Holomorphic bundles and commuting difference operators. Two-point constructions

I. M. Krichever and S. P. Novikov

This paper is closely related to our previous paper [1]. As is well known, in current mathematical physics the theory of commuting one-dimensional operators appears as an auxiliary algebraic aspect of the theory of integration of non-linear soliton systems and the spectral theory of periodic finite-zone operators [2]-[5].

As a purely algebraic problem, the problem of classifying ordinary scalar differential operators had already been posed in the 1920s by Burchnall and Chaundy [6], who advanced a long way towards a solution of the problem in the case of operators of mutually prime orders (in which the rank is always equal to 1), completed in [3]. However, they remarked that the general problem for rank r > 1 seemed extraordinarily difficult.

The first steps were taken in [7] and [8]. A method of effective classification of commuting differential operators of rank r > 1 in general position was created by the authors in [9] and [10]. Commuting pairs of rank r > 1 depend on (r - 1) arbitrary functions of one variable, a smooth algebraic curve Γ with *one* distinguished point P and a set of Tyurin parameters (characterizing a framed stable holomorphic bundle). We call these *one-point* constructions.

For difference operators the whole theory, which has already become classical, of pairs of commuting operators of rank r = 1 was based only on *two-point constructions* [11], [12]. Rings of such operators turned out to be isomorphic to the rings $A(\Gamma, P^{\pm})$ of meromorphic functions on an algebraic curve Γ with poles at a pair of distinguished points P^{\pm} .

In our previous paper [1] we showed that for rank $2l \ge 2$ a broad class of commuting difference operators can be obtained from the one-point construction. As in the continuous case, these operators depend on arbitrary functions of one variable $n \in \mathbb{Z}$.

In the present paper we have obtained a description of a broad class of commuting difference operators constructed starting from two-point constructions. In contrast to one-point constructions, there are no arbitrary functions here; the coefficients of the operators can be calculated by means of the Riemann theta function. As in the rank 1 case, these operators lead to solutions of the equations of the 2D Toda lattice and the whole hierarchy connected with them.

We consider a smooth algebraic curve Γ of genus g with two distinguished points P^{\pm} . Let (γ) be a collection of rg points γ_s , $s = 1, \ldots, rg$, on Γ , and (α) be a collection of (r-1)-dimensional vectors: $\alpha_s = (\alpha_{sj}), j = 1, \ldots, r-1$. According to [9], [10], these parameters (γ, α) are called Tyurin parameters. In the general case they determine a stable framed bundle \mathcal{E} over Γ of rank r and degree $c_1(\det \mathcal{E}) = rg$.

Lemma 1. For any choice of Tyurin parameters (γ, α) in general position there exists a unique meromorphic vector function $\psi_n(Q) = (\psi_n^i(Q)), i = 1, ..., r, Q \in \Gamma$ such that: (i) outside P^{\pm} the functions $\psi_n^i(Q)$ have no more than simple poles at the points γ_s , and their residues at these points satisfy the relation $\alpha_{si} \operatorname{res}_{\gamma_s} \psi_n^i = \operatorname{res}_{\gamma_s} \psi_n^r$; (ii) in a neighbourhood of the distinguished points $\psi_n(Q)^i, n = kr + j, 0 \leq j < r$, has the form

$$\psi_n^i = z_{\pm}^{\mp k} \left(\xi_{n,\pm}^i + O(z_{\pm}) \right), \tag{1}$$

where $\xi_{kr+j,+}^{j} = 1$, $\xi_{kr+j,+}^{i} = 0$ for i > j, and $\xi_{kr+j,-}^{i} = 0$ for i < j (here z_{\pm} are local coordinates in neighbourhoods of P^{\pm}).

The vector function defined above is the analogue of the Baker-Akhiezer difference function for the higher-rank case.

This work was completed with the support of grants DMS-98-02577, DMS-97-04613.

AMS 2000 Mathematics Subject Classification. Primary 35Q99.

Theorem 1. Let $\psi_n^i(Q)$ be the Baker-Akhiezer vector function corresponding to the choice of algebro-geometric data $\{\Gamma, P^{\pm}, (\gamma, \alpha)\}$. Then for any function $f(Q) \in A(\Gamma, P^{\pm})$ there exists a unique difference operator L_f of the form

$$L_f = \sum_{i=-rn_-}^{rn_+} u_i(n)T^i, \qquad u_{\pm rn_{\pm}} = f_{\pm} \neq 0,$$
(2)

such that $L_f \psi_n^i(Q) = f(Q) \psi_n^i(Q)$, i = 1, ..., r. Here $Ty_n = y_{n+1}$ is the shift operator and n_{\pm} are the orders of the function f(Q) at the points P^{\pm} .

