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Abstract 

We calculate the effective prepotentials for N = 2 supersymmetric SO(No) and Sp(Nc) gauge 
theories, with an arbitrary number of hypermultiplets in the defining representation, from restric- 
tions of the prepotentials for suitable N = 2 supersymmetric gauge theories with unitary gauge 
groups. (This extends previous work in which the prepotential for N = 2 supersymmetric SU(N~) 
gauge theories was evaluated from the exact solution constructed out of spectral curves.) The pre- 
potentials have to all orders the logarithmic singularities of the one-loop perturbative corrections, 
as expected from non-renormalization theorems. We evaluate explicitly the contributions of 1- and 
2-instanton processes. (~ 1997 Elsevier Science B.V. 

1. Introduction 

Powerful techniques are now available for the evaluation of  the effective prepotential 

of  N = 2 supersymmetric Yang-Mills theories in their Abelian Coulomb phase (where 

the gauge group is broken down to an Abelian subgroup). The effective prepotential, as 

well as the masses of  the BPS states, are determined from a spectral curve, together with 

a meromorphic 1-form dA, both of  which are parametrized by the vacuum expectation 
values of  the scalar fields (also called order parameters), The original developments 
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for an SU(2) gauge group are in Ref. [ 1], the spectral curve and meromorphic 1- 
form were determined for other gauge groups in Refs. [2-5] ,  and the effect of Nf 

hypermultiplets in the fundamental representation were also included for SU(Nc) gauge 
groups in Refs. [6,7]. 

In a recent paper [ 8], we developed methods for determining the prepotential from 

the spectral curves for an arbitrary SU(Nc) gauge group and arbitrary numbers of hy- 

permultiplets Nf  < 2No, in the regime where the renormalization scale /i is small. We 

explicitly calculated the full expansion of the renormalized order parameters (obtained 

from the A-periods of  d,~) using the method of residues, and provided a simple and sys- 
tematic algorithm for the evaluation of the renormalized dual order parameters (obtained 

from the B-periods of  d,~). Using these methods, we confirmed N = 2 supersymmetry 
non-renormalization theorems and worked out explicitly the perturbative corrections as 

well as the l- and 2-instanton contributions to the effective potential. These results were 

found to agree with those of Ref. [1] for SU(2),  with those of Ref. [9] for SU(3),  

as well as with direct field theory calculations in Ref. [10] for SU(2) with Nf  < 4 
hypermultiplets in the fundamental representation and in Ref. [11] for SU(Nc) with 

Nf  = 0, both to 1-instanton order. We also showed that the different models [6,7,12] 
for the spectral curves that were proposed for the cases Nf ~> Arc ÷ 2 all give rise to the 

same effective prepotential. 

In the present paper, we extend the above results to the cases of all classical groups, 
including SO(N~) and Sp(N~), with any number of hypermultiplets so as to keep the 

theory asymptotically free. We make use of the fact that the spectral curves associated 

with the classical groups SO(Nc) and Sp(Nc) are hyperelliptic, and may be viewed 
as restrictions of the spectral curves for SU(N~). 4 Analogously, we show that the 

homology cycles, the meromorphic 1-form, and thus the entire effective prepotential 

may be obtained by simple restriction from the unitary case. These results imply that, to 

all orders in the instanton expansion, all logarithmic singularities of the prepotential are 
just those of one-loop perturbation theory, thereby confirming the N = 2 supersymmetry 

non-renormalization theorems. Also, they show that the prepotential is unchanged under 
analytic redefinitions of the classical order parameters, just as we showed for the case 

of SU(Nc) in Ref. [8]. 
For the gauge groups SO(Nc) and Sp(Nc), we shall work out explicitly the pertur- 

bative corrections as well as the contributions of 1- and 2-instanton processes to the 
prepotential and arbitrary numbers of hypermultiplets in the defining representation of 
the color group (see however footnote 4), with the restriction that the theory remains 
asymptotically free. 

