The renormalization group equation in $N=2$ supersymmetric gauge theories ${ }^{\star}$

Eric D'Hoker ${ }^{\text {a, }, 1}$, I.M. Krichever ${ }^{\text {b,c,2 }}$, D.H. Phong ${ }^{\text {c, },}$
${ }^{\text {a }}$ Department of Physics, University of California, Los Angeles, CA 90024, USA
${ }^{\text {b }}$ Landau Institute for Theoretical Physics, Moscow 117940, Russia
${ }^{\text {c }}$ Department of Mathematics, Columbia University, New York, NY 10027, USA

Received 20 November 1996; revised 14 February 1997; accepted 20 February 1997

Abstract

We clarify the mass dependence of the effective prepotential in $N=2$ supersymmetric $\operatorname{SU}\left(N_{c}\right)$ gauge theories with an arbitrary number $N_{f}<2 N_{c}$ of flavors. The resulting differential equation for the prepotential extends the equations obtained previously for $S U(2)$ and for zero masses. It can be viewed as an exact renormalization group equation for the prepotential, with the beta function given by a modular form. We derive an explicit formula for this modular form when $N_{f}=0$, and verify the equation to 2 -instanton order in the weak-coupling regime for arbitrary N_{f} and N_{c}. We also extend the renormalization group equation to the case of other classical gauge groups. (C) 1997 Elsevier Science B.V.

PACS: 11.10.Hi; 11.15.-q; 11.15.Tk; 12.60.Jv
Keywords: Seiberg-Witten theory; Effective prepotential; Renormalization group; β-function; Modular forms; Instantons

1. Introduction

New avenues for the investigation of $N=2$ supersymmetric gauge theories have recently opened up with the Seiberg-Witten proposal [1], which gives the effective action in terms of a 1 -form $\mathrm{d} \lambda$ on Riemann surfaces fibering over the moduli space of vacua.

[^0]Starting with the $S U(2)$ theory [1], a form $\mathrm{d} \lambda$ is now available for many other gauge groups [2], with matter in the fundamental [3,4] or in the adjoint representation [5]. This has led to a wealth of information about the prepotential, including its expansion up to 2 -instanton order for asymptotically free theories with classical gauge groups [6].

These developments suggest a rich structure for the prepotential \mathcal{F}, which may help understand its strong coupling behavior, and clarify its relation with the point particle limit of string theories, when gravity is turned off [7]. Of particular interest in this context are the non-perturbative differential equations derived by Matone in [8] for $\mathrm{SU}(2)$, and later extended by Sonnenschein-Theisen-Yankielowicz and Eguchi-Yang in [9] to $\operatorname{SU}\left(N_{c}\right)$ theories with massless matter. It was however unclear how these equations would be affected if the hypermultiplets acquire non-vanishing masses.

In the present paper, we address this issue by providing a systematic and general framework for incorporating arbitrary masses m_{j}. In effect, the masses m_{j} are treated on an equal footing as the vev's a_{k} of the scalar field in the chiral multiplet, since they are both given by periods of $\mathrm{d} \lambda$ around non-trivial cycles. For the masses, the cycles are small loops around the poles of $\mathrm{d} \lambda$, while for a_{k}, they are non-trivial A-homology cycles. This suggests that the derivatives of \mathcal{F} with respect to the masses should be given by the periods of $\mathrm{d} \lambda$ around "dual cycles", just as the derivatives of \mathcal{F} with respect to a_{k} are given by the periods of $\mathrm{d} \lambda$ around B-cycles. We provide an explicit closed formula for such a prepotential, motivated by the τ-function of the Whitham hierarchy obtained in [10]. (In this connection we should point out that intriguing similarities between supersymmetric gauge theories and Whitham hierarchies had been noted by many authors [11], and had been the basis of the considerations in [9], as well as in [4], the starting point of our arguments.) Written in terms of the derivatives of \mathcal{F}, this closed formula becomes the non-perturbative equation for \mathcal{F} that we seek. It can be verified explicitly to 2 -instanton order, using the results of [6].

Specifically, the differential equation for \mathcal{F} is of the form

$$
\begin{equation*}
\mathcal{D} \mathcal{F}=-\frac{1}{2 \pi i}\left[\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \lambda\right)+\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \lambda\right)\right] \tag{1.1}
\end{equation*}
$$

with \mathcal{D} the operator

$$
\begin{equation*}
\mathcal{D}=\sum_{k=1}^{N_{c}} a_{k} \frac{\partial}{\partial a_{k}}+\sum_{j=1}^{N_{f}} m_{j} \frac{\partial}{\partial m_{j}}-2 \tag{1.2}
\end{equation*}
$$

The right-hand side in (1.1) has been interpreted in [8,9] in terms of the trace of the classical vacuum expectation value $\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}$, although there are ambiguities with this interpretation when $N_{f} \geqslant N_{c}$. Mathematically, it can be expressed in terms of $\boldsymbol{\vartheta}$ functions for arbitrary N_{c} when $N_{f}=0$ (cf. Section 3.4 below, and also Ref. [17] for the cases of $\operatorname{SU}(2), \mathrm{SU}(3)$ and massless $\mathrm{SU}\left(N_{c}\right)$ with $\left.N_{f}=N_{c}\right)$. There is little doubt that this should be the case in general. Now we have by dimensional analysis

$$
\begin{equation*}
\left(\mathcal{D}+\Lambda \frac{\partial}{\partial \Lambda}\right) \mathcal{F}=0 \tag{1.3}
\end{equation*}
$$

if Λ is the renormalization scale of the theory. Thus the proper interpretation for Eq. (1.1) is as a renormalization group equation, with the beta function given by a modular form!

Finally, we observe that the effective Lagrangian in the low momentum expansion determines the effective prepotential only up to a_{k}-independent terms. However, masses can arise as vacuum expectation values of non-dynamical fields, and we would expect the natural dependence on masses imposed here to be useful in future developments, for example in eventual generalizations to string theories.

2. A closed form for the prepotential

2.1. The geometric set-up for $N=2$ supersymmetric gauge theories

We recall the basic set-up for the effective prepotential \mathcal{F} of $N=2$ supersymmetric $\mathrm{SU}\left(N_{c}\right)$ gauge theories.

The moduli space of vacua is an N_{c}-1-dimensional variety, which can be parametrized classically by the eigenvalues $\bar{a}_{k}, \sum_{k=1}^{N_{c}} \bar{a}_{k}=0$ of the scalar field ϕ in the adjoint representation occurring in the $N=2$ chiral multiplet. (The flatness of the potential is equivalent to $\left[\phi, \phi^{\dagger}\right]=0$.) Quantum mechanically, the order parameters \bar{a}_{k} get renormalized to parameters a_{k}. The prepotential \mathcal{F} determines completely the Wilson effective Lagrangian of the quantum theory to leading order in the low momentum expansion. Following Seiberg-Witten [1], we require that the renormalized order parameters a_{k}, their duals $a_{D, k}$, and the prepotential \mathcal{F} be given by

$$
\begin{align*}
a_{k} & =\frac{1}{2 \pi i} \oint_{A_{k}} \mathrm{~d} \lambda, \quad a_{D, k}=\frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \lambda, \\
\frac{\partial \mathcal{F}}{\partial a_{k}} & =a_{D, k}, \tag{2.1}
\end{align*}
$$

where $\mathrm{d} \lambda$ is a suitably chosen meromorphic 1 -form on a fibration of Riemann surfaces Γ above the moduli space of vacua, and A_{j}, B_{j} is a canonical basis of homology cycles on Γ.

