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The topic named in the first part of the title of this lecture is familiar to every
student. My ultimate goal is to show how the theory of integrable equations,
which has been extensively developed during the past twenty years, and the
Whitham theory, which already has a ten-year history, are related to the clas-
sical problem of complex analysis. The Riemann theorem asserts that, if a
domain in the complex plane has a boundary containing more than two points,
then there exists a conformal mapping of this domain onto the unit disk. This
is an existence theorem. Many applied sciences are engaged in constructing
such conformal mappings in particular situations; moreover, these problems
are related to applications in hydrodynamics, in the theory of oil-fields, and
in aerodynamics. The necessity of constructing conformal mappings of special
domains emerges very often.

I want to present a recent remarkable observation of Zabrodin and Wieg-
mann, who discovered a relation between the classical problem on conformal
mappings of domains and the dispersionless Toda lattice a couple of months
ago. I shall tell about the development of this observation in our joint paper
(not yet published), namely, about its generalization to nonsimply connected
domains and about the role which the methods of algebraic geometry play in
it.

Before proceeding to the problem proper, I want to give a brief overview of
the entire context in which it has arisen, in order to clarify what the Whitham
equations are. Surprisingly, the same structures related to the Whitham equa-
tions arise in various fields of mathematics, not only in the theory of conformal
mappings. For example, they arise in the problem of constructing n-orthogonal
curvilinear coordinates, which was the central problem of differential geome-
try in the nineteenth century. Let xi(u) be a curvilinear coordinate system in
Rn, where xi are the Cartesian coordinates expressed in terms of curvilinear
coordinates u. Such a coordinate system is called n-orthogonal if all the level
hypersurfaces ui = const intersect at a right angle. An example of such a coor-
dinate system is polar coordinates. In the two-dimensional case, the problem is
trivial, but starting with dimension 3, it becomes very rich. Theoretically, this
problem was solved by Darboux, again at the level of an existence theorem.
He proved that the local problem of constructing an n-orthogonal curvilinear
coordinate system depends on n(n − 1)/2 functions of two variables. There
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are fairly many particular examples of n-orthogonal coordinates system. One
of such examples is elliptic coordinates. In essence, solving a given system of
differential equations reduces to constructing apt coordinates, in which the sys-
tem becomes trivial. This is why good coordinate systems are so important:
they increase the chances of solving the equation.

The problem about n-orthogonal coordinate systems can be set in intrinsic
terms as the problem of finding flat diagonal metrics ds2 =

∑
H2

i (u)(du)2.
Egorov considered such metrics satisfying the additional condition H2

i = ∂iΦ.
This is the metric symmetry condition. Such metrics are called Darboux–Egorov
metrics. They have many special features.

This problem, the Whitham equations, and the problem about conformal
mappings belong to one complex of ideas and methods. A little later, I shall
tell how the problem about n-orthogonal curvilinear coordinates is related to
topological quantum models of field theory.

Another theme, which has eventually united all these diverse problem, is
the theory of integrable equations, commonly referred to nowadays as soliton
equations. This theory emerged about 30 years ago. The best-known (and
oldest) soliton equation is the Korteweg–de Vries (KdV) equation

ut −
3
2
uux +

1
4
uxxx = 0.

There are many other soliton equations (fortunately, having important appli-
cations) which can be integrated by the methods of soliton theory. I shall not
talk about these methods; they were largely developed 10–20 years ago and
continue being developed at present.

Korteweg and de Vries found the simplest solution to the KdV equation very
shortly after they wrote it. This is a stationary solution u(x, t) not depending
on t. In this case, ut = 0, and we can integrate the equation:

3
4
u2 =

1
4
uxx + g2.

Then, we can multiply it by ux and integrate again:

1
2
(ux)2 = u3 + g2u + g3.

The solutions to such an equation are expressed in terms of the Weierstrass
function as

u = 2℘(x + const; ω1, ω2);

the Weierstrass function ℘ is a doubly periodic function with periods 2ω1

and 2ω2 having a second-order pole at zero; i.e., ℘ = 1
x2 + O(x) at zero. This
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solution depends on three constants; thus, we have obtained the complete set
of solutions, because the equation is of the third order.