4For the gauge group Sp(Nc), the identification of its spectral curve with a restriction of a curve for a 
unitary group appears possible only when there is at least one exactly massless hypermnltiplet in the defining 
representation of Sp (Nc). As we shall see, this condition appears in our work for purely technical reasons; it 
is unclear to us at this point whether it is in any way fundamental. 
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2. Spectral curves, 1-forms and homology cycles 

213 

We consider N = 2 supersymmetric gauge theories with the classical gauge groups 
SU(r  + 1), SO(2r + 1), Sp(2r)  and SO(2r) ,  which are all of rank r, and numbers 
of colors Nc = r ÷ 1, 2r + 1, 2r and 2r, respectively. We also assume that there are 
Nf hypermultiplets, transforming under the defining representation of the gauge group, 
of dimension No and with bare masses m j, j = 1 . . . . .  Nf. The N = 2 chiral multiplet 
contains a complex scalar field q~ in the adjoint representation of the gauge group. 
The fiat directions in the potential correspond to [~b, ~bt ] = 0, so that the classical 

moduli space of vacua is r-dimensional, and can be parametrized by the eigenvalues 

ak, k = 1 . . . . .  r of ~b, in the following way: 

S U ( r +  1) ~b = d i a g o n a l  [ a l  . . . . .  ar, fr+l], al ÷ . . . ÷ f r ÷ C l r + l  = 0 ,  

SO(2r + 1) ~b =diagonal [.ml . . . . .  .mr,Ol, 

Sp(2r)  ~b =diagonal [al, - a l  . . . . .  ar, --air], 

( O a k )  (2.1) SO(2r)  ~b = diagonal [ .A 1 . . . . .  .mr] , . ink= - -ak  0 " 

For generic ak, the gauge symmetry is broken down to U(1) r and the dynamics of 
the theory is that of an Abelian Coulomb phase. The Wilson effective Lagrangian of 
the quantum theory to leading order in the low momentum expansion in the Abelian 
Coulomb phase is of the form (in N = 1 superfield notation) 

£ = Im4~  [ /c t ' 4  ^ 0 f ' ( a )  " : - r 0 ~ A  ~ ÷ -~lfdzoaZ'r(a)wkw~]OakcgA t j , (2.2) 

where the Ak's are N = 1 chiral superfields whose scalar components correspond to the 
fg's at the classical level, and .T" is the holomorphie prepotential. 

The Seiberg-Witten ansatz for the effective prepotential 5 r is based on the choice of 
a fibration of spectral curves over the space of vacua, and a meromorphic 1-form dA 
over each of these curves. The renormalized order parameters ak of the theory, their 

duals ao,k, and the prepotential U are then given by 

2~iak = dA, 27riaD,k = dA, aD,k = ~a~ (2.3) 

Ak Bk 

with Ak, Bk a suitable set of homology cycles on the spectral curves. 
For SU(Nc) gauge theories, with Nf < 2Nc hypermultiplets in the defining repre- 

sentation of the gauge group, general arguments based on the holomorphicity of ~', 
perturbative non-renormalization beyond l-loop order, the nature of instanton correc- 
tions and the restrictions of U( 1 ) R invariance, suggest that 9 r should have the following 
form: 5 

5 We shall omit contributions to 5 t" that are of the form of a A-independent constant times the classical 
prepotential ~-~k a~ throughout this paper. 
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5rSU(N.):N: (al . . . .  aN~; ml . . . . .  mN:; A) 

= - ( a t  - at) 2 log (at - al) 2 
87ri \k,l=l A2 

u: ~: + mj)2 ~ 
 ¢at + mj) log ¢at 

O 0  

(d) 
+ Z "~'SU(N~);Nf (al . . . . .  au¢; ml . . . . .  mN:; A). 

d=l 

(2.4) 