In the formalism of [4], the form $\mathrm{d} \lambda$ is characterized by two meromorphic Abelian differentials $\mathrm{d} Q$ and $\mathrm{d} E$ on Γ, with $\mathrm{d} \lambda=Q \mathrm{~d} E$. For $\operatorname{SU}\left(N_{c}\right)$ gauge theories with N_{f} hypermultiplets in the fundamental representation, $N_{f}<2 N_{c}$, the defining properties of $\mathrm{d} E$ and $\mathrm{d} Q$ are

- $\mathrm{d} E$ has only simple poles, at points P_{+}, P_{-}, P_{i}, where its residues are respectively $-N_{c}, N_{c}-N_{f}$, and $1\left(1 \leqslant i \leqslant N_{f}\right)$. Its periods around homology cycles are integer multiples of $2 \pi i$;
- Q is a well-defined meromorphic function, which has simple poles at P_{+}and P_{-}, and takes the values $Q\left(P_{i}\right)=-m_{i}$ at P_{i}, where m_{i} are the bare masses of the N_{f} hypermultiplets;
- The form $\mathrm{d} \lambda$ is normalized so that

$$
\begin{align*}
\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) & =-N_{c} 2^{-1 / N_{c}} \\
\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) & =\left(N_{c}-N_{f}\right)\left(\frac{\Lambda^{2 N_{c}-N_{f}}}{2}\right)^{1 /\left(N_{c}-N_{f}\right)} \\
\operatorname{Res}_{P_{+}}(\mathrm{d} \lambda) & =0 \tag{2.2}
\end{align*}
$$

where Λ is the dynamically generated scale of the theory, and $z=E^{-1 / N_{c}}$ or $z=E^{1 /\left(N_{c}-N_{f}\right)}$ is the holomorphic coordinate system provided by the Abelian integral E, depending on whether we are near P_{+}or near P_{-}.
It was shown in [4] that these conditions imply that Γ is hyperelliptic, and admits an equation of the form

$$
\begin{equation*}
y^{2}=\left(\prod_{k=1}^{N_{c}}\left(Q-\tilde{a}_{k}\right)\right)^{2}-A^{2 N_{c}-N_{f}} \prod_{j=1}^{N_{f}}\left(Q+m_{j}\right) \equiv A(Q)^{2}-B(Q) . \tag{2.3}
\end{equation*}
$$

Here \tilde{a}_{k} are parameters which coincide with \bar{a}_{k} when $N_{c}<N_{f}$, but may otherwise receive corrections. It is convenient to set

$$
\bar{\Lambda}=\Lambda^{\frac{1}{2}\left(2 N_{c}-N_{f}\right)} .
$$

The function Q in $\mathrm{d} \lambda=Q \mathrm{~d} E$ is now the coordinate Q in the complex plane, lifted to the two sheets $y= \pm \sqrt{A^{2}-B}$ of (2.3), while the Abelian integral E is given by $E=\log (y+A(Q))$. The points $P_{ \pm}$correspond to $Q=\infty$, with the choice of signs $y= \pm \sqrt{A^{2}-B}$.

2.2. The prepotential in closed form

We shall now exhibit a solution \mathcal{F} for Eqs. (2.1) in closed form. Formally, it is given by

$$
\begin{align*}
2 \mathcal{F}= & \frac{1}{2 \pi i}\left[\sum_{k=1}^{N_{c}} a_{k} \oint_{B_{k}} \mathrm{~d} \lambda-\sum_{j=1}^{N_{f}} m_{j} \int_{P_{-}}^{P_{j}} \mathrm{~d} \lambda\right. \\
& \left.+\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \lambda\right)+\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \lambda\right)\right] . \tag{2.4}
\end{align*}
$$

However, the above expression involves divergent integrals which must be regularized. For this, we need to make a number of choices. First, we fix a canonical homology basis A_{i}, B_{i}, along which the Riemann surface can be cut out to obtain a domain with boundary $\prod_{i=1}^{N_{c}-1} A_{i}^{-1} B_{i}^{-1} A_{i} B_{i}$. Next, we fix simple paths C_{-}, C_{j} from P_{+}to P_{-}, P_{j} respectively ($1 \leqslant j \leqslant N_{f}$), which have only P_{+}as common point. As usual the cuts are viewed as having two edges. With these choices, we can define a single-valued branch of the Abelian integral E in $\Gamma_{\text {cut }}=\Gamma \backslash\left(C_{-} \cup C_{1} \cup \ldots \cup C_{N_{f}}\right)$ as follows. Near P_{+},
the function Q^{-1} provides a biholomorphism of a neighborhood of P_{+}to a small disk in the complex plane. Choose the branch of $\log Q^{-1}$ with a cut along $Q^{-1}\left(C_{-}\right)$, and define an integral E of $\mathrm{d} E$ in a neighborhood of P_{+}in $\Gamma_{\text {cut }}$ by requiring that

$$
\begin{equation*}
E=N_{c} \log Q+\log 2+O\left(Q^{-1}\right) \tag{2.5}
\end{equation*}
$$

The Abelian integral E can then uniquely defined on $\Gamma_{\text {cut }}$ by integrating along paths. It determines in turn a coordinate system z near each of the poles P_{+}, P_{-}, and P_{j}, $1 \leqslant j \leqslant N_{f}$, e.g.,

$$
\begin{equation*}
z=e^{-\frac{1}{N_{c}} E} \text { near } P_{+} \tag{2.6}
\end{equation*}
$$

It is easily seen that z is holomorphic around P_{+}, and that $z=2^{\frac{1}{N_{c}}} Q^{-1}+O\left(Q^{-2}\right)$. The next few terms of the expansion of z in terms of Q^{-1} are actually quite important, but we shall evaluate them later. Similarly, we set $z=e^{\frac{1}{N_{c}-N_{f}} E}$ near P_{-}, and $z=e^{-E}$ near $P_{j}, 1 \leqslant j \leqslant N_{f}$.

The same choices above allow us to define at the same time a single-valued branch of the Abelian integral λ in $\Gamma_{\text {cut }}$. Specifically, λ is defined near P_{+}by the normalization

$$
\begin{equation*}
\lambda(z)=-\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \frac{1}{z}+O(z) \tag{2.7}
\end{equation*}
$$

with z the above holomorphic coordinate (2.6). As before, λ is then extended to the whole of $\Gamma_{\text {cut }}$ by analytic continuation. Evidently, near P_{-}, λ can be expressed as

$$
\begin{equation*}
\lambda(z)=-\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \frac{1}{z}+\lambda\left(P_{-}\right)+O(z) \tag{2.8}
\end{equation*}
$$

in the corresponding coordinate z near P_{-}, for a suitable constant $\lambda\left(P_{-}\right)$. Similarly, near P_{j}, λ can be expressed as

$$
\begin{equation*}
\lambda(z)=-m_{j} \log z+\lambda\left(P_{j}\right)+O(z) \tag{2.9}
\end{equation*}
$$

for suitable constants P_{j}. The expression (2.4) for the prepotential \mathcal{F} can now be given a precise meaning by regularizing as follows the divergent integrals appearing there

$$
\begin{equation*}
\int_{P_{-}}^{P_{j}} \mathrm{~d} \lambda=\lambda\left(P_{j}\right)-\lambda\left(P_{-}\right) . \tag{2.10}
\end{equation*}
$$

This method of regularization has the advantage of commuting with differentiation under the integral sign with respect to connections which keep the values of z constant.

