
k−n−mΦ−1

) (
LiΦkn+m

)
k−1dk = resT L

i = Fi. (4.56)

Equation (4.45) is a direct corollary of (4.53-4.56). The lemma is proved.

The function ψ is quasiperiodic function of the variable ν. Then, from the definition of
ψ+ it follows that

φ+(z, ν +N, k) = φ+(z, ν, k)µ−1(k) , (4.57)

where µ(k) is defined in (4.35). Therefore, the functions Js are periodic functions of ν.
Hence,

Fi(z, ν +N) = Fi(z, ν). (4.58)

For each ν the space of functions spanned by the abelian functions Fi(z, ν) is finite-dimensional.
Due to periodicity of Fi in ν the total space F spanned by sequences Fi(z, ν) is also finite-
dimensional. Let {Fα | α ∈ A}, for finite set A, be a basis of the factor- space of F modulo
z-independent sequences. Then for all i /∈ A there exist constants ci,α, di(ν) such that

Fi(z, ν)−
∑

α∈A

ci,αFα(z, ν) = di(ν) . (4.59)

The rest of the proof of Theorem 1.2 is identical to that in the proof of Theorem 1.1. Namely,
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Lemma 4.6 Let ψ be a wave function corresponding to u, and let Li, i /∈ A be the difference
operator given by the formula

Li = Li
+ −

∑

α∈A

ci,αL
α
+, i /∈ A, (4.60)

where the constants ci,α are defined by equations (4.59).

Then the equations

Li ψ = ai(k)ψ, ai(k) = ki +

∞∑

s=1

as,ik
n−s , (4.61)

where as,i are constants, hold.

Proof. From (4.43) it follows that

[T1 − T − u, Li] = 0. (4.62)

Hence, if ψ is the wave solution of (1.20) then Liψ is also a wave solution of the same
equation. By uniqueness of the wave function up to a constant in z-factor we get (3.28) and
thus the lemma is proven.

Corollary 4.1 The operators Lz
i commute with each other,

[Lz
i , L

z
j ] = 0 . (4.63)
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