The terms on the right-hand side are respectively the contribution of perturbative one- 
loop effects (higher loops do not contribute in view of non-renormalization theorems), 
and the contributions of d-instanton processes. The results for d = 1 and d = 2 were 
computed explicitly in Ref. [ 8], and we shall record them here for later reference, 

N~ 
.T.(I)= 1 A2N_N: ~-~ Sk(at) ' 

8~i 
k=l 

5r(2) = 327ril A2(2Nc_ND [ k ~  t Sk(ak)Sl(al)(ak -- at) 2 1 ~v~ a2Sk(x) x=ak] 
+ -~ y : S t ( a t )  ax--------T--- , 

k=l 

(2.5) 

where the fundamental function Sk(x) is defined by 

1-/jN~ (x + mj) 
&(x) I_ii÷k ( x _ at)2. (2.6) 

By construction, these contributions to 5 r are invariant under the group of permutations 

of the variables at, i.e. under the Weyl group of SU(Nc). It is of course possible, though 
in general cumbersome, to re-express these results in terms of symmetric polynomials 

in the variables ak. 

2.1. Spectral curves and associated meromorphic 1-form 

The spectral curves for the classical gauge groups were derived in Ref. [ 1] for 
SU(2), in Refs. [2,6,7,12] for general SU(Nc), in Refs. [4,12] for SO(2r + 1) in 
Refs. [5,12] for SO(2r) ,  and in Ref. [ 12] for Sp(2r).  All these curves are hyperelliptic. 
In some cases, different curves have been proposed for the same gauge group and the 
same hypermultiplet contents. For example, in the case of SU(Nc) gauge group and 
Nf > N¢ + 1 hypermultiplets, the curves proposed in Refs. [6,7,12] are all different. 
However, we have shown in Ref. [8], by general arguments and confirmed by explicit 
calculations up to 2-instanton processes, that the corresponding effective prepotentials 
are the same for each of these different models of curves. This equivalence results from 
the fact that the effective prepotential is unchanged under analytic reparametrizations 
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of the classical order parameters. Also, we note that for non-simply laced groups, like 

Sp(2r) ,  non-hyperelliptic curves were proposed in Ref. [3]. 

For all N = 2 supersymmetric gauge theories based on classical groups, and with Nf 
hypermultiplets in the defining representation of the gauge group, hyperelliptic spectral 

curves with associated meromorphic 1-forms have been proposed as follows: 

y2 = A2(x) _ B(x),  

dA=X dx (A'  I AB'~ 
y - 2 B ,}"  (2.7) 

Here, A(x) and B(x) are polynomials in x, whose coefficients vary with the physical 

parameters of the theory, and are given by 

r+l Nf 

S U ( r +  1) A ( x ) = H ( x  - gtk), B(x) =A2r+2-N'II(x+mj),  
k=l j--I 

r Nf 
SO(2r  + 1) a ( x ) = H ( x Z - ~ t ~ ) ,  B(x) =A4r-2N'-2x21-'~(x2--m2), 

k=l j--I 

r 

Sp(2r)  A(x) = x 2 I I ( x  2 - ?t 2) + Ao, 
k=l 

ul 

n (  x ) = a 4r-2u;+4 I I ( x  2 - 

j=l 

r NI 

S O ( 2 r )  a ( x ) = X - I ( x 2 - g l 2 ) ,  B ( x ) = a 4 r - 2 N ' - 4 x 4 I I ( x 2 - m 2 ) ,  

k=l j=l 

(2.8) 

h2r-Ns+2 1--[Nf where A0 = ~ l.j=l mj- 

Note that the differential d,~ only depends upon the ratio B (x)/A (x)2, so that simul- 
taneous rescaling of A(x) by a function f ( x )  and B(x) by the function f ( x )  2 leaves 

the variables ak and ao,k, and hence the effective prepotential 3 r invariant. 