2.3. The derivatives of the prepotential

The main properties of \mathcal{F} are the following:

$$
\begin{align*}
& \frac{\partial \mathcal{F}}{\partial a_{k}}=\frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \lambda, \tag{2.11}\\
& \frac{\partial \mathcal{F}}{\partial m_{j}}=\frac{1}{2 \pi i}\left[-\int_{P_{-}}^{P_{j}} \mathrm{~d} \lambda+\frac{1}{2} \sum_{i=1}^{N_{f}} m_{i}\left(\int_{P_{-}}^{P_{i}} \mathrm{~d} \Omega_{j}^{(3)}-\int_{P_{-}}^{P_{j}} \mathrm{~d} \Omega_{i}^{(3)}\right)\right], \tag{2.12}
\end{align*}
$$

where $\mathrm{d} \Omega_{i}^{(3)}$ are Abelian differentials of the third kind with simple poles and residues +1 and -1 at P_{\ldots} and P_{i} respectively, normalized to have vanishing A_{j}-periods. We observe that the Wilson effective action of the gauge theory is insensitive to modifications of \mathcal{F} by a_{k}-independent terms. Eq. (2.12) can be viewed as an additional criterion for selecting \mathcal{F}, motivated by the fact that the mass parameter $-m_{j}$ of $\mathrm{d} \lambda$ can be viewed as a contour integral of $\mathrm{d} \lambda$ around a cycle surrounding the pole P_{j}. In analogy with (2.4), the derivatives with respect to m_{j} of a natural choice for \mathcal{F} should then reproduce the integral of $\mathrm{d} \lambda$ around a dual cycle. This is the origin of the first term on the right-hand side of (2.12), if we view the path from P_{-}to P_{j} as such a dual "cycle". The second term on the right-hand side of (2.12) is a harmless correction due to regularization. The expression between parentheses is actually always a multiple of πi, although we do not need this fact.

We now establish (2.11) and (2.12). We need to consider the derivatives of $\mathrm{d} \lambda$ with respect to both a_{k} and m_{j}. We use the connection $\nabla^{E}=\nabla$ of [4], which differentiates along subvarieties where the value of the Abelian integral E (equivalently the coordinate z) is kept constant. Then simply by inspecting the derivatives of the singular parts of $\mathrm{d} \lambda$ in a Laurent expansion in the z-coordinate near each pole, we find that

$$
\begin{equation*}
\nabla_{a_{k}} \mathrm{~d} \lambda=2 \pi i \mathrm{~d} \omega_{k}, \quad \nabla_{m_{j}} \mathrm{~d} \lambda=\mathrm{d} \Omega_{j}^{(3)} \tag{2.13}
\end{equation*}
$$

where $\mathrm{d} \omega_{k}$ is the basis of Abelian differentials of the first kind dual to the A_{k} cycles. Next, we recall from (2.2) that the residues $\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda)$ and $\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda)$ are constant. Consequently,

$$
\begin{align*}
2 \frac{\partial \mathcal{F}}{\partial a_{k}}= & \frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \lambda+\sum_{i=1}^{N_{c}} a_{i} \oint_{B_{i}} \mathrm{~d} \omega_{k}-\sum_{j=1}^{N_{f}} m_{j} \int_{P_{-}}^{P_{j}} \mathrm{~d} \omega_{k} \\
& +\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \omega_{k}\right)+\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \omega_{k}\right) \tag{2.14}
\end{align*}
$$

However, we also have the following Riemann bilinear relations, valid even in presence of regularizations:

$$
\begin{gather*}
\oint_{B_{i}} \mathrm{~d} \omega_{k}=\oint_{B_{k}} \mathrm{~d} \omega_{i}, \quad \frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \Omega_{j}^{(3)}=-\int_{P_{-}}^{P_{j}} \mathrm{~d} \omega_{k}, \\
\frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \Omega_{ \pm}^{(2)}=\operatorname{Res}_{P_{ \pm}}\left(z^{-1} \mathrm{~d} \omega_{k}\right), \quad \int_{P_{-}}^{P_{j}} \mathrm{~d} \Omega_{ \pm}^{(2)}=-\operatorname{Res}_{P_{ \pm}}\left(z^{-1} \mathrm{~d} \Omega_{j}^{(3)}\right) . \tag{2.15}
\end{gather*}
$$

Here $\mathrm{d} \Omega_{ \pm}^{(2)}$ are Abelian differentials of the second kind, with a double pole at $P_{ \pm}$, vanishing A-cycles, and normalization

$$
\begin{equation*}
\mathrm{d} \Omega_{ \pm}^{(2)}=z^{-2} \mathrm{~d} z+O(z) \tag{2.16}
\end{equation*}
$$

The relations (2.15) follow from the usual Riemann bilinear arguments, by considering respectively the (vanishing) integrals on the cut surface $\Gamma_{\text {cut }}$ of the 2 -forms $\mathrm{d}\left(\omega_{i} \mathrm{~d} \omega_{k}\right)$, $\mathrm{d}\left(\Omega_{j}^{(3)} \mathrm{d} \omega_{k}\right), \mathrm{d}\left(\Omega_{ \pm}^{(2)} \mathrm{d} \omega_{k}\right), \mathrm{d}\left(\Omega_{j}^{(3)} \mathrm{d} \Omega_{ \pm}\right)$. Applying (2.15) to (2.14), we obtain

$$
\begin{align*}
2 \frac{\partial \mathcal{F}}{\partial a_{k}}= & \frac{1}{2 \pi i} \oint_{B_{k}} \mathrm{~d} \lambda+\sum_{i=1}^{N_{c}} a_{i} \oint_{B_{k}} \mathrm{~d} \omega_{i}+\frac{1}{2 \pi i} \sum_{j=1}^{N_{f}} m_{j} \oint_{B_{k}} \mathrm{~d} \Omega_{j}^{(3)} \\
& +\frac{1}{2 \pi i} \operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \oint_{B_{k}} \mathrm{~d} \Omega_{+}^{(2)}+\frac{1}{2 \pi i} \operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \oint_{B_{k}} \mathrm{~d} \Omega_{-}^{(2)} . \tag{2.17}
\end{align*}
$$

However, the expression

$$
\begin{equation*}
\mathrm{d} \lambda=2 \pi i \sum_{i=1}^{N_{c}} a_{i} \mathrm{~d} \omega_{i}+\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \mathrm{d} \Omega_{+}^{(2)}+\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \mathrm{d} \Omega_{-}^{(2)}+\sum_{j=1}^{N_{f}} m_{j} \mathrm{~d} \Omega_{j}^{(3)} \tag{2.18}
\end{equation*}
$$

is just the expansion of $\mathrm{d} \lambda$ in terms of Abelian differentials of first, second, and third kind! Eq. (2.11) follows. Eq. (2.12) can be established in the same way. First we write

$$
\begin{align*}
2 \frac{\partial \mathcal{F}}{\partial m_{l}}= & \frac{1}{2 \pi i}\left[\sum_{i=1}^{N_{c}} a_{i} \oint_{B_{i}} \mathrm{~d} \Omega_{l}^{(3)}-\int_{P_{-}}^{P_{l}} \mathrm{~d} \lambda-\sum_{j=1}^{N_{f}} m_{j} \int_{P_{-}}^{P_{j}} \mathrm{~d} \Omega_{l}^{(3)}\right. \\
& \left.+\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \Omega_{l}^{(3)}\right)+\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \Omega_{l}^{(3)}\right)\right] . \tag{2.19}
\end{align*}
$$