A stationary solution is constructed from an elliptic curve, i.e., a curve
of genus 1. In the 1970s and in the early 1980s, in a cycle of papers by
Dubrovin, Novikov, Matveev, myself, and a number of other authors, the so-
called algebro-geometric methods for constructing solutions to soliton equations
were developed; given a set of algebro-geometric data, they yield solutions to
various nonlinear equations, including the KdV equation, the sine-Gordon equa-
tion, and other equations pertaining to this science. A solution is obtained by
processing data by a machine called finite-zone integration. A solution is rep-
resented explicitly, but in terms of the Riemann theta-functions rather than
in terms of elliptic functions. The algebro-geometric data set consists of a
Riemann surface Γg of genus g with fixed points P1, . . . , PN and fixed local
coordinates z1, . . . , zN in neighborhoods of these points; it also includes a fixed
point on the complex multidimensional torus J(Γg) being the Jacobian of this
surface. A solution is constructed from such data. This makes it possible to
solve very diverse equations, depending on the number of fixed points and on
the classes of curves.

For the stationary solution to the KdV equation, the algebro-geometric data
set includes an elliptic curve y2 = E3 + g2E + g3 and a fixed point at infinity.
These data play the role of integrals, for they do not change with time. But the
point on the Jacobian moves. The phase space of the equation looks as follows.
There is a space of integrals being curves with marked points and fixed local
coordinates at these points; over each point of the space of integrals, a torus
hangs. The motion on the torus is a rectilinear winding, in full accordance with
the spirit of the theory of completely integrable finite-dimensional systems, i.e.,
with Liouville theory.

Such is the answer for soliton equations. The procedure for constructing so-
lutions is another story. I shall not tell it now. Instead, I want to tell about what
happened to this science thereafter, starting with the mid-1980s. At that time,
a particular emphasis was placed on the theory of perturbations of integrable
equations. Usually, we are interested not only in a specific equation but also
in what happens in its neighborhood. The basic element of the perturbation
theory of integrable equations is Whitham theory.

Before proceeding to Whitham theory, I want to write one formula; its var-
ious forms are encountered in all the sciences mentioned above. As I said,
the description of motion for soliton equations in terms of systems of integrals
and rectilinear windings of the torus is fully consistent with Liouville theory.
The ultimate goal of Liouville theory is specification of action–angle variables.
A Hamiltonian system is constructed from a manifold M2n (phase space), a



Conformal mappings and the Whitham equations 319

symplectic structure ω on it, and a Hamiltonian H. A Hamiltonian system
is called completely integrable if, in addition to a Hamiltonian, it has n in-
tegrals in involution, for which {Fi, Fj} = 0. The compact surface levels of
these integrals must be n-dimensional tori, and the motions on them must be
rectilinear windings. The torus has natural coordinates, cycles. If Φi are the
angular coordinates for the basis cycles, then the action variables are defined
as the coordinates Ai canonically conjugate to the angular variables, i.e., such
that the symplectic structure in these coordinates has the standard Darboux
form ω =

∑
dAi∧dΦi. Selecting such coordinate systems among all coordinate

systems is a separate nontrivial problem. The Liouville theorem in Arnold’s
setting says that we must integrate the primitive form over the basis cycles.
But it is unclear how to explicitly describe this n-dimensional torus in the
2n-dimensional manifold. Thus, this theorem also has the character of an exis-
tence theorem. All attempts to explicitly construct action–angle variables have
failed. In the early 1980s, Novikov and Veselov made a remarkable observation.
Analyzing the first integrable Hamiltonian equations known at that time, they
discovered that the action–angle variables have the same form for all these sys-
tems. Namely, integration over a cycle on n-space is replaced by integration
over a cycle on the corresponding Riemann surface, that is,

Ai =
∮

ai

QdE. (1)

Here Q is a meromorphic differential; to each Hamiltonian system, its own
differential Q corresponds. These differentials may be multivalued. Nobody
knew why this is so. Novikov and Veselov called these formulas analytic Poisson
brackets. Their nature has been explained analytically only recently, three
years ago, in my joint paper with Phong (in Journal of Differential Geometry).
We analyzed the answers for the symplectic structures which arise in Seiberg–
Witten theory for the supersymmetric Yang–Mills model and noticed that the
same symplectic brackets as those describing the case of hyperelliptic curves (I
should mention that everything considered by Novikov and Veselov referred to
the case of hyperelliptic curves) were rediscovered by Seiberg and Witten.

