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Two-dimensionalized Toda lattice,

commuting difference operators,

and holomorphic bundles

I. M. Krichever and S. P. Novikov

Abstract. Higher-rank solutions of the equations of the two-dimensionalized Toda
lattice are constructed. The construction of these solutions is based on the theory
of commuting difference operators, which is developed in the first part of the paper.
It is shown that the problem of recovering the coefficients of commuting operators
can be effectively solved by means of the equations of the discrete dynamics of the
Tyurin parameters characterizing the stable holomorphic vector bundles over an
algebraic curve.
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§ 1. Introduction
The present paper is devoted to the circle of problems related to the construction

of higher-rank algebro-geometric solutions of the two-dimensionalized Toda lattice

∂2ξηϕn = e
ϕn−ϕn−1 − eϕn+1−ϕn . (1.1)
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Solutions of this kind for the Kadomtsev–Petviashvili (KP) equation

3uyy = (4ut − 6uux + uxxx)x (1.2)

were constructed earlier in the authors’ paper [1]. The construction, as well as
the very notion of rank of solutions, is based on the theory of commuting one-
dimensional differential operators [2]. In modern mathematical physics this theory
appeared as an auxiliary algebraic aspect of the integration theory for non-linear
soliton systems and the spectral theory of periodic finite-zone operators [3]–[6].
The KP equation, like any other soliton equation, is only one of the equations

of the corresponding hierarchy. A solution of the full KP hierarchy is a function
u = u(t) depending on an infinite set of times t = (t1 = x, t2 = y, t3 = t, t4, . . . ).
In contrast to the algebro-geometric solutions of (1+1)-systems of KdV-type equa-
tions, which were singled out [7] by the stationary condition for one of the flows
of the KdV-hierarchy, the algebro-geometric solutions of the KP equation are sin-
gled out by the stationary condition with respect to two times of the hierarchy,
∂tnu = ∂tmu = 0. This condition is equivalent to the existence of a pair of com-
muting ordinary differential operators

[Ln, Lm] = 0, Ln =
n∑

i=0

ui∂
i
x, Lm =

m∑

j=0

vj∂
j
x, (1.3)

which commute with the auxiliary Lax operators ∂y − L2 and ∂t − L3 for the KP
equation which were first found in [8], [9],

L2 = ∂2x + u, L3 = ∂3x +
3

2
u∂x + w. (1.4)

Thus, the pairs of commuting ordinary scalar linear differential operators determine
the invariant spaces for the entire KP hierarchy. By the rank r of such a pair we
mean the number of linearly independent joint eigenfunctions, that is, the number
of solutions of the equations

Lnψ
i = Eψi, Lmψi = w ψi, i = 1, . . . , r, (1.5)

for the pairs of complex numbers (E,w) for which the space of solutions is non-
empty. The rank of a pair of commuting differential operators is a common divisor
of their orders.
As a purely algebraic problem, the classification problem for commuting ordi-

nary scalar differential operators was posed already in the 1920s by Burchnall and
Chaundy [10], [11] who had made great progress in the solution for operators of
coprime orders (in which case the rank is always equal to 1). The effective classi-
fication of the commuting operators of rank one was completed in [4]. Burchnall
and Chaundy noted (see [11]) that the general problem for rank r > 1 seems to be
extremely difficult.
The first steps were made in [12] and [13]. A method of effective classification

of commuting differential operators of rank r > 1 in general position was conceived
by the authors in [1] and [2]. The commuting pairs of rank r depend on (r − 1)
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arbitrary functions of one variable, a smooth algebraic curve Γ with a single marked
point P , and a set of Tyurin parameters (characterizing a stable framed holo-
morphic bundle). We say that these constructions are one-point constructions.
The conditions distinguishing the algebro-geometric solutions can be formulated

for the equations of the 2D Toda lattice in the same way as those in the KP
theory. Here the stationary condition for solutions with respect to two flows of
the corresponding hierarchy is equivalent to the existence of a pair of commuting
difference operators

L =

N+∑

i=−N−

ui(n)T
i, A =

M+∑

i=−M−

vi(n)T
i, (1.6)

which commute with the Lax operators

L1 = ∂ξ − T −w(n), L2 = ∂η − c(n)T−1, (1.7)

w(n) = ϕnξ, c(n) = eϕn−ϕn+1 , (1.8)

for the 2D Toda lattice. Here and below, T stands for the shift operator with
respect to the discrete variable, Tyn = yn+1.
For difference operators the whole (now classical) theory of pairs of commuting

operators of rank r = 1 was based solely on two-point constructions ([14], [15]).
The rings of these operators turned out to be isomorphic to the rings A(Γ, P±)
of meromorphic functions on an algebraic curve Γ with poles at a pair of marked
points P±. There is a remarkable almost graded structure in these algebras. The
relation between them and Laurent–Fourier-type bases on Riemann surfaces was
developed by the authors in [16] for string theory.
The classification problem for commuting difference operators remains unsolved

in full scope. The analysis of the problem presented in § 2 of the present paper
enabled the authors to single out some new substantial points. It turned out that
commuting difference operators of rank r = 1 can be obtained by means of multi-
point constructions. A posteriori this fact does not seem surprising. For commuting
differential operators with matrix coefficients, the appearance of multipoint con-
structions is well known [4]. For difference operators there is apparently no natural
way to single out the case of operators with scalar coefficients. It seems reasonable
to assume that the difference analogue of commuting linear differential operators
with scalar coefficients should be pairs of commuting difference operators arising
in the framework of only one- and two-point constructions. The most important
argument for the authors to support this conjecture is that the corresponding
rings of commuting difference operators remain invariant with respect to the hier-
archy of the two-dimensionalized Toda lattice only in these cases.
A principal difference between these two cases should be stressed. For the two-

point construction the functional parameters do not arise and the coefficients of the
operators can be computed in terms of Riemann theta-functions. In the one-point
case there are functional parameters arising in the construction of commuting oper-
ators for the ranks l > 1. The coefficients of the corresponding operators depend
on l arbitrary functions of a discrete variable, on a smooth algebraic curve Γ with a
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single marked point P , and on the set of Tyurin parameters. As in the continuous
case [2], the problem of recovering the joint eigenfunctions of such operators from
the algebro-geometric spectral data reduces to the Riemann problem on the cor-
responding algebraic curve and cannot be solved explicitly. At the same time,
as noted in [1], the problem of recovering the coefficients of commuting operators
sometimes has an explicit solution. This solution is based on the equations for
the Tyurin parameters, equations which describe the dependence of the parame-
ters on the initial point of the normalization. We note that in a recent paper [17]
the first author established a relationship between continuous deformations of the
Tyurin parameters describing the higher-rank solutions of the KP equation, and
the theory of Hitchin systems [18]. A study of the discrete dynamics of the Tyurin
parameters enabled the authors to find the explicit form of the commuting opera-
tors arising in the framework of the one-point construction of rank two on an elliptic
curve. The ring of these operators is generated by a pair of operators L and A of
orders 4 and 6, respectively:

L =
2∑

i=−2
ui(n)T

i, A =
3∑

i=−3
vi(n)T

i.

The coefficients of these operators depend on two arbitrary functions γn and sn. In
the simplest example the explicit form of the operator L is given by the formulae

L = L22 − ℘(γn) − ℘(γn−1),

where L2 is the Schrödinger difference operator

L2 = T + vn + cnT
−1

with coefficients

4cn+1 = (s
2
n − 1)F (γn+1, γn)F (γn−1, γn),

2vn+1 = snF (γn+1, γn) − sn+1F (γn, γn+1),

where
F (u, v) = ζ(u+ v) − ζ(u − v) − 2ζ(v).

Here and henceforth, ℘(u) = ℘(u|ω,ω′) and ζ(u) = ζ(u|ω,ω′) are the standard
Weierstrass functions.
These formulae are discrete analogues of the formulae for the differential opera-

tor L4 of order 4 and rank 2 obtained by the authors in [19]. In [20] an explicit form
was found for the functional parameter in the formulae for L4, which corresponds
to the Dixmier operator [12]. The coefficients of this operator are polynomial func-
tions of a continuous independent variable x. The problem of constructing a discrete
analogue of the Dixmier operator seems to be of interest.
The construction of higher-rank algebro-geometric solutions for the equations of

the 2D Toda lattice, which was briefly presented in [21] and [22], can be found in
§ 3 below. This result is based on the construction of the Baker–Akhiezer vector
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functions by means of deformations of eigenfunctions of the commuting difference
operators. These deformations are completely determined by the behaviour of
the Baker–Akhiezer functions in a neighbourhood of the marked points which is
determined by certain grafting matrix functions. We must again highlight the
principal difference between the two-point and one-point cases.
In the two-point case, in which there are no functional parameters in the con-

struction of the commuting difference operators, the Baker–Akhiezer function is
determined by two grafting functions Ψ+(ξ, z) and Ψ−(η, z), each of which is deter-
mined by an ordinary differential equation whose coefficients contain arbitrary func-
tions of one of the continuous variables (ξ or η, respectively). In the one-point case
we have the opposite situation. The construction of the commuting difference oper-
ators involves arbitrary functions of a discrete variable, but there is no arbitrariness
in the definition of the grafting function Ψ0(n, ξ, η, z).
In both cases the multiparameter Baker–Akhiezer functions ψn = (ψin) thus

constructed satisfy the equations

L1ψn = 0, L2ψn = 0, (1.9)

where L1 and L2 are operators of the form (1.7). The condition that the equations
(1.9) be consistent is equivalent to (1.1). Moreover, it follows from (1.9) that for
any n the Baker–Akhiezer function, when regarded as a function of the variables
(ξ, η), satisfies a linear Schrödinger equation of the form

(
∂2ξη + vn(ξ, η)∂ξ + un(ξ, η)

)
ψn = 0. (1.10)

As a consequence, we see that our constructions lead to a broad class of Schrödinger
operators in a magnetic field that are integrable on one energy level.
The inverse spectral problem on one energy level for Schrödinger operators in a

magnetic field was posed and solved in [23] in the case of rank 1. A construction of
two-dimensional Schrödinger operators of arbitrary rank that are integrable on one
energy level was proposed in [19]. The corresponding constructions were two-point.
The possibility of constructing integrable Schrödinger operators in the framework
of one-point constructions has not been discussed before the present paper.
It should be stressed that, in essence, the problem of constructing solutions

of the equations of the 2D Toda lattice and the problem of constructing inte-
grable Schrödinger operators in a magnetic field are equivalent. In the modern
theory of integrable systems the equation (1.1) and its Lax representation were
first obtained by the Zakharov–Shabat scheme as a two-dimensional analogue of
the one-dimensional Toda lattice [24]. It turned out later that these equations were
well known in classical differential geometry in the equivalent form of chains of
Laplace transformations for a two-dimensional Schrödinger equation [25].
Let us consider an arbitrary two-dimensional Schrödinger operator L in a mag-

netic field:
2L = (∂z̄ +B)(∂z + A) + 2V, (1.11)

where ∂z = ∂x − i∂y and ∂z̄ = ∂x + i∂y . The functions H = (Bz − Az̄)/2 and
U = −H − V are usually called the magnetic field and the potential, respectively.
For brevity, the potential is understood to be the function V in what follows.
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The operator L is defined up to gauge transformations L → e−fLef . The only
invariants of L are the potential V and the magnetic field H. The Laplace
transformations, which are two-dimensional analogues of the Bäcklund–Darboux
transformations, are defined as follows:

(∂z̄ +B)(∂z + A) + 2V #−→ Ṽ (∂z + A)V −1(∂z̄ + B) + 2V. (1.12)

The potential Ṽ and the magnetic field H̃ of the transformed operator are given
by the formulae

Ṽ = V + H̃, 2H̃ = 2H +∆ logV. (1.13)

If a function ψ satisfies the equation Lψ = 0, then the function ψ̃ = (∂z + A)ψ

satisfies the equation L̃ ψ̃ = 0. Let us consider the lattice of the Laplace transfor-
mations

Vn+1 = Vn +Hn+1, 2Hn+1 = 2Hn +∆ logVn. (1.14)

The change Vk = log (ϕn − ϕk−1) takes this lattice to the 2D Toda equations (1.1).