Substituting in the bilinear relations gives

$$
\begin{align*}
2 \frac{\partial \mathcal{F}}{\partial m_{l}}= & \frac{1}{2 \pi i}\left[-2 \pi i \sum_{i=1}^{N_{c}} a_{i} \int_{P_{-}}^{P_{l}} \mathrm{~d} \omega_{l}-\int_{P_{-}}^{P_{l}} \mathrm{~d} \lambda-\sum_{j=1}^{N_{f}} m_{j} \int_{P_{-}}^{P_{l}} \mathrm{~d} \Omega_{j}^{(3)}\right. \\
& \left.-\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \int_{P_{-}}^{P_{l}} \mathrm{~d} \Omega_{+}^{(2)}-\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \int_{P_{-}}^{P_{l}} \mathrm{~d} \Omega_{-}^{(2)}\right] \\
& -\frac{1}{2 \pi i} \sum_{j=1}^{N_{f}} m_{j}\left(\int_{P_{-}}^{P_{j}} \mathrm{~d} \Omega_{l}^{(3)}-\int_{P_{-}}^{P_{l}} \mathrm{~d} \Omega_{j}^{(3)}\right) . \tag{2.20}
\end{align*}
$$

Again, the Abelian differentials recombine to produce $\mathrm{d} \lambda$, and the relation (2.12) follows.

3. The renormalization group equation

3.1. The renormalization group equation in terms of residues

Combining Eqs. (2.4), (2.11), and (2.12) gives a first version of the renormalization group equation for \mathcal{F}, valid in presence of arbitrary masses m_{j}

$$
\begin{align*}
\sum_{k=1}^{N_{c}} a_{k} \frac{\partial \mathcal{F}}{\partial a_{k}}+\sum_{j=1}^{N_{f}} m_{j} \frac{\partial \mathcal{F}}{\partial m_{j}}-2 \mathcal{F}= & -\frac{1}{2 \pi i}\left[\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \lambda\right)\right. \\
& \left.+\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda) \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \lambda\right)\right] \tag{3.1}
\end{align*}
$$

3.2. The renormalization group equation in terms of invariant polynomials

We can evaluate the right-hand side of (3.1) explicitly, in terms of the masses m_{j}, and the moduli parameters \tilde{a}_{k} and Λ of the spectral curve (2.3). For this, we need the first three leading coefficients in the expansion of Q in terms of z at P_{+}and P_{-}. Now recall that at $P_{+}, Q \rightarrow \infty, y=\sqrt{A^{2}-B}$, and

$$
\begin{equation*}
z=(y+A)^{-1 / N_{c}} . \tag{3.2}
\end{equation*}
$$

For $N_{f}<2 N_{c}$, we may expand $\sqrt{A^{2}-B}$ in powers of B / A^{2} and write, up to $O\left(Q^{N_{c}-3}\right)$

$$
\begin{equation*}
y+A=2\left[A-\frac{1}{4} \frac{B}{A}-\frac{1}{16} \frac{B^{2}}{A^{3}}\right] . \tag{3.3}
\end{equation*}
$$

We consider first the terms in (3.3) of order up to $O\left(Q^{N_{c}-1}\right)$. Then for $N_{f} \leqslant 2 N_{c}-2$, only the top two terms in A contribute, while for $N_{f}=2 N_{c}-1$, we must also incorporate the term $\bar{\Lambda}^{2} x^{N_{f}-N_{c}}=\bar{\Lambda}^{2} x^{N_{c}-1}$ from B / A. Thus

$$
A+y=2 Q^{N_{c}}\left[1-\left(\tilde{s}_{1}+\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{A}^{2}}{4}\right) Q^{-1}\right]+O\left(Q^{N_{c}-2}\right)
$$

where we have introduced the notation

$$
\tilde{s}_{i}=(-1)^{i} \sum_{k_{1}<\ldots<k_{i}} \tilde{a}_{k_{1}} \ldots \tilde{a}_{k_{i}}, \quad t_{i}=\sum_{k_{1}<\ldots<k_{i}} m_{k_{1}} \ldots m_{k_{i}} .
$$

This leads to the first two coefficients of z in terms of Q, or equivalently, the first two coefficients of Q in terms of z

$$
Q=2^{-1 / N_{c}} z^{-1}\left(1+\frac{1}{N_{c}}\left(\tilde{s}_{1}+\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{\Lambda}^{2}}{4}\right) z\right)
$$

Comparing with (2.2), we see that this confirms the value of $\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda)$ required there, while the condition $\operatorname{Res}_{P_{+}}(\mathrm{d} \lambda)=0$ is equivalent to

$$
\begin{equation*}
\tilde{s}_{1}+\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{\Lambda}^{2}}{4}=0 . \tag{3.4}
\end{equation*}
$$

Similarly, in the expansion of $A+y$ to order $O\left(Q^{N_{c}-2}\right)$, we must consider separately the cases $N_{f}<2 N_{c}-2, N_{f}=2 N_{c}-2$, and $N_{f}=2 N_{c}-1$, depending on whether the terms B / A and B^{2} / A^{3} contribute to this order. Taking into account (3.4), we find

$$
\begin{equation*}
Q=2^{-1 / N_{c}} z^{-1}\left(1-\frac{2^{2 / N_{c}}}{N_{c}} S_{2}^{+} z^{2}\right)+O\left(z^{2}\right) \tag{3.5}
\end{equation*}
$$

with S_{2}^{+}defined to be

$$
\begin{equation*}
S_{2}^{+}=\tilde{s}_{2}-\delta_{N_{f}, 2 N_{2}-2} \frac{\bar{\Lambda}^{2}}{4}-\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{\Lambda}^{2}}{4} t_{1} . \tag{3.6}
\end{equation*}
$$

Near P_{-}, we have instead

$$
A+y=A-A\left(1-\frac{B}{A^{2}}\right)^{1 / 2}=\frac{1}{2} \frac{B}{A}+\frac{1}{8} \frac{B^{2}}{A^{3}}+\frac{1}{16} \frac{B^{3}}{A^{5}} .
$$

Again, considering separately the cases $N_{f}<2 N_{c}-2, N_{f}=2 N_{c}-2, N_{f}=2 N_{c}-1$, we can derive the leading three terms of the expansion of $z=E^{-1 /\left(N_{f}-N_{c}\right)}=(A+$ $y)^{-1 /\left(N_{f}-N_{c}\right)}$ in terms of Q. Written in terms of an expansion of Q in terms of z, the result is

$$
\begin{align*}
Q= & \left(\frac{\bar{\Lambda}^{2}}{2}\right)^{-1 /\left(N_{f}-N_{c}\right)} z^{-1}\left[1-\frac{t_{1}}{N_{f}-N_{c}}\left(\frac{\bar{\Lambda}^{2}}{2}\right)^{1 /\left(N_{f}-N_{c}\right)} z\right. \\
& \left.+\frac{1}{\left(N_{f}-N_{c}\right)^{2}}\left(\frac{\bar{\Lambda}^{2}}{2}\right)^{2 /\left(N_{f}-N_{c}\right)}\left(S_{2}^{-}\left(N_{f}-N_{c}\right)+\frac{1}{2}\left(-1+N_{f}-N_{c}\right) t_{1}^{2}\right) z^{2}\right] \tag{3.7}
\end{align*}
$$

with S_{2}^{-}given by

$$
\begin{equation*}
S_{2}^{-}=\tilde{s}_{2}-t_{2}-\delta_{N_{f}, 2 N_{2}-2} \frac{\bar{\Lambda}^{2}}{4}-\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{\Lambda}^{2}}{4} t_{1} \tag{3.8}
\end{equation*}
$$