2.2. The case of Sp(NJ gauge theories 

It is apparent from the form of the functions A(x) above that the case of Sp(Nc) 
gauge group is special: there appears an extra constant A0 that was not present for the 
other classical groups. The methods that we shall present do not seem to extend easily 
to the case when A0 4= 0, because there is no natural map onto the curve for unitary 
groups. Thus, in this paper, we shall restrict analysis to the case where at least one of 
the hypermultiplets of the Sp(Arc) supersymmetric gauge theory has exactly zero mass. 
We shall denote this restricted case by Sp(Nc) ' .  Under this assumption, A0 = 0 and 
using the rescaling property of the prepotential explained in the previous paragraph, we 
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find that the curve for Sp(Nc) I, i.e. Sp(Nc) with at least one hypermultiplet of  exactly 
zero mass is given by 

r 

Sp(2r)  ~ A(x )  =xl-X(x2 _ at),-2 
k=l 

NI--1 

( m N f  = O) n ( x )  = a 4r-2Nf+4 ~ I  (x2  - m2)" ( 2 . 9 )  

.i=1 

Henceforth, we shall specialize to this case for the gauge group Sp(Nc). 

Actually, we further notice that when two hypermultiplets are exactly massless, the 

rescaled curves for Sp(Nc) gauge groups admit an even simpler form, which we shall 

record here. We denote this case by Sp(Nc)".  

r 

Sp(2r ) "  a < x )  = ] - I ( x  2 - ~ ) ,  
k=l 

NI-2 
(mul- I  = mNi = O) B (x )  = a 4r-2Nl+4 1-[ (x2 - m2)" (2.10) 

j=l 

These curves have the same genera as the ones for the SO(Nc) gauge groups, and their 

treatment will be carried out completely in parallel to that of the orthogonal groups. 

2.3. Homology cycles 

The hyperelliptic curves for SO(2r + 1), Sp(2 r ) "  and SO(2r) all have genus 2 r -  1. 

To each classical root ilk, k 1 . . . . .  r, there correspond two branch points + which = X k , 

define a quadratic branch cut and an associated homology cycle At surrounding the cut 
joining the two branch points. (Due to Z2 symmetry of the curves, under which x -~ - x ,  

there correspond to the negative roots - a t ,  k = 1 . . . . .  r, two negative branch points 
~= which define a quadratic branch cut and an associated homology cycle A~.) For --X k , 

the Bk cycle, we choose the cycle going from - x ~  to x~- in the first sheet, completed 

by its counterpart in the second sheet. We note that # (Ak f~ At) = # (Bk N Bt) = O, 
# (Ak N Bt) = ~kt, although Bk intersects also A~. The cycles Ak and Bk thus defined 
are the ones we shall take for the Seiberg-Witten ansatz (2.3). 

Taking into account the fact that the differential d,~ is itself odd under the Z2 sym- 
metry, under which x ~ - x ,  the normalized periods of the differential d~ obtained in 
this way are 

x~ x~- l /  
at  = dA, a n , k  = _ _  d a ,  k =  1 . . . . .  r. (2.11) 

7"gl 
X k - - X  k 

This normalization is clearly in agreement with the classical limit, where A ~ 0, and 

ok ~ ~k. 
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3. Restricting prepotentials for unitary gauge groups 
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From the form of the curves for the different gauge groups in (2.7) and (2.8) and 
restrictions with massless hypermultiplets for the symplectic groups in (2.9) and (2.10), 

we see that the curves for the orthogonal and symplectic gauge groups can be viewed 
as natural restrictions of the curves for unitary groups. The precise correspondences are 

as follows. 
The curves for SO(2r + 1), Sp(2r )"  and SO(2r)  can be obtained from those 

of SU(2r) ,  where the 2r classical order parameters of SU(2r) are chosen to be 

a l  . . . . .  a r , - - a l  . . . . .  - - a r .  As a result of Z2 symmetry, the quantum order parameters 
ak then also come in pairs of opposites: al . . . . .  a r , - a l  . . . . .  - a r .  The correspondences 

of the number of hypermultiplets, Nf ,  in these theories and their masses is slightly more 

involved. For orthogonal groups, the presence of a power of x 2 for SO(2r + 1), and a 

factor of x 4 for SO(2r)  in the function B ( x )  in (2.8), forces us to make identifications 

with unitary groups with 2 N f  + 2 and 2 N f  + 4 hypermultiplets of SU(2r)  respectively. 