§ 2. Commuting difference operators
2.1. Setting of the problem. The main objective of the present section is the
construction of an effective classification of commuting difference operators, that
is, difference operators satisfying the condition

[L,A] = 0, (2.1)

of the form

L =

N+∑

i=−N−

ui(n)T
i, A =

M+∑

i=−M−

vi(n)T
i, N± = r±n±, M± = r±m±, (2.2)

with scalar coefficients, where r± are the greatest common divisors of the highest
and lowest orders of the operators, respectively, that is, the numbers n± and m±
are non-zero and coprime,

(n+, m+) = (n−, m−) = 1. (2.3)

Suppose that the highest and lowest coefficients of these operators are non-zero.
We denote them for brevity by u±(n) and v±(n),

u±(n) = u±N±(n) $= 0, v±(n) = v±M±(n) $= 0. (2.4)

The equation (2.1) is invariant with respect to the gauge transformations of the
form

L,A #−→ L̃ = gLg−1, Ã = gAg−1, L̃ =

N+∑

i=−N−

g(n + i)g−1(n)ui(n)T
i, (2.5)



Two-dimensionalized Toda lattice 479

where g(n) $= 0 is an arbitrary everywhere non-zero function of a discrete variable.
By using a gauge transformation if necessary, we can always assume that the highest
coefficient of L is identically equal to 1,

u+(n) = 1. (2.6)

This normalization, which is assumed in what follows, preserves a partial gauge
freedom, that is, it is invariant with respect to the gauge transformations cor-
responding to functions g(n) such that g(n + N+) = g(n). It follows from the
equation (2.1) that the highest coefficient of the operator A satisfies the equality
v+(n +N+) = v+(n). Hence, by using gauge transformations if necessary, we can
assume in addition that the following conditions hold:

v+(n+ r+) = v
+(n) = v+n̄ . (2.7)

Here n̄ stands for the residue of n modulo r+, that is, n → n̄ = n (mod r+),
0 ! n̄ < r+ − 1. The remaining gauge freedom corresponds to functions g(n) such
that g(n + r+) = g(n).
Fixing the gauge freedom by the conditions (2.6) and (2.7), we see that the lowest

coefficients of the operators are of the form

u−(n) = h−1(n−N−)h(n), v−(n) = v−ñ h
−1(n −M−)h(n). (2.8)

Here ñ = n (mod r−).
For r+ = r− = r > 1, the commutativity equations have an additional invariance.

Namely, for any i, 0 ! i < r, one can construct from any function yn of the discrete
variable n a new function Yn having non-zero values only at the points of the
corresponding sublattice,

Yn =

{
0, n $= i (mod r),
yn̄, n = rn̄+ i.

(2.9)

Under this correspondence, every operator of order N determines some operator of
order rN . If one takes r pairs of commuting operators [Li, Ai] = 0 (not necessarily
different), then the direct sum of these operators (each regarded as an operator
acting on the corresponding sublattice) satisfies the non-degeneracy condition (2.4)
and the commutativity equation (2.1).
To eliminate the indicated freedom, we consider commuting pairs of indecom-

posable operators, that is, operators that cannot be reduced to a block-diagonal or
block-Jordan form by decomposing the lattice n into a direct sum of sublattices
of the form kr + i, 0 ! i < r − 1. To satisfy the indecomposability condition, it
suffices to assume that for any i = 1, . . . , r − 1 there is an n0 such that

vrm+−i(n0) $= 0, v−rm−+i(n0) $= 0. (2.10)
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2.2. Spectral curve. Formal infinities. The definition of affine spectral curve
in the discrete case does not differ from the continuous version. Let us consider the
linear space L(E) of solutions of the equation Ly = Ey, that is,

yN+ +

N+−1∑

i=−N−

ui(n)yn+i = Eyn. (2.11)

The dimension of this space is equal to the order of the linear operator L, which
means that dimL(E) = N+ +N−. The restriction of the operator A to L(E),

A(E) = A
∣∣
L(E)
, (2.12)

is a finite-dimensional linear operator. The spectral curve parametrizing the joint
eigenfunctions of L and A is defined by the characteristic equation

R(w,E) = det(w − A(E)) = 0. (2.13)

The matrix elements of the operator A(E) in the basis ci of solutions of the equation
(2.11) determined by the initial conditions

cin = δin, i, n = −N−, . . . , N+ − 1 , (2.14)

are polynomial functions of the variable E. Hence, R(w,E) is a polynomial not
only in the variable w but also in the variable E.

Compactification of the spectral curve. The construction of eigenfunctions of
commuting operators at infinity (as E → ∞) in the discrete case, which repeats
the continuous case in general, contains a number of new substantial points.
We denote by L+ the linear space of solutions of the equation

LΦ = z−N+Φ, Φ = {Φn}, (2.15)

that have the form

Φn(z) = z
−n
( ∞∑

s=0

ξs(n)z
s

)
. (2.16)

We assume here that ξ0(n) is non-zero for at least one value n.

Lemma 2.1. The space L+, regarded as a linear space over the field k+ of Laurent
series in the variable z, is of dimension N+. It is generated by the solutions Φi,
i = 0, . . . , N+ − 1, uniquely determined by the conditions

Φin(z) = z
−nδni, n, i = 0, . . . , N+ − 1. (2.17)

To prove the lemma, it suffices to note that the substitution of the series (2.16)
into the equation (2.15) leads to the following system of recursion equations for
determining the coefficients of the expansion (2.16):

ξ0(n +N+) = ξ0(n),

ξ1(n +N+) = ξ1(n) − un+N+−1(n)ξ0(n +N+ − 1), . . . .
(2.18)
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It follows from this system that any solution Φ is uniquely determined by the initial
data ξs(i), i = 0, . . . , N+ − 1.
The space L+ is invariant with respect to the action of the operator A. Hence,

AΦin(z) =

N+−1∑

j=0

Aij(z)Φ
j
n(z), Aij(z) =

∞∑

s=−M+

A
(s)
ij z

s. (2.19)

The highest coefficient is the matrix

A
(M+)
ij = v+i δj, i+M+ (modN+). (2.20)

The change z → εz, where εN+ = 1, determines an automorphism of the space
L+(z). This implies that the coefficients of the characteristic polynomial

det(w −Aij(z)) = wN+ +
N+−1∑

i=0

ai(E)w
i, E = z−N+ , (2.21)

are series in the variable E = z−N+ . Therefore, the eigenvalues of this matrix are
Laurent series in the variable z (rather than in some fractional power z1/k, k > 1).
Suppose that the following conditions hold:

v+i $= v
+
j , i $= j, (2.22)

where the v+i are defined in (2.7). In this case the matrix Aij(z) has a unique

eigenvector Ψ(i)n (z), i = 0, . . . , r+ − 1, of the form (2.16),

Ψ(i)n (z) = z
−n
(
δi,n̄ +

∞∑

s=1

ξs(n)z
s

)
. (2.23)

The leading term of the expansion is an eigenvector of the matrix (2.20) corre-
sponding to the eigenvalue v+i . The change z → εn+z multiplies the leading term

by ε−in+ . Hence, the vector ziΨ(i)n (z) can be expanded in powers of

z0 = z
r+ = E1/n+ . (2.24)

Therefore, for i > 0 and for any j = 0, . . . , r+− 1 we have the equalities

Ψ(i)kr++j(z) = z
−iz−k0 (O(z0)), j < i,

Ψ(i)kr++j(z) = z
−iz−k0 (O(1)), j " i.

(2.25)

It follows from the indecomposability condition (2.10) in which we set n0 = 0
(without loss of generality) that for i > 0 the zeroth component of the eigenvector

is of the form Ψ(i)0 = O(zr−i). Therefore, the eigenvectors (normalized in the
standard way)

ψ(i)n =
Ψ(i)n (z)

Ψ(i)0 (z)
, ψ(i)0 = 1, (2.26)
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have the following form for i > 0:

ψ(i)kr++j(z0) = O(z
−k−1
0 ), i ! j,

ψ(i)kr++j(z0) = O(z
−k
0 ), j < i.

(2.27)

For i = 0 we have
ψ(0)kr++j(z0) = z

−k
0 (1 + O(z0)). (2.28)

Thus, assuming that the conditions (2.22) are satisfied, we have constructed a set
of N+ formal eigenvectors of the operator A(E) in a neighbourhood of the point
at infinity E =∞. We can construct another set of N− formal eigenfunctions in a
similar way assuming that

v−i $= v
−
j , i $= j, (2.29)

where the elements v−i are defined by the equality (2.8). To this end, we consider
a linear space L− over the field k− of Laurent series in the variable z−; this space
is generated by the solutions of the equation

LΦ = z−N− Φ (2.30)

that have the form

Φ−n (z) = z
n
−

( ∞∑

s=0

ξ−s (n)z
s
−

)
. (2.31)

Here it is assumed that the value ξ−0 (n) is non-zero for at least one value of n.
Repeating the above arguments, we see that the characteristic polynomial of the

operator A−(z−) induced by the action of A on the space L− is of the form

det
(
w −A−(z−)

)
=

r−∏

i=0

n−∏

k=0

(
w − v̂−i (zk,−)

)
, zk,− = εk1z

r
−, (2.32)

where ε
n−
1 = 1 and the series v̂

−
i = v̂

−
i (z0,−) has the form

v̂−i (z0,−) = v
−
i z
−m−
0,− (1 + O(z0,−)). (2.33)

The normalized eigenfunction of A−(z−) corresponding to the eigenvalue w =
v̂−i (z0,−) has the following form for any i = 0, . . . , r− 1:

ψ
(i)
kr−+j

(z0,−) = O(z
k
0,−), i " j,

ψ
(i)
kr−+j

(z0,−) = O(z
k+1
0,− ), i < j.