Since $\mathrm{d} \lambda=-N_{c} Q \frac{\mathrm{~d} z}{z}$ near P_{+}and $\mathrm{d} \lambda=-\left(N_{f}-N_{c}\right) Q \frac{\mathrm{~d} z}{z}$ near P_{-}, we obtain

$$
\begin{align*}
& \operatorname{Res}_{P_{+}}\left(z^{-1} \mathrm{~d} \lambda\right)=2^{1 / N_{c}} S_{2}^{+} \\
& \operatorname{Res}_{P_{-}}\left(z^{-1} \mathrm{~d} \lambda\right)=-\left(\frac{\bar{\Lambda}^{2}}{2}\right)^{1 /\left(N_{f}-N_{c}\right)}\left(S_{2}^{-}+\frac{1}{2}\left(1-\frac{1}{N_{f}-N_{c}}\right) t_{1}^{2}\right) \tag{3.9}
\end{align*}
$$

Substituting in the values of $\operatorname{Res}_{P_{+}}(z \mathrm{~d} \lambda)$ and $\operatorname{Res}_{P_{-}}(z \mathrm{~d} \lambda)$ given in (2.2), and rewriting the result in terms of \tilde{s}_{2} and the operator \mathcal{D} of (1.2), we can rewrite the renormalization group equation (3.1) as

$$
2 \pi i \mathcal{D F}=-\left(N_{f}-2 N_{c}\right)\left\{\tilde{s}_{2}-\delta_{N_{f}, 2 N_{c}-2} \frac{\bar{\Lambda}^{2}}{4}-\delta_{N_{f}, 2 N_{c}-1} \frac{\bar{A}^{2}}{4} t_{1}\right\}
$$

$$
\begin{equation*}
+\left(N_{f}-N_{c}\right) t_{2}-\frac{1}{2}\left(N_{f}-N_{c}-1\right) t_{1}^{2} \tag{3.10}
\end{equation*}
$$

Before proceeding further, we would like to note a few features of the renormalization group equation and of our choice of prepotential.
(1) The RG equations (3.1) and (3.10) are actually invariant under a change of cuts. Indeed, a change of cuts would shift the values of the regularized integrals (2.4) by a linear expression, and hence \mathcal{F} by a quadratic expression in the masses m_{j}, independent of the a_{k}. In view of Euler's relation, such terms cancel in the lefthand side of (3.1) and (3.10). Thus the right-hand side of the RG only transforms under a change of homology basis, and is a modular form.
(2) From the point of view of gauge theories alone, we can in practice ignore on the right-hand side of (3.1) and (3.10) terms which do not depend on the a_{k}. Such terms can always be cancelled by a suitable a_{k}-independent correction to \mathcal{F}. These corrections do not affect the Wilson effective action since it depends only on the derivatives of \mathcal{F} with respect to a_{k}.
(3) Some caution may be necessary in interpreting \tilde{s}_{2}, in terms of the classical order parameters \bar{a}_{k}. In particular, when $N_{f} \geqslant N_{c}$, there are several natural ways of parametrizing the curve (2.3), in which the \vec{a}_{k} get shifted in different ways to $\tilde{a}_{k} \neq \bar{a}_{k}[3,4]$. As noted in [6], the prepotential \mathcal{F} is independent from such redefinitions of the \bar{a}_{k}. However, this would of course not be the case for $\bar{s}_{2} \equiv$ $\sum_{k<j}^{N_{c}} \bar{a}_{k} \bar{a}_{j}$, which argues for a distinct interpretation for $\tilde{s}_{2}=\sum_{j<k} \tilde{a}_{k} \tilde{a}_{j}$.

3.3. Other classical gauge groups

As noted in [6], the effective prepotentials $\mathcal{F}_{G ; N_{f}}$ for theories with other classical gauge groups G and arbitrary number of flavors N_{f} (and at least two massless hypermultiplets in the case of $\operatorname{Sp}(2 r)$, which we assume henceforth) can all be obtained by suitable restrictions of the $\mathrm{SU}\left(N_{c}\right)$ prepotentials. The spectral curves are then all $\operatorname{SU}\left(N_{c}\right)$ curves (2.3), with $N_{c}=2 r$, where r denotes the rank of G. The zeroes of $A(Q)$ in (2.3) are of the form $\pm \tilde{a}_{1}, \ldots, \pm \tilde{a}_{r}$. The masses of the $\mathrm{SU}\left(N_{c}\right)$ theories are similarly given by \pm the masses of the G theories, with possible adjunction or deletion of some vanishing masses. Set in each case

$$
\begin{aligned}
& \mathcal{D}=\sum_{k=1}^{r} a_{k} \frac{\partial}{\partial a_{k}}+\sum_{j=1}^{N_{f}} m_{j} \frac{\partial}{\partial m_{j}}-2, \\
& \tilde{s}_{2}=-\sum_{k=1}^{r} \tilde{a}_{k}^{2} \\
& t_{2}=-\sum_{k=1}^{N_{f}} m_{k}^{2}
\end{aligned}
$$

and let a_{1}, \ldots, a_{r} be the renormalized order parameters of each theory. Then the precise mass correspondences and renormalization group equations are as follows:

- $\mathrm{SO}(2 r+1)$ theories: $N_{f}^{\mathrm{SU}\left(N_{c}\right)}=2 N_{f}+2, m_{j}^{\mathrm{SU}\left(N_{c}\right)}=-m_{j+r}^{\mathrm{SU}\left(N_{c}\right)}=m_{j}, 1 \leqslant j \leqslant N_{f}$, $m_{2 N_{f}+1}^{\mathrm{SU}\left(N_{c}\right)}=m_{2 N_{f}+2}^{\mathrm{SU}\left(N_{c}\right)}=0$,

$$
\begin{aligned}
2 \pi i \mathcal{D} \mathcal{F}_{\mathrm{SO}(2 \mathrm{r}+1) ; N_{f}}= & -\left(2 N_{f}+2-4 r\right)\left(\tilde{s}_{2}-\delta_{2 N_{f}+2,4 r-2} \frac{\Lambda^{4 r-2 N_{f}-2}}{4}\right) \\
& +\left(2 N_{f}+2-2 r\right) t_{2}
\end{aligned}
$$

- $\operatorname{Sp}(2 r)$ theories with two massless hypermultiplets $m_{N_{f}-1}=m_{N_{f}}=0: N_{f}^{\mathrm{SU}\left(N_{c}\right)}=$ $2 N_{f}-4, m_{j}^{\mathrm{SU}\left(N_{c}\right)}=-m_{j+r}^{\mathrm{SU}\left(N_{c}\right)}=m_{j}, 1 \leqslant j \leqslant N_{f}-2$,

$$
\begin{aligned}
2 \pi i \mathcal{D} \mathcal{F}_{\mathrm{Sp}(2 \mathrm{r}) ; N_{f}}= & -\left(2 N_{f}-4-4 r\right)\left(\tilde{s}_{2}-\delta_{2 N_{f}-4,4 r-2} \frac{\Lambda^{4 r-2 N_{f}+4}}{4}\right) \\
& +\left(2 N_{f}-4-2 r\right) t_{2}
\end{aligned}
$$