For symplectic groups with at least two massless hypermultiplets, i.e. the case Sp(2r)" ,  

the correspondence is with a theory of 2Ny - 4 hypermultiplets in SU(2r) .  
The curves for Sp(2r)  without massless hypermultiplets (this includes the case with 

no hypermultiplets at all) can be obtained from those of S U ( 2 r + 2 ) ,  where the classical 

order parameters of SU(2r + 2) are chosen to be 0, 0, al . . . . .  a t ,  - f l  . . . . .  - f ir ,  and the 
number of SU(2r + 2) hypermultiplets is 2Nf .  The appearance of the double zero 
at f = 0 implies that the corresponding SU(2r + 2) theory has an unbroken SU(2) 

invariance and is not in the Abelian Coulomb phase at the classical level. The expansion 

methods developed in Ref. [8] for the effective prepotentiai do not apply to this case, 

and we shall not consider it again in this paper. 

3.1. Restriction o f  the quantum order parameters at and ao,t 

Given the above restrictions of the curves of unitary gauge groups to SO(Nc) and 

Sp(Nc),  and the fact that the functional form of the meromorphic 1-form is the same 
for the various groups, we obtain the following relations between the quantum order 

parameters ak and ao,k. For maximum clarity, we make all dependences completely 
explicit, and we let the range of k and l be 1 ~< k , l  <~ r. For SO(2r + 1), we have 

aklSO(2r+l);Ni( al; ml . . . . .  mNi; A) 

= aklSU(2r)(at, - a t ;  ml . . . . .  m/v I, - m l  . . . . .  -mN l , 0, 0; A), 

aD,klso(2r+l );Ns ( gtl; ml . . . . .  mlvj; A)  

= aO,k[su(2r) ( f l ,  --fl;  ml . . . . .  mN I, --ml . . . . .  --mAr I , O, 0; A) 

-- ao,t+r ISU(2r) (at, --ft; ml . . . . .  m~v I, - m l  . . . . .  - m N  I,  0, O; A). (3.1) 

For Sp(2r )" ,  we have 

aklsp(2r);Nf ( f l ;  mi . . . . .  mNI--2, O, O; A) 
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= aklsu(2r) (az, -a t ;  ml . . . . .  m s f - 2 ,  - m l  . . . . .  --mu:_2; A) ,  

aD.klSp(2r);N: ( al; ml . . . . .  mN :-2,  O, 0; A) 

= aD,klSU(ar) (aZ, --aZ; ml . . . . .  ms: -2 ,  --ml . . . . .  --mNy_2; A) 

- aD,k+rlsu(ar) (at, --at; mj . . . . .  m s : - 2 ,  --ml . . . . .  --mN±-2; A) .  (3.2) 

For S O ( 2 r ) ,  we obtain 

aklso(2r):ur (a: ml . . . . .  mN:; A) 

= aklsu(zr) ( f l ,  - a t ;  ml . . . . .  ms : ,  - m l  . . . . .  - m N  I,  0, 0, 0, 0; A),  

ao,k[soc2~);N: (fit; ml . . . . .  mN:; A) 

= aD,k]SV(2~) (at ,  --at; ml . . . . .  mNr, --ml . . . . .  --mlv:, 0, 0, 0, 0; A) 

--aD,k+rlsU(2r)(al,--al;m| . . . . .  mlv:,--ml . . . . .  - -mNf,O,O,O,O;A).  (3.3) 