(2.34)

In the direct sum of the spaces L+ and L− one can choose a basis cin normalized
by the conditions

cin = δi,n, i, n = N−, . . . , N+ − 1. (2.35)

In this basis the operator A has matrix elements equal to those obtained when
constructing the affine spectral curve. Hence, the characteristic equation (2.13)
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coincides with the product of the characteristic equations for A(z) and A−(z−),
that is,

det
(
w −A(E)

)
=

[ r+∏

i=0

n+−1∏

k=0

(
w − v̂i(zk)

)][ r−∏

i=0

n−−1∏

k=0

(
w − v̂−i (zk,−)

)]
, (2.36)

where the product in the first and second groups of factors is taken over all roots
in E−1 of degrees n+ and n−, respectively:

E = z−n+k = z−n−k,− . (2.37)

The decomposition (2.36) gives comprehensive information on the compactification
of the spectral curve if the operator A(E) has N distinct eigenvalues for almost all
points E. This is the case of rank-one commuting operators treated in the next
subsection.

2.3. Commuting operators of rank 1. The conditions (2.22) and (2.29) ensure
that the eigenvalues ofA(E) corresponding to distinct factors in the first and second
product of the formula (2.36) are distinct. We require in addition that the factors
in different groups also do not coincide. To this end, it suffices to assume one of
the conditions

(i) m+n− $= m−n+, (ii) v+i $= v
−
j . (2.38)

In this case it follows from the equality (2.36) that the affine curve given by the
equation (2.13) is compactified in a neighbourhood of the point at infinity by l =
r++ r− points P

±
i±, i± = 0, . . . , r±− 1. In a neighbourhood of the point at infinity,

and hence for almost all values of E, the spectral curve Γ has N = N++N− sheets.
Hence, corresponding to every point of the spectral curve is a unique eigenfunction
ψn of the operators L and A. Let us state the main theorem.

Theorem 2.1. Let a pair of indecomposable commuting operators satisfy the con-
ditions (2.22), (2.29), and (2.38). Then:
(1) the spectral curve Γ given by the characteristic equation (2.13) is compactified

at infinity by l = r++r− points P
±
i± with neighbourhoods in which one can take the

local coordinates of the form
zk,± = E

−1/n±;

(2) the joint eigenfunction of the pair of commuting operators

Lψn(Q) = Eψn(Q), Aψn(Q) = wψn(Q), Q = (w,E) ∈ Γ,

normalized by the condition ψ0 = 1, is a meromorphic function on Γ whose divisor
of poles D = {γs} away from the marked points P±i does not depend on n. In a
neighbourhood of the marked points the function ψn is of the form (2.27), (2.28),
(2.34), that is, if n is represented in the form n = kr+ + j+ = k′r− + j− with
0 ! j± < r±, then:
(2a) ψn has poles of order k at the points P

+
0 , P

+
j++1, . . . , P

+
r+−1 and poles of

order k + 1 at the points P+1 , . . . , P
+
j+;
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(2b) ψn has zeros of order k′ at the points P
−
j−, . . . , P

−
r−−1 and zeros of order

k′ + 1 at the points P−0 , . . . , P
−
j−−1;

(3) in general position, in which case the spectral curve is smooth and irreducible,
the number of poles γs (counted according to their multiplicities) of the function
ψn(Q) away from the marked points is equal to the genus g of the curve Γ.

We have thus constructed a map assigning a curve Γ with l marked points P±i±
and a divisor of degree g to a pair of commuting operators satisfying the conditions
of the theorem:

[L,A] = 0 #→ {Γ, P±i±, D = {γs}}, 0 ! i± < r±, s = 1, . . . , g. (2.39)

Let us now show that one can uniquely recover the commuting operators from these
algebro-geometric data.
We consider an arbitrary smooth curve Γ with l = r+ + r− marked points P

±
i±.

It follows from the Riemann–Roch theorem that for any non-special divisor D =
(γ1, . . . , γg) there is a function ψn(Q), unique up to proportionality, whose divisor
of poles away from the marked points does not exceed D and which has poles and
zeros of multiplicities prescribed by (2a) and (2b) of the above theorem at the points
P±i .
Indeed, the conditions (2a) and (2b) mean that the function ψn(Q) belongs to

the space L(Dn) of meromorphic functions associated with the divisor Dn,

Dn = D + k

r+−1∑

i+=0

P+i+ +

j+∑

i+=1

P+i+ − k
′
r−−1∑

i−=0

P−i− −
j−−1∑

i−=0

P−i− ,

where n = kr++ j+ = k′r− + j−. The degree of this divisor is g, and therefore the
space L(Dn) is one-dimensional by the Riemann–Roch theorem.
We denote by A(Γ, P±i±) the ring of meromorphic functions on Γ with poles

at P±i±.

Theorem 2.2. Let ψ(Q) = {ψn(Q)} be a sequence of functions corresponding to
the algebro-geometric data (2.39). Then for any function f ∈ A(Γ, P±i ) there exists
a unique difference operator Lf (whose coefficients do not depend on Q) such that

Lfψ(Q) = f(Q)ψ(Q).

If the function f(Q) has poles of order n+ and n− at the points P
±
i±
, respectively,

then the operator Lf is of the form (2.2).

The proof follows immediately from the Riemann–Roch theorem. Indeed, if a
function f has poles at the points P±i of orders n±, respectively, then the function
f(Q)ψn(Q) belongs to the linear space of the following form:

f(Q)ψn(Q) ∈ L
(
Dn + n+

r+−1∑

i+=0

P+i+ + n−

r−−1∑

i−=0

P−i−

)
.
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The dimension of this space is equal to N++N−+1. It follows from the definition
of ψn that the functions ψn+i, −rn− ! i ! rn+, form a basis of this space. The
coefficients ui(n) of the operator Lf are simply the coefficients of the expansion of
fψn in the basis functions ψn+i.
The function ψn(Q) can be explicitly represented by means of the Riemann

theta function in the standard way. For simplicity, we present these formulae for
r = r+ = r−. We first define the functions hj , j = 0, . . . , r − 1, by the rule

hj(Q) =
fj(Q)

fj(P
+
j )
, fj(Q) =

θ(A(Q) + Zj)

θ(A(Q) + Z0)

∏j−1
i=0 θ(A(Q) + S−i )∏j
i=1 θ(A(Q) + S

+
i )
, (2.40)

where

S±i = K−A(P
±
i ) −

g−1∑

s=1

A(γs), i = 0, . . . , r− 1, (2.41)

Zj = Z0 +
j−1∑

i=0

A(P−i ) −
j∑

i=1

A(P+i ), Z0 = K−
g∑

s=1

A(γs). (2.42)

We then denote by dΩ(0) a unique meromorphic differential on Γ that has simple
poles at P±j with residues ∓1 and is normalized by the conditions

∮

a0k

dΩ(0) = 0. (2.43)

The coordinates of its vector U (0) of b0-periods are

U
(0)
k =

1

2πi

∮

b0
k

dΩ(0) =
r−1∑

j=0

(
A(P−j ) −A(P

+
j )
)
. (2.44)

Lemma 2.2. The functions ψn(Q) are equal to

ψrk+j = hj(Q)
θ(A(Q) + kU (0) + Zj)θ(A(P

+
j ) + Zj)

θ(A(Q) + Zj)θ(A(P
+
j ) + kU

(0) + Zj)
exp

(

k

∫ Q
dΩ0
)

. (2.45)

The proof of the formula (2.45) reduces to a simple check that the function
defined by this formula is single-valued on Γ and has all the necessary analytic
properties.

Corollary 2.1. The coefficients of commuting rank-1 operators are quasi-periodic
meromorphic functions of the variable n.

2.4. Rank >>> 1. The case of separated infinities. It follows from the construc-
tion of formal joint eigenfunctions of the operators L and A that the operator A(E)
is diagonalizable for almost all values of E. We call the k-tuple µ = (µ1, . . . , µk)
of multiplicities of the eigenvalues of A(E) the vector rank of the commuting oper-
ators. In the problem of commuting differential operators with scalar coefficients,
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the rank is always scalar (k = 1) and is a divisor of the orders of the operators [2].
The appearance of vector ranks in the problem of commuting differential operators
with matrix coefficients was discovered in [26]. For commuting operators of vector
rank µ the characteristic equation is

det(w − A(E)) =
k∏

i=1

Rµii (w,E). (2.46)

It is important to note that the conditions (2.22) and (2.29) on the highest coeffi-
cients of the commuting operators, which ensured the simplicity of the eigenvalues
of the operators A(z) and A−(z−) in a formal neighbourhood of the point at infin-
ity, are inconsistent with the auxiliary linear problems for the 2D Toda equations.
Indeed, it follows from the equations

[L,Li] = [A,Li] = 0, (2.47)

where L, A, and Li are of the form (1.6) and (1.7), that

uN+(n+ 1) = uN+(n), uN−(n)c(n −N−) = uN+(n− 1)c(n),
vM+(n+ 1) = vM+(n), vM−(n)c(n −N−) = vM+(n − 1)c(n).

The last equalities mean that the values v±i defined by (2.7) and (2.8) satisfy the
relations

v+i = v
+, v−i = v

−. (2.48)

In this case there are no a priori obstacles to the appearance of multiple eigenvalues
of one of the operators A(z) or A−(z−) separately.
We say the commuting operators for which the eigenvalues of A(z) do not coin-

cide with the eigenvalues of A−(z−) are operators with separated infinities. For
commuting operators to have separated infinities it is sufficient that one of the
conditions (2.38) hold, that is, one of the conditions (i) m+n− $= m−n+ and
(ii) v+ $= v−.
By the type of a pair of commuting operators with separated infinities we mean

the tuples of multiplicities µ±i± of distinct eigenvalues of the operators A(z) and

A−(z−), ∑

i±∈I±

µ±i± = r±. (2.49)

Here I± are the finite sets parametrizing the different eigenvalues of A(z) and
A−(z−). Corresponding to distinct eigenvalues of these operators are distinct points
‘at infinity’ which compactify the components Γi of the affine spectral curve that
are given by the equations Ri(w,E) = 0. A simple computation of the degree of
the divisor of the joint eigenfunctions (for details see the proof of assertion (1) in
Theorem 2.3 below) shows that there is no component Γi compactified by points
corresponding to eigenvalues of only one of the operators A(z) or A−(z−). Since
the multiplicity of an eigenvalue of A(E) is constant on each of the components Γi,
it follows that

(i) for any value of the index i± there is at least one index j∓ with µ
±
i± = µ

∓
j∓ .
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It seems plausible to the authors that there are no other conditions on the types
of commuting operators with separated infinities, that is, for any tuple of positive
integers µ±i± satisfying the equality (2.49) and the above condition (i) there are
commuting operators of the form (2.2) with separated infinities such that the given
tuple is the type of these commuting operators.
Below we prove this assertion for the types of the form (r, r). This type corre-

sponds to commuting operators of the form (2.2) with separated infinities which
have equal greatest common divisors of the highest and lowest coefficients, that is,
r = r+ = r−, and which have the maximal possible scalar rank µ = r.