Memorize formula (1), because precisely the same integral of a multivalued
differential solves the problem about conformal mappings of domains.

What are the Whitham equations? Suppose that we have slightly changed
(perturbed) the equation. Then the integrals of the initial equation cease to be
integrals. They begin to slowly vary; as physicists say, they become adiabatic
integrals. For the nonperturbed equation, a point of the phase space moves on
a torus. As soon as we perturb the equation, a slow drift along the space of
integrals begins. The system of equations on the moduli space of curves with
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Figure 1. An overturning wave

marked points describing this motion is precisely the Whitham equations. It
turns out that they are themselves integrable.

I shall not talk about algebro-geometric data any longer. I shall continue
the discussion at a quite elementary level, where only curves of genus 0 are
considered. The point is that the solution to the KdV equation that involves
the Weierstrass function is not the simplest one; the simplest solution is a
constant. In the theory of KdV equation, curves of genus 0 are trivial, and
nobody was interested in this solution. But when we consider perturbations of a
constant solution rather than this solution itself, the theory becomes interesting.
In Whitham theory, genus 0 plays a nontrivial role. This case is called the
dispersionless limit of soliton equations. It can be treated as a special case of a
more general problem or considered separately.

Why “dispersionless”? The coefficients in a KdV equation are inessential,
because it can be reduced to the form ut = uux +uxxx by scale transformations.
In what follows, I shall not trace the coefficients. If a solution is almost constant,
we can forget about the third derivative. A good approximation is the equation
ut = uux. It is this equation that is called the dispersionless limit, because in
the KdV equation, the term uxxx is responsible for dispersion. The equation
ut = uux is the simplest Whitham equation.

The KdV equation is an infinite-dimensional analogue of integrable (in the
sense of Liouville) Hamiltonian systems; the equation ut = uux is also inte-
grable, but in a completely different sense. Solving the equation ut = uux (it
is called the Riemann–Hopf equation) is child’s play. Indeed, take an arbitrary
function f(ξ) and consider the equation u = f(x+ut). This equation implicitly
defines a function u(x, t). This function is a solution to the equation ut = uux.
Moreover, all the solutions are obtained in this way.

This solution is commonly used as a basis for explaining the role of non-
linearity in hydrodynamics. Treating u as altitude (wave amplitude), we see
that velocity of a point is proportional to its altitude. Therefore, if the function
is not monotone, then the “hump” begins to outrun everything else; the wave
becomes steeper and overturns (Fig. 1). At the overturning point, the third
derivatives cannot be neglected, for they grow large. Hydrodynamics explains
this as regularization of the behavior of the wave by dispersion (viscosity).

All Whitham equations are integrated by similar methods, which consist in
writing some implicit expression for a solution.
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What is the more general setting of dispersionless Lax equations? Let me
remind you that constructing solutions to soliton equations is based on the Lax
representation

.
L = [L, A]. For the KdV equation, we have L = ∂ 2 + u(x, t)

(the Sturm–Liouville operator) and A = ∂ 3 + 3
2u∂ + 3

4u4. The generalizations
of the KdV equation have arisen from consideration of operators with matrix
coefficient and higher-order operators

L = ∂ n + un−2∂
n−2 + · · · + u0.

The Lax representation is a consistency condition for the overdetermined system
of linear equations Lψ = Eψ, L2ψ = Aψ. In general, the idea of the inverse
problem method is not to start from the equation but go in the reverse direction,
i.e., construct an operator and a solution from a given function ψ.

As we have agreed to begin with considering the simplest solutions to
Lax equations (when u is a constant), we can solve the corresponding lin-
ear differential equation very easily. The solution is an exponential, and the
eigenvalues are polynomials. Taking the eigenfunction ψ = epx, we obtain
E(p) = pn + un−2pn−2 + · · · + u0 (the symbol of the corresponding differen-
tial operator). The Whitham equations are written as ∂iE = {E i/n

+ , E}; here
{f, g} = fpgx − fxgp is the Poisson bracket. We shall express ud(X, T ) in terms
of the slow variables X = εx and T = εt.