In Ref. [8] ,  an exact formula was derived for the relation between the quantum 
order parameters ak as a function of  the classical order parameters ak for gauge group 
SU(N¢) .  Using the above identifications, we easily extend these exact results to the case 
of  SO(Nc)  and Sp(N~) gauge groups. The result is given in the form of  infinite power 

series expansions in the renormalization scale A, 

ak = ak + 22re(m!)2 -~k(x) m (3.4) 
m=l x=?Ik 

with the following results: 

S U ( r +  1) 

SO(2 r  q- 1) 

Nf 

1t a r + l - N f / 2  - -  r i  ( ) 1 - i (  = , Z k ( X )  = X -t- m j  X --  a l )  - 2 ,  

j=l l ~ k  

= A2r - 1 - N f ,  

Nf 
- # )  

j=l l ~ k 

S p ( 2 r ) "  A = A 2r+2-Nf,  

Nf 

j=l l ~ k  

S O ( 2 r )  A = A 2r-2-~I,  

Nf 
" - ~ k ( X ) . ~ X 4 ( X  + a k ) - 2 H ( x 2 - - m ~ )  H ( x  2 a2) -2 - i • ( 3 . 5 )  

j=l l * k 

In the above expressions, the range of  k is just over the independent variables, and is 
thus restricted to k = I . . . . .  r. 
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3.2. The  e f fec t ive  p r e p o t e n t i a l  
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Since the renormalized order parameters ak and ao,k for SO(No) and Sp(Nc) gauge 
groups may both be obtained as restrictions from the unitary case, it is natural to expect 
that also the effective prepotential may be viewed as such a restriction. The restriction 

rules for the prepotential turn out to be particularly simple in view of the fact that the 

differences ao,k -- aD,k+r are naturally produced by a straightforward restriction of the 

• ~"SU(2r) t o  the Z2 symmetric arrangements for the gauge groups SO(Nc) and Sp(Nc). 
As a result, we readily deduce the correct prepotentials for the orthogonal and symplectic 

groups. For SO(2r  + 1), we have 

~ ' S O ( 2 r + l ) ; N : ( a l  . . . . .  ar; ml . . . . .  mN:; A )  

= .T'SU(2r);2N/+2(al . . . . .  ar, - -a l  . . . . .  --ar; ml  . . . . .  m N : , - - m l ,  

. . . .  - - toNi ,  O, 0; A), 

for Sp(2r) ,  with at least two massless hypermultiplets, i.e. the case Sp(2r)" ,  we have 

~'Sp(2r);N: ( al . . . . .  ar; ml  . . . . .  m N i _ 2 ,  O, 0; A) 

= a~SU(2r ) ;2N: - - 4 ( C t l  . . . . .  ar, - -al  . . . . .  --ar; ml . . . . .  m lv : -2 ,  - - m l ,  

. . . .  - - m N : _ 2 ; A )  

and, finally, for SO(2r) ,  we have 

• TSO(2r);N/(al . . . . .  ar; ml  . . . . .  mN:; A )  

= fSt3(2r);2N/+4(al . . . . .  ar, - -a l  . . . . .  --ar; ml . . . . .  mN:,  - - m l ,  

. . . .  - - m N : , O , O , O , O ; A ) .  

From the above restriction rules, it follows that for each of the gauge groups, the 

prepotential may be decomposed in a sum over the number of instantons contributing to 

the process, just as was the case for unitary gauge groups in (2.3). We shall denote by 
~-(d) the contribution arising from d-instanton processes, and, for d 7> 1, these functions 
depend on A through a factor of fi,2d where ¢i was defined for each group in (3.5). The 

contribution from zero instantons, i.e. classical plus perturbative corrections, is denoted 
by .Y "(°). Using the results from Ref. [8], and the above restriction rules, we now have 
the following results for the effective prepotential. 