Lemma 2.3. Let a commuting pair of indecomposable operators of the form (2.2),
where r = r+ = r−, be of rank r. Then there is a unique Laurent series

v+(x) = v+x−m+ + O(x−m++1) (2.50)

such that there exists a solution Ψ(z) of the equations

LΨ(z) = z−rn+Ψ(z), AΨ(z) = v(zr)Ψ(z) (2.51)

which is of the form

Ψn(z) = z
−n
(
1 +

∞∑

s=1

ξs(n)z
s

)
. (2.52)

The space of solutions of the equations (2.51) in L(z) is generated by the series
Ψ(εkz) with εr = 1.

A practically identical assertion holds for the eigenvalues and eigenvectors of the
restriction of the operator A to the space L(z−).
Let us preserve the notation Γ for the curve given by the equation R(w,E) = 0,

where R(w,E) is a root of degree r of the characteristic polynomial,

det(w − A(E)) = Rr(w,E).

It follows from the assertion of the lemma and its analogue for the operator A−(z−)
that in a neighbourhood of the point at infinity we have the factorization

R(w,E) =

[n+−1∏

k=0

(
w − v+(zk)

)][n−−1∏

k=0

(
w − v−(zk,−)

)]
, (2.53)

where the product in the first and second group of factors is taken over all roots of
E−1 of degrees n+ and n−, respectively.
Corresponding to every point of the curve Γ is an r-dimensional space of joint

eigenfunctions of the operators L and A. We fix a basis ψi(Q) in this space by the
conditions

ψin(Q) = δin, i, n = 0, . . . , r − 1. (2.54)

For any n the components ψin(Q) are meromorphic functions. The form of these
functions in a neighbourhood of the point at infinity can be found by using the
bases given by the series Ψ±(εkz±). As in the continuous case [2], the singularities
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of the vector function ψn(Q) = {ψin(Q)} in the affine part of the spectral curve are
described by matrix divisors.
In general position, when the poles ψn are simple, the corresponding matrix divi-

sor D = {γs,αs} is the set of non-coinciding points γs and the set of r-dimensional
vectors αs = {αis}, defined up to proportionality αs → λαs. The points γs are
the poles of ψin, and the parameters αs determine the relationships between the
residues:

αis resγs ψ
j
n(Q) = αjs resγs ψ

i
n(Q). (2.55)

In [1] and [2] the data (γ,α) were called Tyurin parameters, because, according
to [27], in the general case they determine a stable framed bundle E over Γ of
rank r and of degree c1(det E) = rg.
We state the theorem in final form.

Theorem 2.3. Let a pair of indecomposable commuting operators with separated
infinities satisfy the condition (2.38) and have the rank r = r±. Then the following
assertions hold.
(1) The spectral curve Γ given by the characteristic equation (2.53) is irreducible

and is compactified at infinity by two points P± with neighbourhoods in which one
can take z± = E−1/n± as local coordinates.
(2) Let ψ(Q) be the vector function whose coordinates are the joint eigenfunc-

tions,

Lψin(Q) = Eψin(Q), Aψin(Q) = wψ
i
n(Q), Q = (w,E) ∈ Γ,

normalized by the conditions (2.54). Then ψ(Q) is a meromorphic vector function
on Γ whose matrix divisor of poles away from the marked points P±i does not
depend on n. In general position, when the spectral curve is smooth, the degree of the
divisor of poles D = {γs,αs} is equal to gr, where g is the genus of the curve Γ.
(3a) In a neighbourhood of the point P+ the function ψikr+j(Q) is of the form

ψikr+j = O(z
−k
+ ), i < j,

ψikr+i = z
−k
+ (1 + O(z+)),

ψikr+j = O(z
−k+1
+ ), i > j.

(2.56)

(3b) In a neighbourhood of the point P− the function ψikr+j(Q) is of the form

ψikr+j = O(z
k+1
− ), i < j,

ψikr+j = O(z
k
−), i " j.

(2.57)

The converse assertion is also true. For any set in general position formed by
points γs and vectors αs = (αis), s = 1, . . . , gr, i = 0, . . . , r − 1, there is a unique
set of functions ψin(Q) such that:

(i) away from the marked points P± the function ψin(Q) has at most simple
poles at the points γs (if all these points are distinct), and the residues of
these functions satisfy (2.55);

(ii) in a neighbourhood of the marked points P± the function ψin(Q) has the
form determined by (2.56) and (2.57).
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Theorem 2.4. Let ψi(Q) = {ψin(Q)} be the functions constructed above from the
data set {Γ, P±, D = {γs,αs}}. Then for any function f ∈ A(Γ, P±) there is a
unique difference operator Lf (whose coefficients do not depend on Q) such that

Lfψ
i(Q) = f(Q)ψi(Q).

If the function f(Q) has poles of orders n+ and n− at the points P
±
i , respectively,

then the operator Lf is of the form (2.2), where r = r+ = r−.

Example. r = 2, g = 1. Without loss of generality we can assume that the pair of
marked points on an elliptic curve with periods (2ω, 2ω′) is identified with a pair
of points of the form ±z0. Let us choose vectors α1 and α2 in the form αs = (as, 1).
It follows from (2.56) and (2.57) that the function ψ12n can be represented as

ψ12n(z) = An
σ(z − z0)σ(z − γ1 − γ2 − (2n− 1)z0)

σ(z − γ1)σ(z − γ2)

[
σ(z + z0)

σ(z − z0)

]n
, (2.58)

where σ(z) = σ(z; 2ω, 2ω′) is the Weierstrass σ function. The similar expression for
ψ02n is of the form

ψ02n(z) =

(
Bn

σ(z − γ1 − 2nz0)
σ(z − γ1)

+Cn
σ(z − γ2 − 2nz0)

σ(z − γ2)

)[
σ(z + z0)

σ(z − z0)

]n
. (2.59)

The conditions (2.56) on the residues enable one to express the parameters Bn and
Cn in terms of An:

Bn = a1An
σ(γ2 + (2n− 1)z0)σ(γ1 − z0)

σ(γ1 − γ2)σ(2nz0)
, (2.60)

Cn = a2An
σ(γ1 + (2n− 1)z0)σ(γ2 − z0)

σ(γ2 − γ1)σ(2nz0)
. (2.61)

In a neighbourhood of z0 the function ψ02n is of the form (z − z0)−n. This enables
one to find an explicit expression for the coefficient An,

An =
σ(2nz0)σ(γ1 − γ2)

(a1 − a2)σn(2z0)σ((2n − 1)z0 + γ2)σ((2n− 1)z0 + γ1)
. (2.62)

We can find the explicit form of the functions ψi2n+1 similarly:

ψ02n+1(z) = A
′
n

σ(z + z0)σ(z − γ1 − γ2 − (2n+ 1)z0)
σ(z − γ1)σ(z − γ2)

[
σ(z + z0)

σ(z − z0)

]n
, (2.63)

ψ12n+1(z) =

(
B′n

σ(z − γ1 − 2nz0)
σ(z − γ1)

+ C ′n
σ(z − γ2 − 2nz0)

σ(z − γ2)

)[
σ(z + z0)

σ(z − z0)

]n
, (2.64)
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where

B′n = a
−1
1 A

′
n

σ(γ2 + (2n+ 1)z0)σ(γ1 + z0)

σ(γ1 − γ2)σ(2nz0)
, (2.65)

C ′n = a
−1
2 A

′
n

σ(γ1 + (2n+ 1)z0)σ(γ2 + z0)

σ(γ2 − γ1)σ(2nz0)
, (2.66)

A′n =
σ(2nz0)σ(γ1 − γ2)

σn(2z0)
(I′n − I′′n)−1, (2.67)

I′n =
σ(γ2 + (2n+ 1)z0)σ(γ1 + (2n− 1)z0)σ(γ1 + z0)

a1σ(z0 − γ1)
, (2.68)

I′′n =
σ(γ1 + (2n+ 1)z0)σ(γ2 + (2n− 1)z0)σ(γ2 + z0)

a2σ(z0 − γ2)
. (2.69)

Similar expressions in terms of Riemann theta functions can be written also in the
general case.

Corollary 2.2. The coefficients of the operators Lf defined by virtue of the previ-
ous theorem are quasi-periodic functions of the variable n.

Remark. It should be noted that, when we pass to the continuum limit

z0 → 0, n→∞, nz0 → x,

the functions ψ(i)2n and ψ
(i)
2n+1 converge to different functions of the continuous vari-

able x. This apparently explains why natural cases in which functional parameters
are absent are not known in the problem of commuting differential operators.

2.5. Rank >>> 1. Combined infinities. Let us now consider the case of com-
muting operators of the form (2.2) of maximal possible rank l = r+ + r−. In
this case there is a gluing together of the formal eigenvalues of the operator A
at two points L± at infinity. A necessary condition for at least one eigenvalue
of A(z) to coincide with one of the eigenvalues of A−(z−) is given by the equalities
m+ =m− = m and n+ = n− = n, that is, the case of completely or partially com-
bined infinities can occur only in the classification problem for commuting operators
of the form

L =

Nr+∑

i=−Nr−

ui(n)T
i, A =

Mr+∑

i=−Mr−

vi(n)T
i, (n,m) = 1. (2.70)

By the type of a commuting pair of operators we mean the tuples of pairs (µ+i |µ
−
i ),

where the index i ranges over the set I of all distinct eigenvalues of A(z) and
A−(z−) and the numbers µ

±
i are the multiplicities of the corresponding eigenvalue

for each of the operators separately. We note that the type introduced above for
operators with separated infinities can be regarded as the special case of the general
definition in which the set I is the union of the sets I± which parametrize the indices
i± in (2.49), and all the pairs are of the form (µ

+
i | 0) or (0|µ

−
j ).

In the opinion of the authors there are no restrictions on the types formed by
pairs of two non-zero numbers µ±i > 0. However, if there is a pair of the form (µ| 0),
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then, as above, there is seemingly only one restriction, namely, there must also be
a pair of the form (0|µ). The complete solution of the classification problem for
commuting difference operators requires the construction of commuting operators
of different types. We leave this problem open and consider below the problem of
constructing commuting operators only for the type consisting of a single pair
(r+| r−). We have already noted above that this corresponds to the case of operators
of maximal possible scalar rank l = r+ + r−.