- $\mathrm{SO}(2 r)$ theories: $N_{f}^{\mathrm{SU}\left(N_{c}\right)}=2 N_{f}+4, m_{j}^{\mathrm{SU}\left(N_{c}\right)}=-m_{j+r}^{\mathrm{SU}\left(N_{c}\right)}=m_{j}, 1 \leqslant j \leqslant N_{f}$, $m_{2 N_{f}+1}^{\mathrm{SU}\left(N_{c}\right)}=\ldots=m_{2 N_{f}+4}^{\mathrm{SU}\left(N_{c}\right)}=0$,

$$
\begin{aligned}
2 \pi i \mathcal{D} \mathcal{F}_{\mathrm{SO}(2 \mathrm{r}) ; N_{f}}= & -\left(2 N_{f}+4-4 r\right)\left(\tilde{s}_{2}-\delta_{2 N_{f}+4,4 r-2} \frac{\Lambda^{4 r-2 N_{f}-4}}{4}\right) \\
& +\left(2 N_{f}+4-2 r\right) t_{2}
\end{aligned}
$$

3.4. The renormalization group equation in terms of ϑ-functions

As noted above, the right-hand side of the RG equation (3.1) is in general a modular form. For $N_{f}=0$ (and arbitrary N_{c}), we can exploit the symmetry between the branch points $x_{k}^{ \pm}$given by $y^{2}=(A-\bar{\Lambda})(A+\bar{\Lambda})=\prod_{k=1}^{N_{c}}\left(Q-x_{k}^{+}\right)\left(Q-x_{k}^{-}\right)$and known formulae for their cross ratios to write it explicitly in terms of ϑ-functions. More precisely, we observe that

$$
\begin{equation*}
\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}=\sum_{k=1}^{N_{c}}\left(x_{k}^{+}\right)^{2}=\sum_{k=1}^{N_{c}}\left(x_{k}^{+}\right)^{2} . \tag{3.11}
\end{equation*}
$$

Let the canonical homology basis be given by A_{k} cycles surrounding the cut from x_{k}^{-} to $x_{k}^{+}, 1 \leqslant k \leqslant N_{c}-1$ on one sheet, and by B_{k} cycles going from $x_{N_{c}}^{-}$to x_{k}^{-}on one sheet, and coming back from x_{k}^{-}to $x_{N_{c}}^{-}$on the opposite sheet. Then for the dual basis of Abelian differentials $\mathrm{d} \omega=\left(\mathrm{d} \omega_{k}\right)_{k=1, \ldots, N_{c}-1}$, we introduce the basis vectors $e^{(k)}$ and $\tau^{(k)}$ of the Jacobian lattice by

$$
\oint_{A_{k}} \mathrm{~d} \omega=e^{(k)}, \quad \oint_{B_{k}} \mathrm{~d} \omega=\tau^{(k)}
$$

We have then the following relations between points in the Jacobian lattice:

$$
\begin{equation*}
\int_{x_{k}^{-}}^{x_{k}^{+}} \mathrm{d} \omega=\frac{1}{2} e^{(k)}, \quad \int_{x_{k}^{+}}^{x_{k+1}^{-}} \mathrm{d} \omega=\frac{1}{2}\left(\tau^{(k+1)}+\tau^{(k)}\right) \tag{3.12}
\end{equation*}
$$

Let $\phi(Q)$ denote the Abel map

$$
\phi(Q)=\left(\int_{Q_{0}}^{Q} \mathrm{~d} \omega_{1}, \ldots, \int_{Q_{0}}^{Q} \mathrm{~d} \omega_{N_{c}-1}\right)
$$

If we choose Q_{0} so that $\phi\left(x_{1}^{-}\right)=\frac{1}{2} \tau^{(1)}$, it follows from (3.12) that

$$
\begin{align*}
& \phi\left(x_{k}^{-}\right)=\frac{1}{2}\left(e^{(1)}+\ldots+e^{(k-1)}\right)+\frac{1}{2} \tau^{(k)}, \quad 1 \leqslant k \leqslant N_{c}-1, \\
& \phi\left(x_{k}^{+}\right)=\frac{1}{2}\left(e^{(1)}+\ldots+e^{(k)}\right)+\frac{1}{2} \tau^{(k)}, \quad 1 \leqslant k \leqslant N_{c}-1, \\
& \phi\left(x_{N_{c}}^{-}\right)=\frac{1}{2}\left(e^{(1)}+\ldots+e^{\left(N_{c}-1\right)}\right), \\
& \phi\left(x_{N_{c}}^{+}\right)=0 . \tag{3.13}
\end{align*}
$$

If we introduce the functions $F_{l}^{k}(Q)$ by

$$
\begin{equation*}
F_{l}^{k}(Q)=\frac{\vartheta\left(\phi\left(x_{l}^{-}+x_{k}^{+}+Q\right) \mid \tau\right)^{2}}{\vartheta\left(\phi\left(x_{N_{c}}^{-}+x_{k}^{+}+Q\right) \mid \tau\right)^{2}} \tag{3.14}
\end{equation*}
$$

an inspection of the zeroes shows that we have the following relation between F_{l}^{k} and cross ratios

$$
\begin{equation*}
\frac{F_{l}^{k}\left(Q^{\prime}\right)}{F_{l}^{k}(Q)}=\frac{Q^{\prime}-x_{l}^{-}}{Q-x_{l}^{-}} \frac{Q-x_{N_{c}}^{-}}{Q^{\prime}-x_{N_{c}}^{-}} . \tag{3.15}
\end{equation*}
$$

For the Riemann surface (2.2), we also have for all Q

$$
\begin{equation*}
\prod_{l=1}^{N_{c}}\left(Q-x_{l}^{+}\right)=A(Q)-\bar{A}=\prod_{l=1}^{N_{c}}\left(Q-x_{l}^{-}\right)-2 \bar{A} \tag{3.16}
\end{equation*}
$$

Setting $Q=x_{k}^{+}$gives the relation

$$
\begin{equation*}
\prod_{l=1}^{N_{c}}\left(x_{k}^{+}-x_{l}^{-}\right)=2 \bar{A} \tag{3.17}
\end{equation*}
$$

Combining with products of expressions of the form (3.15) evaluated at branch points, we can actually identify the branch points,

$$
\begin{aligned}
x_{k}^{+}-x_{N_{c}}^{-} & =\Lambda G_{k}, \\
x_{k}^{+}-x_{l}^{+} & =\Lambda\left(G_{k}-G_{l}\right),
\end{aligned}
$$

$$
\begin{equation*}
x_{k}^{+}=-\frac{\Lambda}{N_{c}} \sum_{l=1}^{N_{c}} G_{l}+\Lambda G_{k} \tag{3.18}
\end{equation*}
$$

where G_{k} is defined to be

$$
\begin{equation*}
G_{k}=2^{\frac{1}{N_{c}}} \prod_{l=1}^{N_{c}}\left\{\left[\frac{F_{l}^{k}\left(x_{m}^{-}\right)}{F_{l}^{k}\left(x_{k}^{+}\right)}\right]^{\frac{1}{N_{c}}} \prod_{k^{\prime}=1}^{N_{c}}\left[\frac{F_{l}^{k^{\prime}}\left(x_{k^{\prime}}^{+}\right)}{F_{l}^{k^{\prime}}\left(x_{m}^{-}\right)}\right]^{\frac{1}{N_{c}^{2}}}\right\} . \tag{3.19}
\end{equation*}
$$

Since $F_{l}^{k}\left(x_{k}^{-}\right)$is independent of k, this expression may be simplified,

$$
\begin{equation*}
G_{k}=2^{\frac{1}{N_{c}}} \prod_{l=1}^{N_{c}} \prod_{k^{\prime}=1}^{N_{c}}\left[\frac{F_{l}^{k}\left(x_{m}^{-}\right)}{F_{l}^{k^{\prime}}\left(x_{m}^{-}\right)}\right]^{\frac{1}{N_{c}^{2}}} \tag{3.20}
\end{equation*}
$$

The evaluation of the functions F_{l}^{k} on the branch points is particularly simple, and we have

$$
\begin{equation*}
F_{l}^{k}\left(x_{m}^{-}\right)=\frac{\vartheta\left(\phi\left(x_{l}^{-}\right)+\phi\left(x_{m}^{-}\right)+\phi\left(x_{k}^{+}\right) \mid \tau\right)^{2}}{\vartheta\left(\phi\left(x_{N_{c}}^{-}\right)+\phi\left(x_{m}^{-}\right)+\phi\left(x_{k}^{+}\right) \mid \tau\right)^{2}} \tag{3.21}
\end{equation*}
$$

where the values of $\phi\left(x^{ \pm}\right)$can be read off from (3.13). This leads to the following expression for the right-hand side of (3.10):

$$
\begin{equation*}
\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}=\Lambda^{2} \sum_{k=1}^{N_{c}} G_{k}^{2}-\frac{\Lambda^{2}}{N_{c}}\left(\sum_{k=1}^{N_{c}} G_{k}\right)^{2} \tag{3.22}
\end{equation*}
$$

which is a modular form.