Both the function ψ and the coefficients of the operators can be explicitly calculated in terms of the Riemann theta function corresponding to the curve Γ . The coefficients of the operators L_f are periodic functions if and only if $A(P^+) - A(P^-)$ is a point of finite order on the Jacobian $J(\Gamma)$.

Remark 1. We call attention to the fact that there are no functional parameters in this construction even in the case of rank r > 1. It follows from (2) that among the operators L_f there are both those for which all shifts T^i are positive, i > 0, and those for which all shifts are negative, i < 0. One-point constructions never lead to such operators. Here we also arrive naturally at the construction of representations of a version of the Kac-Moody algebra $\widehat{sl}(r, C)$ associated with the algebraic curve Γ with distinguished points P^{\pm} following the plan of [13].

Remark 2. For any rank r > 1 the authors have also constructed two-point Baker-Akhizer vector functions giving the solutions of the complete hierarchy of equations of the 2D Toda lattice. They depend on 2(r-1) arbitrary functions. This construction contains the theory of integrable potentials of the two-dimensional Schrödinger operator connected with bundles of higher rank begun by the authors in [14].

We consider the ring \mathcal{D} of difference operators of finite order. By Theorem 1 a choice of Tyurin parameters (γ, α) in general position defines a homomorphism $G_{(\gamma,\alpha)}: A(\Gamma, P^{\pm}) \mapsto \mathcal{D}$, whose image is a maximal commutative subring. The following theorem shows that the proposed construction describes all similar rings in general position.

Theorem 2. For any ring monomorphism $G: A(\Gamma, P^{\pm}) \mapsto \mathcal{D}$ such that the operators $L_f = G(f)$ have the form (2), the normalized joint eigenfunctions determine a framed holomorphic bundle of rank r and degree rg. In general position, when this bundle is described by Tyurin parameters (γ, α) , the homomorphism G coincides with the homomorphism $G = G_{(\gamma,\alpha)}$ defined by virtue of Theorem 1 with the aid of the corresponding Baker-Akhiezer vector function.

Bibliography

- [1] I. M. Krichever and S. P. Novikov, Uspekhi Mat. Nauk 55:1 (2000), 187–188; English transl., Russian Math. Surveys 55:1 (2000), 180–181.
- B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Uspekhi Mat. Nauk 31:1 (1976), 55–136; English transl., Russian Math. Surveys 31:1 (1976), 59–146.
- [3] I. M. Krichever, Uspekhi Mat. Nauk 32:6 (1977), 183–208; English transl., Russian Math. Surveys 32:6 (1977), 185–214.
- [4] B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, in *Dynamical systems* 4, Progress in Science and Technology. Current Problems of Mathematics. Fundamental directions, vol. 4, VINITI, Moscow 1985, pp. 179–284; English transl. in V. I. Arnol'd and S. P. Novikov (eds.), *Dynamical systems* IV, Encyclopaedia Math. Sci. vol. 4, Springer-Verlag, Heidelberg 1990, pp. 173–280.
- [5] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, *Theory of solitons. The inverse scattering method*, Nauka, Moscow 1980; English transl., Consultants Bureau, New York-London 1984.
- [6] J. L. Burchnall and T. W. Chaundy, Proc. Roy. Soc. London. 118 (1928), 557–583.
- [7] J. Dixmier, Bull. Soc. Math. France 96 (1968), 209-242; Russian transl, Matematika. 13:4 (1969), 16–44.
- [8] V. G. Drinfel'd, Funkstional. Anal. i Prilozhen. 11:1 (1977), 11–14; English transl., Functional Anal. Appl. 11 (1977), 9–12.

- [9] I. M. Krichever, Funktsional. Anal. i Prilozhen. 12:3 (1978), 20–31; English transl., Functional Anal. Appl. 12 (1978), 175–184.
- [10] I. M. Krichever and S. P. Novikov, Funktsional. Anal. i Prilozhen. 12:4 (1978), 41–52; English transl., Functional Anal. Appl. 12 (1978), 276–285.
- [11] I. M. Krichever, Uspekhi Mat. Nauk 33:4 (1978), 215–216; English transl., Russian Math. Surveys 33:4 (1978), 255–256.
- [12] D. Mumford, in Proceedings of international symposium on algebraic geometry (Kyoto Univ., Kyoto 1977), Kinokuniya Book Store, Tokyo 1978, pp. 115–153.
- [13] I. M. Krichever and S. P. Novikov, Funktsional. Anal. i Prilozhen. 21:2 (1987), 46–63; English transl., Functional Anal. Appl. 21 (1987), 126–141.
- [14] I. M. Krichever and S. P. Novikov, Uspekhi Mat. Nauk 35:6 (1980), 47–68; English transl., Russian Math. Surveys 35:6 (1980), 53–80.

Columbia University, New York University of Maryland, College Park Landau Institute of Theoretical Physics

Received 03/APR/00