Direct spectral problem. It follows from the construction of formal eigenfunc-
tions in a neighbourhood of the infinities that the maximal rank l can occur only
if the conditions v+i = v

−
j = v hold, that is, both operators are of the form (2.70)

and their highest and lowest coefficients under the gauge condition uNr+ = 1 are
of the form

u−Nr− = h
−1(n−Nr−)h(n), vMr+ = v, v−Mr− = vh

−1(n −Mr−)h(n).
(2.71)

As above, we denote by Γ the curve given by the equation R(w,E) = 0, where
R(w,E) is the root of degree l of the characteristic polynomial,

det(w − A(E)) = Rl(w,E).

In a neighbourhood of the point at infinity we have the factorization

R(w,E) =

[N−1∏

k=0

(
w − v(zk)

)]
, (2.72)

where the product is taken over all roots of E−1 of degree N . Thus, in the case
of maximal rank the spectral curve is compactified at infinity by a single smooth
point; hence, it is irreducible.
Corresponding to every point of the curve Γ is an l-dimensional space of joint

eigenfunctions of the operators L and A. Let us fix a basis ψi(Q) in this space by
the conditions

ψin(Q) = δin, −r− ! i, n < r+. (2.73)

We note that the choice of an interval of values of i and n used when fixing the
normalization is fundamental for the closed description of the analytic properties
of the joint eigenfunctions in a neighbourhood of the point at infinity.

Theorem 2.5. In the case of general position the joint eigenfunctions ψin of a
pair of commuting operators of rank l normalized by the conditions (2.73) have the
following properties.
10. In the affine part of the spectral curve Γ the functions ψin have gl poles γs

independent of n at which the following relations hold :

αjs resγs ψ
i
n(Q) = αis resγs ψ

j
n(Q). (2.74)

20. In a neighbourhood of the point P0 ‘at infinity’ the row vector ψn = {ψin} is
of the form

ψn =

( ∞∑

s=0

ξs(n)z
s

)
Ψ0(n, z), z−n = E. (2.75)
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Here ξs(n) = {ξis(n)} are row vectors,

ξi0 = δi0; (2.76)

Ψ0(n, z) is the Wronski matrix with Ψ
j i
0 (n, z) = φin+j(z), −r− ! i, j < r+, con-

structed from the basis φi of solutions of the equation

φn+r+ +

r+−1∑

i=−r−

f 0i (n)φn+i = z
−1φn, (2.77)

whose coefficients f 0i (n) are polynomial functions of the coefficients of the opera-
tor L. The basis solutions φi are normalized by the conditions

Ψ0(0, z) = 1. (2.78)

Proof. We denote by Ψ(n,Q), Q ∈ Γ, the Wronski matrix Ψj i(n,Q) = ψin+j(Q),
−r− ! i, j < r+. In a neighbourhood of the point P0 at infinity, where the local
coordinate is z = E−1/n, this matrix can be regarded as a function of the variable z,
that is, Ψ(n, z). Using this function, we shall now find the polynomials φin of the
variable z−1 by specifying their asymptotic behaviour as z → 0.

Lemma 2.4. In the case of general position there are functions φin(z) holomorphic
on the extended z-plane away from the point z = 0 and such that in a neighbourhood
of z = 0 the row vector φn(z) = (φin(z)) is of the form

φn(z) = rn(z)Ψ(n, z), (2.79)

where rn(z) is a row vector holomorphic in a neighbourhood of z = 0 whose value
at z = 0 is given by

rin(0) = δi0, (2.80)

and these functions φin(z) are uniquely determined by the above conditions.

The problem of constructing φn(z) is a standard Riemann problem. Choosing
a small neighbourhood of the point z = 0, we define holomorphic vector func-
tions φn and rn outside and inside this neighbourhood, respectively, such that
the relation (2.79) holds on the boundary. If the argument of the determinant of the
regluing matrix has zero increment when going around the contour, then in gen-
eral position the Riemann problem has a unique solution if one fixes the value of
the vector function at some point. Hence, to prove the lemma, it suffices to show
that the determinant of Ψ(n, z) is holomorphic in a neighbourhood of z = 0 and in
general position is non-zero at z = 0. This fact is a consequence of the result of the
next lemma, which is important in what follows.

Lemma 2.5. In a neighbourhood of the point at infinity the matrix function

X(n,Q) = Ψ(n + 1, Q)Ψ−1(n,Q) (2.81)
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is of the form

X(n, z) =





0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1

χ−r−(n, z) χ−r−+1(n, z) χr−+2(n, z) . . . χr+−1(n, z)




, (2.82)

χi(n, z) = z
−1δi,0 − fi(n, z), (2.83)

where the functions fi(n, z) are regular series in the variable z.

Proof. The matrix X(n,Q) does not depend on the normalization of the basis func-
tions ψin, and therefore to find the asymptotic behaviour of X(0, Q) in a neigh-
bourhood of the point at infinity one can use the formal solutions constructed in
subsection 2.2. It follows from the equalities (2.27) and (2.34) that the Wronski
matrix Ψ∞(0, z) constructed from these formal solutions has the block form

Ψ∞(0, z) =

(
z−1A(z) B(z)
C(z) D(z)

)
, (2.84)

where A(z) and D(z) are r− × r− and r+ × r+ matrices, respectively. All the
matrices A, B, C, and D are series in the variable z. The constant term of
the series D(z) is a lower triangular matrix with 1 along the diagonal. The constant
term of the series A(z) is an upper triangular matrix. This implies that the inverse
matrix is of the form

Ψ−1∞ (0, z) =

(
zA1(z) zB1(z)
zC1(z) D1(z)

)
. (2.85)

Moreover, the constant terms of the regular series A1, B1, C1, and D1 are

A1(0) = A
−1(0), B1(0) = −A−1(0)B(0)D−1(0),

D1(0) = D
−1(0), C1(0) = −D−1(0)C(0)A−1(0).

(2.86)

For the formal solutions the terms ψir+ are of the form z
−1δi0 + f

i(z), where the

functions f i are regular. Hence, the last row of the matrix X(0) (this row is equal
to ψrΨ−1∞ (0)) is of the form

Xr+−1,i(0) = z−1δi0 + f
i(z). (2.87)

It follows from the translation invariance of the construction of formal solutions
that the index n can be replaced by n− n0. This shift does not change the matrix
X(n). Hence, the last row of the matrix X(n0) has the same structure as X(0) for
any n0. This proves the lemma.

The normalization conditions (2.73) are equivalent to the condition Ψ(0, z) ≡ 1.
It follows from (2.82) that

detΨ(n, z) =
n−1∏

m=0

detX(m, z) = (−1)n
n−1∏

m=0

f−r− (m, z),
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and hence the determinant is holomorphic in a neighbourhood of the point
z = 0 and in general position is non-zero at z = 0. This assertion completes the
proof of Lemma 2.4.

We note that, by definition, the functions φin constructed above are entire func-
tions of the variable z−1. Since the regluing function Ψ(n, z) is meromorphic in a
neighbourhood of z = 0, it follows that the functions φin have a finite-order pole at
z = 0, and hence are polynomials in the variable z−1.
Let Ψ0(n, z) be the Wronski matrix of the functions φin(z), that is, Ψ

j, i(n, z) =
φin+j(z).

Lemma 2.6. In a neighbourhood of the point z = 0 the matrix function Ψ0 is of
the form

Ψ0(n, z) = R(n, z)Ψ(n, z), (2.88)

where R(n, z) is a matrix function holomorphic in a neighbourhood of z = 0 such
that R(n, 0) is of the block form

R(n, 0) =

(
R− 0
0 R+

)
, (2.89)

where R+ (R−) is a lower (upper) triangular r± × r± matrix with 1 along the
diagonal.

Proof. It follows from the definition of φn that the jth row Rj of the matrix R for
j > 0 is

Rj(n, z) = rn+j(n, z)
j−1∏

i=0

X(n+ i, z). (2.90)

By (2.80) and (2.83), Rj is regular. Moreover, the coordinates Rij(n, 0) of the vector

Rj(n, 0) can be non-zero only if 0 ! i ! j. We note that Rjj(n, 0) = 1. The inverse
matrix X−1 is of the form

X−1 = χ−1−r−





χ−r−+1 χ−r−+2 χ−r+3 . . . χr+−1 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0




. (2.91)

Repeating the above arguments replacing X by X−1, we obtain the desired assertion
also for negative values of the index j. This completes the proof of the lemma.

By construction, Ψ(0, z) = 1. Since the elements of the Wronski matrix Ψ0 are
polynomials in the variable z−1, it follows from the equality (2.88) that Ψ0(0, z)
is a constant matrix equal to R(0, 0). Using this fact, one can readily prove by
induction on j that Ψ0(0, z) satisfies the normalization conditions (2.78), that is,
Ψ0(0, z) = 1.
Let us now prove that the functions φin satisfy an equation of the form (2.77).

To this end, we consider the matrix

Ψ0(n+ 1, z)Ψ
−1
0 (n, z) = X0(n, z) = R(n+ 1, z)X(n, z)R

−1(n, z). (2.92)
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It follows from (2.83) and the form of R(n, 0) that the only element in the last row
of X0 which has a pole at z = 0 is X

r+−1, 0
0 . The coefficient of the singular term

z−1 of its expansion is equal to 1. Since X0 is regular for any z $= 0, it follows that
X0 is a polynomial function in the variable z−1. Hence, the last row of X0 has the
desired form.
To complete the proof of the second assertion of the theorem, it suffices to invert

the equality (2.88). We have
Ψ = R−1Ψ0. (2.93)

For the row with index j = 0 this equality gives the desired equality (2.75) in which
the first factor is the Taylor expansion of the corresponding row of the matrix
R−1(n, z).
After finding the asymptotic behaviour of ψn in a neighbourhood of the point at

infinity, the proof of the first assertion of the theorem, that is, the computation of
the degree of the matrix divisor of poles, completely follows the lines of reasoning
for the similar assertion in the continuous case [2].
In the general case the theorem proved above assigns a non-singular algebraic

curve Γ with a marked point P0, a set of Tyurin parameters of degree gl, and a set
of l− 1 arbitrary functions f 0i (n) of the discrete variable n to a pair of commuting
operators of the form (2.70) with maximal possible rank l = r+ + r−:

L,A #→ {Γ, (γ,α), f 0i (n)}. (2.94)

Inverse spectral problem. Let us consider an arbitrary smooth algebraic curve Γ
with a fixed local parameter z in a neighbourhood of a marked point P0. We take
an arbitrary set of functions f 0i (n), r− ! i < r+, and denote by Ψ0(k) the Wronski
matrix Ψj, i0 = φin+j, r− ! j < r+, constructed from the solutions of the difference
equation

r+∑

i=r−

f 0i (n)φn+i = z
−1φn, f0r+ = 1, (2.95)

of degree l = r+ + r−, normalized by the conditions

φin = δi0, r− ! i < r+. (2.96)

Theorem 2.6 [21]. For any set of Tyurin parameters in general position of degree
lg and rank l, that is, for a set of lg points γs and a set of projective l-dimensional
vectors αs = (αis), r− ! i ! r+, there is a unique vector function ψn(Q) whose
coordinates away from the point P0 have at most simple poles at the points γs. The
residues of the functions at these points satisfy the relations (2.74). The row vector
ψn is of the following form in a neighbourhood of P0:

ψn =

( ∞∑

s=0

ξs(n)z
s

)
Ψ0(n, z), ξi0 = δi0. (2.97)

For any meromorphic function f ∈ A(Γ, P0) on Γ having a unique pole of order N
at P0 there is a unique operator Lf of the form

Lf =

Nr+∑

i=−Nr−

ui(n)T
i, uNr+ = 1, (2.98)
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such that
Lfψ(Q) = f(Q)ψ(Q) . (2.99)

The proof of the theorem is standard. The equality (2.97) is equivalent to the
condition that ψ is a solution of the Riemann problem on Γ in which the functionΨ0
is the regluing function in a neighbourhood of the marked point. In general position
the existence and uniqueness of a solution of this problem follows from results in
[28] and [29] or simply from the Riemann–Roch theorem for vector bundles (for
details, see [2]). The same results enable us to prove the other assertion of the
theorem.