The perturbative contributions ,y(0) are given as follows. For gauge groups G = 
SO(2r-4- 1), Sp(2r)  with at least two massless hypermultiplets, i.e. the case Sp(2r)" ,  
and SO(2r)  we have the following formula: 

i br6;N: (fit; mn . . . . .  raN:; A )  = ~ (a~ + ea t )  2 log (ak  + ea t )  2 
[,  k ~ l  ~=q-I A2 
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~ 2 a2 ~ - ~  
I 2  - 
k=l k=l .j=l e=-4-1 

(ak q- emj)  2 [ 
+ emj) 2 log A2 f , (3.6) 

where the constant ( takes on the values ( = 2, 4 and 0 for G = S O ( 2 r +  1), 
Sp(2r)" (Sp(2r) with at least two massless hypermultiplets), and SO(2r), respectively. 
We readily recognize these numbers from the structure of the corresponding Dynkin 
diagrams. 

The 1-instanton contributions are also readily deduced from the results of Ref. [8], 
combined with the restriction rules above. The results are most easily cast in terms of 
the parameters A and the functions Xk(x) defined for each group gauge group G = 
SO(2r+  1), Sp(2r)" (Sp(2r) with at least two massless hypermultiplets), and SO(2r) 
as in (3.5), but with the classical order parameters ak replaced by their renormalized 
counterparts ak, 

Nf 

SU(r + 1) fl=A r+I-Nd2, .Sk(x) =I-[(x +mj) ~ ( x - a t )  -2, 
j=l I --k k 

SO(2r + 1) A=A 2~-~-Nr, 
NI 

= 2(x II(x -a   
j=l 14~k 

Sp(2r)"  A = A 2r+2-Nf, 

NI 

V~k(X) = (X + ak)-2 I I (  x2 -- m2) I'I(x2 --  a 2 )  - 2 , 1  

j=l 14~k 

SO(2r) A = A 2r-2-N;, 

us 
~'k(X) = X 4 ( X  + a k ) - 2 I I ( x  2 -  m~) l-I(x 2 -a2) -2 

j=l l --k k 
(3.7) 

Then we have 

r 

7r(" =O;N, 417riA-2Z2:k(ag)" 
k=l 

(3.8) 

(Note: this formula does not apply to SU(Nc) as written, and would require an extra 
factor of 1.) 

Similarly, the 2-instanton contributions may also be worked out, and we have 

° ; te l -  16~ri 
~k( ak ),Xl( al) 
( ak + eal) 2 

r 2 l x - ~  , ,0  ~k(x)[ ] 
(3.9) 
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4. Special cases and discussion 

We compare briefly now our results with various special cases discussed in the 

literature either directly from the quantum field theory point  of  view, using instanton 

calculations or from the Seiberg-Wit ten type approach. 

The literature on the effective prepotential for S O ( N )  and S p ( N )  gauge groups is not 

nearly as extensive as that for S U ( N ) .  In Ref. [ 16], Ito and Sasakura evaluate the prepo- 

tential, up to 1-instanton order, from both instanton calculations and the Seiberg-Wit ten 

approach in the case of  pure N = 2 supersymmetric Yang-Mil ls  (no hypermult iplets) .  

Using instanton calculations, they propose a formula for the l- instanton correction b r( l~ 

for any simple Lie group. Using the Seiberg-Wit ten approach, they derive explicit ly 

P icard-Fuchs  equations in the case of  rank ~< 3, and rely on the scaling equations of  

Ref. [ 17]. For S O ( 2 r +  1 ) and S O ( 2 r )  gauge groups, our results for b r~l~ do specialize 

to theirs i f  we set N f  to be 0. For S p ( 2 r ) ,  it is of  course not possible at the present t ime 

to compare the two results, since in the case they consider, there are no hypermultiplets,  

while in ours, we require at least two massless ones, It is however intriguing that there 

is no obvious way of  interpolating between the two types of  expressions that have been 

put forth. 

A few days ago, another preprint [ 18] appeared, which also deals with the Seiberg-  

Witten approach for classical gauge groups, up to 1-instanton order. 
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