The subscript i is not a misprint. Each integrable equation arises as a part
of the large hierarchy formed by a whole family of integrals commuting with
this equation. This is in the spirit of Liouville integrability: if we have a set of
integrals in involution, then each of these integrals regarded as a Hamiltonian
generates its own Hamiltonian dynamics. That the integrals are in involution
means that the corresponding dynamics commute.

Now, I shall explain what E i/n
+ is. Let E1/n(p) = p +

∑
vip−i be the

Laurent expansion. Then E i/n(p) = pi + · · · + O(p−1); E i/n
+ means that only

nonnegative powers of p are taken, i.e., O(p−1) is crossed out. We obtain a
polynomial whose coefficients are polynomials in u. Therefore, the result is a
closed system of equations, which is the dispersionless limit of Lax equations.
In the simplest case, where E = p2 +u and i = 3, we obtain the Riemann–Hopf
equation mentioned above.

How does the general solution procedure for a dispersionless limit look like?
Consider the space of pairs (Q, E), where E and Q are polynomials of forms
E = pn +un−2pn−2 + · · ·+u0 and Q = b0p+ · · ·+bm−1pm, respectively. On this
space, we can introduce the Whitham coordinates Ti = 1

i res∞(E−i/nQdE).
The Ti so defined are functions of u and b (they linearly depend on b and
polynomially on u). These Ti vanish at large i; there are precisely as many
nonzero Ti as required. We can locally invert the Ti as functions of u and b
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and obtain functions u(T ) and b(T ). Substituting these values u(T ) into E, we
obtain a function E(T ). It turns out that E(T ) is a solution to an equation
of dispersionless hierarchy. The polynomial Q seems to play an auxiliary role.
But Q(T ) is also a solution to the same equation with the same Hamiltonian;
namely, ∂iQ = {E i/n

+ , Q}. Moreover, we always have {Q, E} = 1. The equation
{Q, E} = 1 is called the string equation.

In the dispersionless limit, as opposed to the usual hierarchy of Lax equa-
tions, only one solution survives, since all solutions are parametrized by different
higher times; the general solution satisfies a suitable string equation.

The dispersionless science had been known for several years when Dijkgraaf,
Verlinde, and Witten published a paper. They considered a quite different prob-
lem, namely, classification of the topological models of field theory. Solving this
problem, they obtained the very same formula in a completely different con-
text. It became clear that, behind the dispersionless science, a very important
element was hidden; now, it is known as the tau-function. The whole structure
related to the dispersionless limit of the KdV equation or of the general Lax
equation is coded by only one function

F (t) =
1
2

res∞(
∞∑

i=1

Tik
idS).

Here dS = QdE =
∑∞

i=1 Tidki +O(k−1) and k = E1/n(p) = k(p) = p+O(p−1).
I remind you that we deal with the case of a curve of genus 0; the marked point
can be driven to infinity. The only surviving parameter is the local coordinate p.
It can be verified, although this is far from being obvious, that the derivatives
of the function F with respect to times Ti give all the remaining coefficients.
For example, ∂iF = res∞(ki dS) and ∂ 2

ijF = res∞(ki dΩj), where Ωj = E j/n
+ .

There is the remarkable formula

∂ 3
ijkF =

∑

qs

res∞
(dΩi dΩj dΩk

dQdt

)
,

where the summation is over the critical points of the polynomial E (such that
dE(qs) = 0).

Now, I return to the initial problem about conformal mappings. I shall
consider only the case of domains bounded by analytic curves. Let us denote
the interior domain by D and the exterior domain by D. I shall be interested in
schlicht conformal mappings of the exterior of the unit disk to D. For reading, I
recommend the book A. N. Varchenko and P. I. Etingof. Why the Boundary of
a Round Drop Becomes a Curve of Order Four (Providence, RI: Amer. Math.
Soc., 1992). It contains many beautiful particular examples of conformal map-
pings related to the following problem, which arises in the oil industry. Imagine
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that the domain under consideration is an oil-field. There are several oil wells
through which the oil is pumped out. This somehow deforms the domain. The
equation describing the dynamics of the domain boundary is as follows. Let Φ
be a solution to the equation

∆Φ =
∑

qi δ(z − zi)

with zero boundary condition Φ ! ∂D. Then grad Φ is the velocity of the
boundary.