Theorem 2.7. Every commutative ring A of operators of the form (2.98) with
maximal possible rank l is isomorphic to the ring A(Γ, P0) of meromorphic functions
on some algebraic curve Γ with a single pole at a marked point P0. In the case of
general position the isomorphism A(Γ, P0) ∼= A is given by the equality (2.99) in
which the Baker–Akhiezer vector function is given by some set of Tyurin parameters
(γ,α).

2.6. Discrete dynamics of the Tyurin parameters. Below we derive dis-
crete equations for the Tyurin parameters for commuting operators with combined
infinities and maximal possible rank l. In general position an arbitrary algebraic
curve Γ with marked point P0, a set of Tyurin parameters (γ,α), and arbitrary coef-
ficients f 0i (n) of the difference equation (2.95) determine a vector function ψn(Q)
by Theorem 2.6. As above, let Ψ(n,Q) be the corresponding Wronski matrix. The
matrix function X(n,Q) given by (2.81) has asymptotic behaviour given by (2.82)
and (2.83). We denote by

fi(n) = fi(n, 0) (2.100)

the values at z=0 of the regular series fi(n, z), see (2.83). These functions of the
discrete variable n can be expressed explicitly in terms of the original variables
f 0i (n) and the first coefficients ξ1(n) of the expansion (2.97) for ψn. The correspond-
ing relations are far from effective formulae because, as above, the expressions for
ξ1(n) in terms of the original parameters (γs,αs, f 0i (n)) require the solution of the
corresponding Riemann problem. At the same time, as we shall see below, there is
no need to obtain explicit formulae for fi(n), because these functions can be taken
as independent parameters determining the coefficients of the commuting operators.
For n $= 0 we denote by γs(n) the zeros of detΨ(n,Q). In general position

these zeros are simple and their number is equal to gl. We denote by αs(n) the
corresponding left null-vector,

αs(n)Ψ(n, γs(n)) = 0. (2.101)

For n = 0 we set
γs(0) = γs, αs(0) = αs. (2.102)

The following assertion results immediately from the definition (2.81).

Lemma 2.7. The matrix function X(n,Q) has simple poles at the points γs(n).
The following relations hold for the residues of its matrix elements:

αjs(n) resγs(n) X
m,i(n,Q) = αis(n) resγs(n) X

m,j(n,Q). (2.103)
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The points γs(n+ 1) are zeros of the determinant of the matrix X(n,Q), that is,

detX(n, γs(n + 1)) = 0. (2.104)

The vector αs(n+ 1) is a left null-vector of the matrix X(n, γs(n+ 1)):

αs(n+ 1)X(n, γs(n+ 1)) = 0. (2.105)

A simple calculation of the dimensions using the Riemann–Roch theorem leads
to the following assertion.

Lemma2.8. For any smooth algebraic curveΓwitha fixed local coordinate k−1(Q) in
a neighbourhood of the marked point P0 and for any data set (γs(n),αs(n), fi(n))
in general position there is a unique meromorphic matrix function X(n,Q), Q ∈ Γ,
for which there are at most simple poles at the points P0 and γs and :

(i) the expansion of X(n,Q) in a neighbourhood of P0 is of the form (2.82),
(2.83) in which the regular series fi(n, z) satisfy the relation (2.100);

(ii) the residues of X(n,Q) at the points γs satisfy the relations (2.103).

The equalities (2.104) and (2.105) can be regarded as equations determining
the parameters (γs(n+1),αs(n+1)) for a given matrix function X(n,Q). Since the
last function is uniquely determined by (γs(n),αs(n), fi(n)), we obtain the following
conclusion.

Corollary 2.3. The parameters fi(n) and the Tyurin parameters (γ,α) giving the
initial conditions (2.102) of the corresponding dynamical system form a complete
data set parametrizing the commuting operators corresponding to a fixed spectral
curve.

Example. g = 1, l = 2. Let us consider a pair of commuting operators of the form

L =
2∑

i=−2
ui(n)T

i, A =
3∑

i=−3
vi(n)T

i, (2.106)

and of maximal possible rank l = 2. In this case the spectral curve Γ is elliptic.
Let 2ω and 2ω′ be the periods of this curve. Fixing a fundamental domain, one can
identify the marked point P0 with the point z = 0 without loss of generality.
The operators L and A are uniquely determined by the Tyurin parameters and

also by the parameters fi(n), i = −1, 0, which we denote as follows:

f−1 = cn+1, f0 = vn+1. (2.107)

Our objective is to obtain explicit formulae for the coefficients of the commuting
operators (2.106) by using equations describing the discrete dynamics of the Tyurin
parameters

γ1n = γ1(n), γ2n = γ2(n). (2.108)

For the vectors αis, i = −1, 0, which are defined up to proportionality, we choose
the normalization under which the last coordinate is equal to one, α0s = 1,
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that is, in the example under consideration the vectors αs(n) are two-dimensional
row vectors with coordinates

α1(n) = (a
1
n, 1), α2(n) = (a

2
n, 1). (2.109)

According to Lemma 2.8, the quantities γ1,2n , a
1,2
n , cn+1, vn+1 uniquely determine

the matrix Xjin = X
ji
n (n, z), i, j = −1, 0. Let us find an explicit form of this matrix

in terms of the standard Weierstrass functions. By definition, the matrix Xn is of
the form

Xn =

(
0 1

χ1n(z) χ2n(z)

)
. (2.110)

The elliptic function χ1n(z) has poles at the points γ
1,2
n and is equal to −cn+1 at

the point z = 0. Hence, this function can be represented a priori in the form

χ1n = −cn+1 + A1
(
ζ(z − γ1n) + ζ(γ1n)

)
+ B1

(
ζ(z − γ2n) + ζ(γ2n)

)
, (2.111)

where ζ(z) is the standard Weierstrass zeta function.
At the marked point z = 0 the function χ2n is of the form χ2 = z−1−vn+1+O(z),

that is,

χ2n = −vn+1 + ζ(z) +A2
(
ζ(z − γ1n) + ζ(γ1n)

)
+ B2

(
ζ(z − γ2n) + ζ(γ2n)

)
. (2.112)

Since χin is elliptic, it follows that

A1 +B1 = 0, A2 + B2 = −1. (2.113)

Moreover, we have
A1 = a

1
nA2, B1 = a

2
nB2. (2.114)

It follows from (2.113) and (2.114) that

χ1n = −cn+1 +
a1na

2
n

a1n − a2n
(
ζ(z − γ1n)− ζ(z − γ2n) + ζ(γ1n) − ζ(γ2n)

)
, (2.115)

χ2n = ζ(z) − vn+1 +
a2n

a1n − a2n
(
ζ(z − γ1n) + ζ(γ1n)

)

+
a1n

a2n − a1n

(
ζ(z − γ2n) + ζ(γ2n)

)
. (2.116)

According to Lemma 2.7, the points γsn+1 are determined from the equation

detXn(γ
s
n+1) = χ1(γsn+1) = 0.

Hence,

cn+1 =
a1na

2
n

a1n − a2n
(
ζ(γsn+1 − γ1n)− ζ(γsn+1 − γ2n) + ζ(γ1n)− ζ(γ2n)

)
. (2.117)
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We note that the sum γ1n + γ2n = 2c does not depend on n, because the points γ
s
n

are the poles and the points γsn+1 are the zeros of the elliptic function. Everywhere
below, we can set

γ1n = γn + c, γ2n = −γn + c, c = const. (2.118)

Using this, we can rewrite (2.115) and (2.116) as

χ1n =
a1na

2
n

a1n − a2n
[
ζ(z − γn − c)− ζ(z + γn − c)− ζ(γn+1 − γn)− ζ(γn+1 + γn)

]
,

(2.119)

χ2n = −vn+1 + ζ(z) +
a2n

a1n − a2n
(
ζ(z − γn − c) + ζ(γn + c)

)

+
a1n

a2n − a1n
(
ζ(z + γn − c)− ζ(γn − c)

)
. (2.120)

If for the new independent data we choose the functions vn and γn of the discrete
variable, then the equation (2.117),

cn+1 =
a1na

2
n

a1n − a2n
(
ζ(γn+1 − γn) − ζ(γn+1 + γn) + ζ(γn + c) + ζ(γn − c)

)
, (2.121)

must simply be regarded as the definition of the variables cn+1.
It follows from (2.105) that

as(n+ 1) = −χ2n(γs(n+ 1)). (2.122)

Using the formula (2.120), we obtain the following recursion expressions for the
parameters a1,2n+1:

a1n+1 = vn+1 − ζ(γn+1 + c)−
a2n

a1n − a2n
(
ζ(γn+1 − γn) + ζ(γn + c)

)

− a1n
a2n − a1n

(
ζ(γn+1 + γn)− ζ(γn − c)

)
, (2.123)

a2n+1 = vn+1 + ζ(γn+1 − c) +
a2n

a1n − a2n

(
ζ(γn+1 + γn)− ζ(γn + c)

)

− a1n
a1n − a2n

(
ζ(γn+1 − γn) + ζ(γn − c)

)
. (2.124)

Thus, we have proved that an arbitrary set of functions γn and vn and a constant
determine the matrix function Xn, and hence also the coefficients of the commuting
operators of rank 2 corresponding to an elliptic spectral curve. Every such operator
corresponds to a function on the spectral curve having a pole at the marked point
z = 0. The simplest operator of this kind, L4, is of order 4 and corresponds to the
Weierstrass function ℘(z) = z−2 +O(z2).
To find the coefficients of this operator, one must take the vector function

℘(z)ψnΨ−1n and decompose it with respect to ψn+iΨ−1n , −1 ! i ! 2. To this end,
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it suffices to take only the singular terms of the expansions of all vectors in a neigh-
bourhood of z = 0. We denote by ψ̃m the polynomials in the variable k = z−1 such
that ψmΨ−1n = ψ̃m +O(k−1). Then