4. The weak-coupling limit

It is instructive to verify the renormalization group equation (3.10) in the weakcoupling limit analyzed in [6] to 2 -instanton order.

We recall the expression obtained in [6] for the prepotential \mathcal{F} to 2 -instanton order in the regime of $\Lambda \rightarrow 0$. Let the functions $S(x)$ and $S_{k}(x)$ be defined by

$$
\begin{equation*}
S(x)=\frac{\prod_{j=1}^{N_{f}}\left(x+m_{j}\right)}{\prod_{l=1}^{N_{c}}\left(x-a_{l}\right)^{2}}=\frac{S_{k}(x)}{\left(x-a_{k}\right)^{2}} . \tag{4.1}
\end{equation*}
$$

Then the prepotential \mathcal{F} is given by

$$
\mathcal{F}=\mathcal{F}^{(0)}+\mathcal{F}^{(1)}+\mathcal{F}^{(2)}+O\left(\bar{\Lambda}^{6}\right)
$$

with the terms $\mathcal{F}^{(0)}, \mathcal{F}^{(1)}, \mathcal{F}^{(2)}$ corresponding respectively to the one-loop perturbative contribution, the 1 -instanton contribution, and the 2 -instanton contribution

$$
\begin{align*}
& 2 \pi i \mathcal{F}^{(0)}=-\frac{1}{4} \sum\left(a_{k}-a_{l}\right)^{2} \log \frac{\left(a_{k}-a_{l}\right)^{2}}{\Lambda^{2}}+\frac{1}{4} \sum_{j, k}\left(a_{k}+m_{j}\right)^{2} \log \frac{\left(a_{k}+m_{j}\right)^{2}}{\Lambda^{2}}, \\
& 2 \pi i \mathcal{F}^{(1)}=\frac{1}{4} \bar{\Lambda}^{2} \sum_{k=1}^{N_{c}} S_{k}\left(a_{k}\right) \\
& 2 \pi i \mathcal{F}^{(2)}=\frac{1}{16} \bar{\Lambda}^{4}\left(\sum_{k \neq l} \frac{S_{k}\left(a_{k}\right) S_{l}\left(a_{l}\right)}{\left(a_{k}-a_{l}\right)^{2}}+\frac{1}{4} \sum_{k=1}^{N_{c}} S_{k}\left(a_{k}\right) \partial_{a_{k}}^{2} S_{k}\left(a_{k}\right)\right) \tag{4.2}
\end{align*}
$$

Here we have ignored quadratic terms in a_{k}, since they are automatically annihilated by the operator \mathcal{D}. We also note that the arguments of [6] only determine \mathcal{F} up to a_{k}-independent terms, and thus we shall drop all such terms in the subsequent considerations. The formulae (4.2) imply

$$
\begin{equation*}
\sum_{k=1}^{N_{c}} a_{k} \frac{\partial \mathcal{F}}{\partial a_{k}}+\sum_{j=1}^{N_{f}} m_{j} \frac{\partial \mathcal{F}}{\partial m_{j}}-2 \mathcal{F}=\left(N_{f}-2 N_{c}\right)\left(\frac{1}{4 \pi i} \sum_{k=1}^{N_{c}} a_{k}^{2}+\mathcal{F}^{(1)}+2 \mathcal{F}^{(2)}\right) \tag{4.3}
\end{equation*}
$$

where all $\bar{\Lambda}^{6}$ terms have been ignored.
On the other hand, up to a_{k}-independent terms, the renormalization group equation (3.10) reads

$$
\begin{equation*}
\sum_{k=1}^{N_{c}} a_{k} \frac{\partial \mathcal{F}}{\partial a_{k}}+\sum_{j=1}^{N_{f}} m_{j} \frac{\partial \mathcal{F}}{\partial m_{j}}-2 \mathcal{F}=\frac{1}{4 \pi i}\left(N_{f}-2 N_{c}\right) \sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2} \tag{4.4}
\end{equation*}
$$

where we have rewritten \tilde{s}_{2} as

$$
\begin{equation*}
\tilde{s}_{2}=-\frac{1}{2} \sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}+\frac{\overline{\bar{A}}^{2}}{16} \delta_{N_{f}, 2 N_{c}-1} \tag{4.5}
\end{equation*}
$$

To compare (4.3) with (4.4) we need first to evaluate $\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}$ in terms of the renormalized order parameters a_{k}. Using the formula (3.11) of [6], this can be done routinely

$$
\begin{equation*}
a_{k}=\tilde{a}_{k}+\frac{\bar{A}^{2}}{4} \tilde{d}_{k} \tilde{S}_{k}\left(\tilde{a}_{k}\right)+\frac{\bar{\Lambda}^{4}}{64} \tilde{\partial}_{k}^{3} \tilde{S}_{k}\left(\tilde{a}_{k}\right)+O\left(\bar{\Lambda}^{6}\right) \tag{4.6}
\end{equation*}
$$

where we have set $\tilde{\partial}_{k}=\partial / \partial \tilde{a}_{k}$, and defined functions $\tilde{S}(x), \tilde{S}_{k}(x)$ in analogy with (4.1), but with a_{k} replaced by \tilde{a}_{k}. Inverting \tilde{a}_{k} in terms of a_{k}, and rewriting the result in terms of the derivatives $\partial_{k}=\partial / \partial a_{k}$ with respect to the renormalized parameters a_{k}, we find

$$
\begin{equation*}
\tilde{a}_{k}=a_{k}-\frac{\bar{\Lambda}^{2}}{4} \partial_{k} S_{k}\left(a_{k}\right)-\frac{\bar{\Lambda}^{4}}{64} \partial_{k}^{3} S_{k}\left(a_{k}\right)^{2}+\frac{\bar{\Lambda}^{4}}{16} \sum_{l=1}^{N_{c}} \partial_{l} S_{l}\left(a_{l}\right) \partial_{k} \partial_{l} S_{k}\left(a_{l}\right)+O\left(\bar{\Lambda}^{6}\right) \tag{4.7}
\end{equation*}
$$

and hence

$$
\begin{align*}
\sum_{k=1}^{N_{c}} \tilde{a}_{2}^{2}= & \sum_{k=1}^{N_{c}} a_{k}^{2}-\frac{\bar{\Lambda}^{2}}{2} \sum_{k=1}^{N_{c}} a_{k} \partial_{k} S_{k}\left(a_{k}\right)-\frac{\bar{\Lambda}^{4}}{32} \sum_{k=1}^{N_{c}} a_{k} \partial_{k}^{3} S_{k}\left(a_{k}\right)^{2} \\
& +\frac{\bar{\Lambda}^{4}}{8} \sum_{k, l=1}^{N_{c}} a_{k} \partial_{l} S_{l}\left(a_{l}\right) \partial_{k} \partial_{l} S_{k}\left(a_{k}\right)+\frac{\bar{\Lambda}^{4}}{16} \sum_{k=1}^{N_{c}}\left(\partial_{k} S_{k}\left(a_{k}\right)\right)^{2}+O\left(\bar{\Lambda}^{6}\right) \tag{4.8}
\end{align*}
$$