This problem is integrable in a certain sense. It turns out that the final
shape of the drop does not depend on the oil pumping schedule, as it must be
for commuting flows. The result depends only on the amount of oil pumped out
through each oil well; the particular procedure of pumping does not matter.

The main contribution to this science was made by Richardson, who discov-
ered an infinite set of integrals. It is these integrals that I am going to discuss
next.

It is fairly easy to prove that any domain (simply connected or not) is
completely determined by its harmonic moments. The harmonic moments of a
domain D are defined as follows. Let u(x, y) be a harmonic function. Then the
corresponding harmonic moment is equal to

tu =
∫∫

D
u(x, y) dx dy.

When the domain changes, the harmonic moment of some function also changes.
This is a local assertion. The harmonic moments are local coordinates.

It is not necessary to consider all harmonic moments; it is sufficient to take
only some of the functions. For example, the set of functions

tn =
∫∫

D
z−n dz dz̄, n " 1

together with the function

t0 =
∫∫

D
dz dz̄,

where D is the exterior domain, is a local set of coordinates for a simply con-
nected domain.

The fundamental observation made by Wiegmann and Zabrodin is a follows.
Consider, in addition, the moments

vn =
∫∫

D
zn dz dz̄
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of the complement. Clearly, the functions vn can be expressed in terms of
t0, t1, . . . . It turns out that

∂vn

∂tm
=

∂vm

∂tn
.

This means that there exists a function F (t) for which ∂nF (t) = vn. It turns out
that ∂0 ∂nF are the expansion coefficients of a schlicht function implementing
a conformal mapping. We assume that this function is normalized as follows.
In the complement to the unit disk, there is a coordinate w, and in D, a
coordinate z. We consider the mapping of the exteriors and suppose that infinity
is mapped to infinity; moreover, we assume that z = rw+O(w−1). In this case,
w(z) = r−1z +

∑
(∂0 ∂nF )z−n. Again, it turns out that all the conformal

mappings are coded by one function. This is precisely the function which I
mentioned above.

First, I want to give a new proof that locally, the coordinates tn form a
complete coordinate system. From the proof, it will be seen how this all is
related to the dispersionless science.

I need the notion of the Schwarz function. Locally, a smooth curve can be
specified in the form y = f(x). In the complex form, this can be written as
z̄ = S(z). The function S is called the Schwarz function of the curve. For
example, for the unit circle, we obtain the equation z̄ = z−1.

For a real-analytic curve (without corners), the function S can be extended
to a complex-analytic function in a small neighborhood of the curve.

The first assertion which I want to prove is as follows. Suppose that a
contour deforms, i.e., we have a family of Schwarz functions S(z, t), where t is
a deformation parameter. If none of the harmonic moments tn changes under
such a deformation, then the curve is fixed, i.e., the deformation is trivial.

Assertion 1. The 1-differential St(z, t) dz is purely imaginary on the con-
tour ∂D, i.e., all of its values on the vectors tangent to the contour are purely
imaginary.

This follows easily from the definition of the Schwarz function.
The next assertion uses the specifics of the coordinates tn under considera-

tion.

Assertion 2. If ∂ttn = 0, then the holomorphic differential ∂tS dz defined in
a small neighborhood of the curve can be extended to a holomorphic differential
on the entire exterior.

Before proving the second assertion, I shall explain how to derive the re-
quired result from these two assertions. Any domain D ⊂ C with coordinate z
determines a closed Riemann surface. To construct it, we take another copy of
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the same domain with coordinate z̄ and attach it to the given domain along the
boundary. The obtained Riemann surface is called the Schottky double. Let
us apply the Schwarz symmetry principle: any function analytic in the upper
half-plane and real on the real axis can be analytically continued to the lower
half-plane. We have a holomorphic differential in D. It can be extended to
the complex conjugate, because it is purely imaginary on the boundary. As a
result, we obtain a holomorphic differential on the sphere. But there are no
nonzero holomorphic differentials on the sphere.

We proceed to prove the assertion that the holomorphic differential ∂tS dz
can be extended to the entire exterior. Using the Cauchy integral, we can
represent an arbitrary function on a smooth contour as the difference of a
function holomorphic in the exterior domain and a function holomorphic in the
interior domain. Let

Ŝ(z) =
∮

∂D

∂tS(w) dw

z − w
.