ψ̃n+2 = (−cn+1, k− vn+1), ψ̃n+1 = (0, 1), ψ̃n = (1, 0). (2.125)

To find ψ̃n−1, we use the relations Ψn−1 = X
−1
n−1Ψn and

X−1n =
1

χ1n

(
−χ2n 1
χ1n 0

)
. (2.126)

Let us denote by ξijn the coefficients of the expansions

χ1n = −cn+1(1 + ξ11n z + ξ12n z
2 + · · · ), (2.127)

χ2n = k − vn+1 + ξ21n z + · · · . (2.128)

Then
ψ̃n−1 = c

−1
n (k − vn − ξ11n−1,−1). (2.129)

One can find the value of ψ̃n−2 similarly.
After straightforward but rather cumbersome manipulations, we see that the

operator L4 is equal to

L4 = L
2
2 − (ξ11n−1 + ξ11n−2)T + cn(ξ

11
n−1 + ξ11n−2)T

−1 + un, (2.130)

where L2 is the Schrödinger difference operator

L2 = T + vn + cnT
−1, (2.131)

and the function un is defined by the formula

un = vn(ξ
11
n−1 − ξ11n−2) + ξ12n−1 + ξ12n−2 − (ξ11n−2)2 − (ξ21n−1 + ξ21n−2). (2.132)

Symmetric case. Let the constant c in (2.118) vanish, c = 0. Then χ1n is an even
function of the variable z. Thus, ξ11n = 0. It follows from (2.119) that

ξ12n = −
a1na

2
n

(a1n − a2n)
℘′(γn)

cn+1
. (2.133)

Using the formula (2.121), we obtain

ξ12n =
℘′(γn)

ζ(γn+1 + γn) − ζ(γn+1 − γn)− 2ζ(γn)
= ℘(γn)− ℘(γn+1). (2.134)

(To prove the last equality, one can use the addition formulae for the Weierstrass
zeta function; however, one can also verify it directly by comparing the poles and
residues of the functions on both sides of the equality.) It follows from (2.120) that

ξ21n = ℘(γn). (2.135)
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Substituting the last two formulae into (2.132), we see that the operator L4 in the
symmetric case is equal to

L4 = L
2
2 − ℘(γn)− ℘(γn−1). (2.136)

In the symmetric case the formulae for the coefficients of the Schrödinger operator
L2 defined in (2.131) are also substantially simplified. Let us denote by F (u, v) the
elliptic function

F (u, v) = ζ(u + v) − ζ(u− v) − 2ζ(v) = ℘′(v)

℘(v) − ℘(u)
. (2.137)

Then the formulae (2.121)–(2.124) for the symmetric case c = 0 can be represented
in the form

cn+1 = −
a1na

2
n

a1n − a2n
F (γn+1, γn), (2.138)

a1n+1 = vn+1 +
1

2

(
F (γn, γn+1) +

a1n + a
2
n

a1n − a2n
F (γn+1, γn)

)
,

(2.139)

a2n+1 = vn+1 −
1

2

(
F (γn, γn+1) −

a1n + a
2
n

a1n − a2n
F (γn+1, γn)

)
.

(2.140)

The last two equalities are equivalent to

a1n+1 − a2n+1 = F (γn, γn+1), (2.141)

a1n+1 + a
2
n+1 = 2vn+1 +

a1n + a
2
n

a1n − a2n
F (γn+1, γn). (2.142)

We denote by sn the expression

sn = −
a1n + a

2
n

a1n − a2n
. (2.143)

Then

a1n + a
2
n = −snF (γn−1, γn),

a1na
2
n

a1n − a2n
= −1
4
(s2n − 1)F (γn−1, γn), (2.144)

and the equalities (2.138) and (2.142) can be represented as

4cn+1 = (s
2
n − 1)F (γn+1, γn)F (γn−1, γn), (2.145)

2vn+1 = snF (γn+1, γn) − sn+1F (γn, γn+1). (2.146)

The last equality shows that in the symmetric case one can take γn, sn as the
independent variables. The formulae (2.113), (2.136), (2.145), and (2.146) then give
closed explicit expressions for the coefficients of the operator L4 which were given
above in the introduction. The coefficients of the second commuting operator A6
can be found in a similar way.
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§ 3. Higher-Rank Solutions of the 2D Toda lattice
The key element of algebro-geometric constructions of solutions of non-linear

equations is the construction of multiparameter Baker–Akhiezer functions. These
functions, both scalar and vector, are determined by their analytic properties on
the corresponding algebraic curve. Below we define the multiparameter Baker–
Akhiezer vector functions which are deformations of eigenfunctions of commuting
operators of arbitrary rank. For commuting operators with separated infinities and
for those with combined infinities these constructions are different.

3.1. Separated infinities. As already noted more than once, commuting oper-
ators with separated infinities are uniquely determined by their algebro-geometric
spectral data, that is, by the spectral curve with marked points and the Tyurin
parameters. There are no functional parameters in the construction of these opera-
tors. Functional parameters arise in the construction of the corresponding solutions
of the 2D Toda lattice. It should be stressed that these functional parameters, in
contrast to the construction of commuting operators with combined infinities, are
functions of a continuous variable rather than a discrete one. These parameters
determine the grafting functions Ψ±(t±, z), each of which depends on the corre-
sponding half of the times of the hierarchy of 2D Toda equations and is an entire
function of the variable z−1.
Let us fix two arbitrary entire functions Ψ±(z) of z−1 such that the increment

of the argument logdetΨ± vanishes upon going around the origin:

∮

|z|=ε
d(logdetΨ±) = 0. (3.1)

Lemma 3.1. For any smooth algebraic curve Γ with fixed local coordinates z± in
neighbourhoods of two marked points P± and for any set of Tyurin parameters of
degree rg and rank r in general position, there is a unique vector function ψn(Q)
such that :

(i) its coordinates ψin, i = 0, . . . , r − 1, away from the marked points P± have
at most simple poles at the points γs at which the relations (2.55) hold ;

(ii) in a neighbourhood of the marked points P± the function ψn is of the form

ψkr+j = z
∓k
± R±(kr + j, z±)Ψ±(z±), (3.2)

where R±(n, z) are row vectors holomorphic in a neighbourhood of the origin
and such that the values of their coordinates at the point z = 0 satisfy the
normalization conditions

R i−(kr + j, 0) = 0, i ! j, R i+(kr + j, 0) =

{
0, i > j,

1, i = j.
(3.3)

The proof of the lemma reduces to a simple computation of the dimension of
the space of solutions of the Riemann problem which is equivalent to the condi-
tions (3.2).
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If the functions Ψ± = Ψ±(t±, z) depend on some independent variables t± =
(t±j ), then the Baker–Akhiezer vector functions ψn introduced above depend on
the full set of variables, ψn = ψn(t+, t−, Q). We now give the dependence of the
grafting functions Ψ± on the variables t± in such a way that the corresponding
Baker–Akhiezer functions lead to solutions of the hierarchy of 2D Toda equations.
If we restrict ourselves to the construction of solutions proper of the 2D Toda

equations (1.1), then this dependence on t+1 = ξ and t−1 = η can be given by
ordinary differential equations whose coefficients are exactly the arbitrary functional
parameters.
For any set of arbitrary functions ai(t

+
1 ), yi(t

−
1 ) we determine the grafting func-

tions Ψ± by means of the equations

∂t±1
Ψ± =M

0,1
± Ψ±, Ψ±(0, z) = 1, (3.4)

in which the matrices M0,1± (t
±
1 , z) are of the form

M0,1+ =





a0 1 0 . . . 0
0 a1 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1
z−1 0 0 . . . ar−1




, M0,1− =





0 0 . . . 0 b0z−1

b1 0 . . . 0 0
0 b2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . br−1 0




,

(3.5)
where

bi = e
yi−yi−1 , y−1 = yr−1. (3.6)

Theorem 3.1. The Baker–Akhiezer vector function ψn corresponding to an arbi-
trary data set {Γ, P±, z±, (γ,α), ai, yi} in general position satisfies the equations

∂t+1
ψn = ψn+1 + vnψn, ∂t−1

ψn = cnψn−1, (3.7)

whose coefficients are

vn = ∂t+1
ϕn, cn = e

ϕn−ϕn−1 ,

where
ϕkr+i = yi(t

−
1 ) + logR

i
−(kr + i, 0, t

+
1 , t

−
1 ). (3.8)

For any function f ∈ A(Γ, P±) having poles of orders n+ and n− at the points
P±i , respectively, there is a unique difference operator Lf of the form (2.2) with
coefficients depending on t+1 and t

−
1 and such that Lfψ

i = fψi .

The consistency condition for the equations (3.7) is equivalent to the 2D Toda
equations (1.1).

Corollary 3.1. The functions ϕn given by the formula (3.8) in which the sec-
ond summand is defined by the value at the origin of the regular factor in the R−
factorization (3.2) are solutions of the 2D Toda equations.

The proof of the theorem is standard and reduces to showing that the functions
determined by the formulae of the right- and left-hand sides of the equalities (3.7)
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have the same analytic properties on Γ. This proof depends on the special form
(3.5) of the matrices M0,1± only slightly. The assertions of the theorem and the

corollary remain completely valid if one replaces M0,1± by matrices of the form

M̃ 0,1
± =M 0,1

± +m±(t
±
1 ), (3.9)

where the matrix elements mij± do not depend on z and satisfy the conditions

mij+ = 0, i < j, mij− = 0, i " j. (3.10)

An extension of the class of grafting functions does not lead to any extension of
the class of solutions thus constructed for the equations of the 2D Toda lattice.
Indeed, the factorization (3.2) and the conditions (3.3) are invariant with respect
to the transformations

Ψ̃± = g±Ψ±, R̃± = R±g
−1
± , (3.11)

where g+(t
+
1 ) is a lower triangular matrix with 1 along the main diagonal and

g−(t
−
1 ) is an upper triangular matrix. Hence, these transformations do not modify

the corresponding Baker–Akhiezer function. The transformations (3.11) lead to
gauge transformations of the matrices,

M̃ 0,1
± #→ g−1± ∂t±1

g± − g−1± M̃
0,1
± g±, (3.12)

which can always be used to obtain the equalities m± = 0.
To construct solutions of the full hierarchy of equations of the 2D Toda lattice,

it suffices to indicate the dependence of the grafting functions Ψ± on all the times
t±p of the hierarchy by using the differential equations

∂t±p Ψ± =M
0, p
± Ψ±, Ψ±(0, z) = 1, (3.13)

where the matrices M0,i± (t
±, z) depend polynomially on the variable z−1. The

consistency conditions for the equations (3.13) for each half of the times, t+p or
t−p , are gauge equivalent to one of the r-reductions of the KP hierarchy. Since our
main objective is the construction of solutions of the equations (1.1), the explicit
description of the structure of the matricesM0,p± , p > 1, and the subsequent analysis
of the auxiliary soliton system thus arising are left outside the framework of the
present paper.