Next, we need a number of identities which can be established by contour integrals, in analogy with the identities in Appendix B of [6],

$$
\begin{align*}
\sum_{k=1}^{N_{c}} a_{k} \partial_{k} S_{k}\left(a_{k}\right)= & -\sum_{k=1}^{N_{c}} S_{k}\left(a_{k}\right)+\left\{a_{k} \text {-independent terms }\right\}, \\
\sum_{k=1}^{N_{c}} a_{k} \partial_{k}^{3} S_{k}\left(a_{k}\right)^{2}= & -3 \sum_{k=1}^{N_{c}} \partial_{k}^{2} S_{k}\left(a_{k}\right)^{2}, \\
\sum_{k, l} a_{k} \partial_{l} S_{l}\left(a_{l}\right) \partial_{k} \partial_{l} S_{k}\left(a_{k}\right)= & -2 \sum_{l=1}^{N_{c}}\left(\partial_{l} S_{l}\left(a_{l}\right)\right)^{2}+2 \sum_{k \neq l} \frac{S_{k}\left(a_{k}\right) S_{l}\left(a_{l}\right)}{\left(a_{k}-a_{l}\right)^{2}} \\
& -\sum_{k \neq l} S_{k}\left(a_{k}\right) \partial_{k}^{2} S_{k}\left(a_{k}\right) \tag{4.9}
\end{align*}
$$

Using (4.9) we can indeed recast $\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}$ as

$$
\begin{align*}
\sum_{k=1}^{N_{c}} \tilde{a}_{k}^{2}= & \sum_{k=1}^{N_{c}} a_{k}^{2}+\sum_{k=1}^{N_{c}} \frac{\bar{\Lambda}^{2}}{2} S_{k}\left(a_{k}\right) \\
& +\frac{\bar{\Lambda}^{4}}{4}\left(\sum_{k \neq l} \frac{S_{k}\left(a_{k}\right) S_{l}\left(a_{l}\right)}{\left(a_{k}-a_{l}\right)^{2}}+\frac{1}{4} \sum_{k=1}^{N_{c}} S_{k}\left(a_{k}\right) \partial_{k}^{2} S_{k}\left(a_{k}\right)\right) . \tag{4.10}
\end{align*}
$$

The equality of the two right-hand sides in (4.3) and (4.4) follows.

References

[1] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19, hep-th/9407087; Nucl. Phys. B 431 (1994) 484, hep-th/9408099.
[2] A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Phys. Lett. B 344 (1995) 169; P.C. Argyres and A. Faraggi, Phys. Rev. Lett. 73 (1995) 3931;
P.C. Argyres, R. Plesser and A. Shapere, Phys. Rev. Lett. 75 (1995) 1699, hep-th/9505100;
J. Minahan and D. Nemeschansky, Nucl. Phys. B 464 (1996) 3, hep-th/9507032;
U.H. Danielsson and B. Sundborg, Phys. Lett. B 358 (1995) 273, USITP-95-12, UUITP-20/95; hepth/9504102;
A. Brandhuber and K. Landsteiner, Phys. Lett. B 358 (1995) 73, hep-th/9507008;
M. Alishahiha, F. Ardalan and F. Mansouri, Phys. Lett. B (1996) 446, hep-th/9512005.
[3] A. Hanany and Y. Oz, Nucl. Phys. B 452 (1995) 73, hep-th/9505075
P.C. Argyres and A. Shapere, Nucl. Phys. B 461 (1996) 437, hep-th/9609175;
A. Hanany, Nucl, Phys. B 466 (1996) 85, hep-th/9509176.
[4] I.M. Krichever and D.H. Phong, hep-th/9604199, J. Diff. Geom. 45 (1997).
[5] R. Donagi and E. Witten, Nucl. Phys. B 461 (1996) 437, hep-th/9511101.
[6] E. D'Hoker, I.M. Krichever and D.H. Phong, hep-th/9609041; hep-th/9609145, to appear in Nucl. Phys. B.
[7] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nucl. Phys. B 459 (1996) 537, hep-th/9508155.
[8] M. Matone, Phys. Lett. B 357 (1995) 342;
G. Bonelli and M. Matone, Phys. Rev. Lett. 76 (1996) 4107; hep-th/9605090.
[9] J. Sonnenschein, S. Theisen and S. Yankielowicz, Phys. Lett. B 367 (1996) 145, hep-th/9510129; T. Eguchi and S.K. Yang, Mod. Phys. Lett. A 11 (1996) 131.
[10] I.M. Krichever, Comm. Pure Appl. Math. 47 (1994) 437.
[11] A. Gorsky, I.M. Krichever, A. Marshakov, A. Mironov and A. Morozov, Phys. Lett. B 355 (1995) 466, hep-th/9505035;
H. Itoyama and A. Morozov, hep-th/9512161, hep-th/9601 168;
A. Marshakov, Mod. Phys. Lett. A 11 (1996) 1169, hep-th/9602005;
E. Martinec and N. Warner, Nucl. Phys. B 459 (1996) 97, hep-th/9509161, hep-th/9511052;
E. Martinec, Phys. Lett. B 367 (1996) 91, hep-th/9510204;
C. Ahn and S. Nam, Phys. Lett. B 387 (1996) 6074, hep-th/9603028;
T. Nakatsu and K. Takasaki, Mod. Phys. Lett. A 11 (1996) 157, hep-th/9509162.
[12] A. Klemm, W. Lerche and S. Theisen, Int. J. Mod. Phys. A 11 (1996) 1929, hep-th/9505150;
K. Ito and S.K. Yang, hep-th/96.
[13] K. Ito and N. Sasakura, Phys. Lett. B 382 (1996) 95, SLAC-PUB-KEK-TH-470, hep-th/9602073.
[14] N. Dorey, V. Khoze and M. Mattis, Phys. Lett. B 390 (1997) 205, hep-th/9606199; Phys. Rev. D 54 (1996) 7832, hep-th/9607202;
Y. Ohta, J. Math. Phys. 37 (1996) 6074, hep-th/9604051; J. Math. Phys. 38 (1997) 682, hepth/9604059;
A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. Warner, hep-th/9604034.
[15] D. Finnell and P. Pouliot, Nucl. Phys. B 453 (1995) 225;
A. Yung, Nucl. Phys. B 485 (1997) 38, hep-th/9605096;
F. Fucito and G. Travaglini, hep-th/9605215.
[16] T. Harano and M. Sato, Nucl. Phys. B 484 (1997) 167, hep-th/9608060.
[17] J. Minahan and D. Nemeschansky, Nucl. Phys. B 468 (1996) 72, hep-th/9601059.

[^0]: * Research supported in part by the National Science Foundation under grants PHY-95-31023 and DMS-9505399.
 ${ }^{1}$ E-mail: dhoker@physics.ucla.edu
 ${ }^{2}$ E-mail: krichev@math.columbia.edu
 ${ }^{3}$ E-mail: phong@math.columbia.edu