The function Ŝ(z) is holomorphic outside the contour, it can be extended to
the boundary, and S+ − S− = ∂tS. If the origin lies inside the domain and
|z| < |w|, then

Ŝ(z) =
∑

zn
∮

∂D
∂tS(w)w−n dw =

∑
zn∂ttn,

because
tn =

∫∫

D
z−n dz dz̄ =

∮

∂D
z−nz̄ dz

by the Stokes theorem.
If the moments do not vary, then the expansion coefficients of Ŝ at z = 0 are

identically zero. Therefore, the function S− is identically zero in some neigh-
borhood of z = 0. But this function is analytic; hence it vanishes identically.
For ∂tS dz to be holomorphic, one more coefficient should be zero, because we
have multiplied the function by dz, and the differential has a pole of the second
order.

Now, it is clear what changes when we differentiate with respect to tn. The
first assertion is valid for an arbitrary variable. The expansion coefficients are
no longer identically zero; one of the coefficients is nonzero. This means, in
particular, that ∂t0S dz is a meromorphic differential with a simple pole at
infinity.

When we take the double, a second pole emerges according to the symmetry
principle. We obtain a differential having residue ±1 at two points. (There is
only one such differential.) This is a global property, as the Liouville theorem.
An analytic function on a compact surface is constant. These two facts allow us
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to use global properties. The first fact makes it possible to pass from a domain
with boundary to a compact surface. And the second fact, which requires
special assumptions, gives an analytic continuation to a meromorphic object.

Thus, we have proved that ∂0z̄ dz = dw
w . Here we differentiate z̄ at a con-

stant z. An equivalent expression is

{z(w, t0), z̄(w, t0)} = 1.

This is an assertion about the zeroth moment. The assertion about all the
remaining moments is ∂nz̄ dz = dzn

+. Here the following notation is used. Let
z(w) = w + . . . . Then zn(w) = wn + . . . . The plus sign means that we take
only the positive part (a polynomial on the sphere).

You may ask why the differential has a pole at only one point, although,
by the symmetry principle, it must have another pole at the symmetric point.
But the functions tn are not analytic; these are functions of both the real and
imaginary parts: tn = xn + iyn. We have

∂

∂tn
=

∂

∂xn
− i

∂

∂yn
.

Therefore,
∂

∂xn
z̄ dz = dzn

+ − dz̄n
+

and
∂

∂yn
z̄ dz = i(dzn

+ + dz̄n
+).

The point is that we can write down hierarchies with respect to tn and with
respect to the complex conjugate variable t̄n. The result is a dispersionless
Toda lattice.

The following remarkable formula holds:

F (t) = − t20
2

+
∑

n!0

(n − 2)(tnvn + t̄nv̄n).

This formula contains a plenty of nontrivial identities. For example, the identity
∂nF = vn looks almost näıve. But the vn themselves depend on tn in a puzzling
way. Substituting and differentiating these dependences, we obtain precisely vn.

For the ellipse, the function F can be calculated explicitly:

F =
1
2
t20 ln t0 −

3
4
t20 −

1
2

ln(1 − 4|t2|2) + t0
|t1|2 + t21t̄2 + t̄2

1t2
1 − 4t2t̄2

.

This example shows how F depends on the first three moments. (The comple-
ment to the ellipse has only three nonzero moments.)
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For nonsimply connected domains, the first assertion (about the derivative
of the Schwarz function) remains valid. The second one relies on the summation
of a geometric progression for a Cauchy integral. In the late 1980s, studying
the quantization operator for boson strings, Novikov and I developed a Fourier–
Laurent theory for arbitrary Riemann surfaces. The basis zn is replaced by
another basis.

The formula written above is symmetric with respect to t and v. This
suggests that it makes sense to try to apply it to the old classical problem of
constructing a mapping of domains from a schlicht conformal mapping of their
complements. The relation between these mappings may be nontrivial. For
example, the complement of the ellipse is mapped onto the complement of the
disk by a simple algebraic function, while the mapping of the interior of the
ellipse to the interior of the disk is an elliptic function.