3.2. One-point case. As in the case of separated infinities, the dependence of the
one-point multiparameter Baker–Akhiezer function on the variables t±p is completely
determined by the dependence of the grafting function Ψ0(n, t, z) on them. The
dependence on each of these variables is determined by the linear equation

∂t±p Ψ0(n, t, z) =M
0,p
± (n, t, z)Ψ0(n, t, z), (3.14)
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in which the matrix M0,i± (n, t, z) depends polynomially on the variable z
−1. The

essential difference between the one-point situation and the case of separated infini-
ties is that, to construct the solutions proper of the equations of the 2D Toda lattice,
the matrices M0,1± must now satisfy the conditions for consistency of the equations
(3.14), where p = 1, and the difference equation

Ψ0(n+ 1, t, z) = X0(n, t, z)Ψ0(n, z), (3.15)

which follows from the definition of Ψ0 as the Wronski matrix of the solutions of
the equations (2.95). This condition means that the matrix X0 = (X

ij
0 ), r− ! i, j <

r+ − 1, is of the form

X0 =





0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1

χ0−r− χ0−r−+1 χ0−r−+2 . . . χ0r+−1




, (3.16)

where
χ0i = z

−1δi,0 − f 0i (n, t). (3.17)

Let us consider the matrix functions M0,1± of the form

M0,1+ = X0 +A(n, t), M0,1− = B(n, t)X−10 , (3.18)

where A and B are the diagonal matrices

A = diag{a(n− r−, t), . . . , a(n+ r+ − 1, t)},
B = diag{b(n− r−, t), . . . , b(n+ r+ − 1, t)}.

(3.19)

In this case the conditions for consistency of the equations (3.14) with p = 1 and
the equation (3.15) are equivalent to the conditions for consistency of the linear
system

∂t+1
φn = φn+1 + a(n, t)φn, ∂t−1

φn = b(n, t)φn−1

and the equation (2.95). Hence, if the symbols yn(t) denote functions such that
b(n, t) = eyn−yn−1 , then the conditions for consistency of the equations (3.14)
and (3.15) are equivalent to reduction of the equations of the 2D Toda lattice
for yn to the stationary points of some linear combination of flows of the hierarchy
that correspond to the times t−r− , . . . , t

+
r+ .

Let us fix some solution yn of this reduction and denote by Ψ0(n, t
+
1 , t

−
1 , z) the

corresponding solution of the auxiliary linear system (3.14), (3.15). Then the fol-
lowing assertion holds.

Theorem 3.2 [21]. For each smooth algebraic curve Γ of genus g with a fixed local
parameter z in a neighbourhood of a marked point P0 and for any set of Tyurin
parameters (γ,α) in general position of degree lg and rank l there exists a unique
vector function ψn(t

+
1 , t

−
1 , Q) whose coordinates away from the point P0 have at

most simple poles at the points γs. The residues of these functions at the points γs
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satisfy the conditions (2.74). In a neighbourhood of P0 the row vector ψn is of the
form

ψn =

( ∞∑

s=0

ξs(n, t
+
1 , t

−
1 )z

s

)
Ψ0(n, t

+
1 , t

−
1 , z), ξi0 = δi0. (3.20)

This function satisfies the equations

∂t+1
ψn = ψn+1 + (∂t+1 ϕn)ψn, ∂t−1

ψn = (e
ϕn−ϕn−1)ψn−1, (3.21)

where the functions ϕn are given by the formula

ϕn = yn(t
+
1 , t

−
1 ) + log

(
1 + ξ

(−1)
1 (n, t+1 , t

−
1 )
)
, (3.22)

in which ξ(−1)1 is the coordinate of the vector ξ1 with index i = −1 in the expan-
sion (3.20).

Example. In the case of rank l = 2 and r± = 1 the grafting function Ψ0 can be
determined from any solution of the one-dimensional Toda lattice

ÿn = e
yn−yn−1 − eyn+1−yn (3.23)

and is of the form

Ψ0 = Φ(n, t, z)e
xz−1 , x = t+1 + t

−
1 , t = t

+
1 − t

−
1 , (3.24)

where Φ is the Wronski matrix of the solutions of the auxiliary linear system
for (3.23).

3.3. Deformations of Tyurin parameters. The problem of recovering a Baker–
Akhiezer vector function from its data reduces to the solution of a linear Riemann
problem in which the grafting function Ψ0 determines the regluing function in a
neighbourhood of the distinguished point P0. It was already noted above that this
problem cannot be solved explicitly in the general case. At the same time, in some
cases one can obtain more explicit expressions for the corresponding solutions of
the two-dimensionalized lattice by using the deformation equations for the Tyurin
parameters.
Let us denote by Ψ(n, t, Q) the Wronski matrix whose rows are the Baker–

Akhiezer vector functions ψn+j(t, Q). As above, we define a deformation of the
Tyurin parameters as follows. In general position the determinant detΨ(n, t, Q)
has gl simple zeros γs(n, t). We denote by αs(n, t) the corresponding left zero-
vector:

αs(n, t)Ψ(n, t, γs(n, t)) = 0. (3.25)

The difference equations describing the dynamics of the Tyurin parameters with
respect to the discrete variable n were obtained above in subsection 2.5. The equa-
tions for continuous deformations of the Tyurin parameters follow from previous
results of the authors [21].
Let us consider the logarithmic derivative of Ψ with respect to any of the times

of the hierarchy:
∂t±p Ψ =M

p
±Ψ. (3.26)
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This logarithmic derivativeMp± is a meromorphic function on Γ, and away from the
marked point this function has simple poles at the points γs = γs(n, t). Its Laurent
expansion in a neighbourhood of γs has the form

M =
msαs
z − z(γs)

+ µs +O(z − z(γs)), (3.27)

where ms is some column vector. (For brevity, here and henceforth we omit the
indices p and ± in our formulae.) The first two coefficients of this expansion give the
right-hand sides of the deformation equations with respect to the variable t = tp±,

∂t z(γs) = −Tr(msαs) = −(αsms), ∂tαs = −αsµs + κsαs. (3.28)

Here κs stands for some constant. Its presence on the right-hand side of the equation
reflects the fact that the vectors αs are determined up to proportionality. The
equations (3.28) unambiguously determine some dynamics on the space of Tyurin
parameters, which is the symmetric power Sgl(Γ×CP l−1).
The consistency conditions

∂tXn =Mn+1Xn − XnMn (3.29)

of the linear problems

Ψn+1 = XnΨn, ∂tΨn =MnΨn (3.30)

give a well-defined system of non-linear equations for the parameters in the singular
coefficients of the expansion of the matrices Xn and Mn in a neighbourhood of
the distinguished point. Here and below we use the notation Ψn = Ψ(n, t, Q),
Xn = X(n, t, Q), and Mn =M(n, t, Q).

Discrete analogue of the Krichever–Novikov equation. As an illustrating
example we consider the non-linear equations arising in the case of rank l = 2 and
genus g = 1. We recall that in this case the coefficients of the linear system defining
the grafting function Φ in (3.24) have the form

X0n =

(
0 1

−c0n+1 k − v0n+1

)
, M0n =

(
−k + 2v0n 2
−2c0n+1 k

)
, k = z−1. (3.31)

The Lax equations for this system lead to the equations of the one-dimensional
Toda lattice.
The leading parts of the ‘dressed’ matrices Xn (see (2.110)) and Mn have the

same form but with other functions cn and vn. In particular, in a neighbourhood
of z = 0 the matrix Mn has the form

Mn =

(
2vn − k 2
−2cn+1 k

)
+mnk

−1 + O(k−2), k = z−1. (3.32)

The equations (3.29) lead to the system

ċn+1 = 2cn+1(vn+1 − vn), v̇n+1 = 2(cn+2 − cn+1) +m22n −m22n+1. (3.33)
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The additional terms mijn in this system can be expressed explicitly in terms of
cn, vn and the Tyurin parameters γsn, a

s
n. Our objective is to obtain a closed

system of equations by using the equations for the Tyurin parameters.
For simplicity we consider the symmetric case in which the constant c in the

formulae of the example in subsection 2.6 must be taken to be zero in (2.118):
c = 0. It follows from the definition of Mn that

M21n = −cn+1 + X21n , M22n = vn+1 +X
22
n . (3.34)

Thus,
m22n = ξ21n = ℘(γn). (3.35)

Substitution of this formula into (3.33) leads to the equation

v̇n+1 = 2(cn+2 − cn+1) + ℘(γn)− ℘(γn+1). (3.36)

It follows from (3.28) that

γ̇n = − resγnMn = −
a1n + a

2
n

a1n − a2n
, (3.37)

and this equality enables us to identify γ̇n with the variables sn defined in (2.143).
After this identification, the formulae (2.145) and (2.146) become

4cn+1 = (γ̇
2
n − 1)F (γn+1, γn)F (γn−1, γn), (3.38)

2vn+1 = γ̇nF (γn+1, γn) − γ̇n+1F (γn, γn+1). (3.39)

We give the following two identities needed below:

∂u logF (u, v) = −F (v, u), (3.40)

∂v logF (u, v) = −F (u, v) + 2ζ(2v) − 4ζ(v), (3.41)

where the elliptic function F (u, v) is defined by the formula (2.137). Both the
identities can be verified directly by comparing the singularities on the right- and
left-hand sides. Substituting (3.38) and (3.39) into the first equality in (3.33), we
can see by using (3.40) and (3.41) that

γ̈n = (γ̇
2
n − 1)

(
V (γn, γn+1) + V (γn, γn+1)

)
, (3.42)

where
V (u, v) = ζ(u+ v) + ζ(u− v) − ζ(2u). (3.43)

Using the same relations, we see immediately that substitution of (3.38) and (3.39)
into the equality (3.36) leads to the same system (3.42).
The system (3.42) is a Hamiltonian system with Hamiltonian

H =
∑

n

[
log
(
sinh−2(pn/2)

)
+ log

(
℘(xn − xn−1) − ℘(xn + xn−1)

)]
. (3.44)
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This system was obtained by one of the authors in [30] as a solution of the inverse
problem of recovering an integrable system from a given system of spectral curves.
A similar problem is natural in the Witten–Seiberg theory in which such families
parametrize moduli spaces of physically non-equivalent vacuum states in super-
symmetric gauge models.
The system (3.42), which in [30] was called an elliptic analogue of the Toda

lattice, coincides after a change of variables with one of the equations obtained
in [31] in the framework of the classification problem for integrable chains. In [30]
the system (3.42) was identified with a pole system describing solutions of the two-
dimensionalized Toda lattice that are elliptic with respect to the variable x. The
appearance of the same system in the theory of rank-two solutions of the two-
dimensionalized Toda lattice was quite unexpected for the authors of the present
paper.
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