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Abstract

Functional relation for commuting quantum transfer matrices of quantum integrable models is

identified with classical Hirota’s bilinear difference equation. This equation is equivalent to the

completely discretized classical 2D Toda lattice with open boundaries. The standard objects of

quantum integrable models are identified with elements of classical nonlinear integrable difference

equation. In particular, elliptic solutions of Hirota’s equation give complete set of eigenvalues of the

quantum transfer matrices. Eigenvalues of Baxter’s Q-operator are solutions to the auxiliary linear

problems for classical Hirota’s equation. The elliptic solutions relevant to Bethe ansatz are studied.

The nested Bethe ansatz equations for Ak−1-type models appear as discrete time equations of motions

for zeros of classical τ -functions and Baker-Akhiezer functions. Determinant representations of the

general solution to bilinear discrete Hirota’s equation and a new determinant formula for eigenvalues

of the quantum transfer matrices are obtained.
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1 Introduction

In spite of the diversity of solvable models of quantum field theory and the vast variety of methods, the
final results display dramatic unification: the spectrum of an integrable theory with a local interaction
is given by a sum of elementary energies

E =
∑

i

ε(ui) , (1.1)

where ui obey a system of algebraic or transcendental equations known as Bethe equations [1], [2]. The
major ingredients of Bethe equations are determined by the algebraic structure of the problem. A typical
example of a system of Bethe equations (related to A1-type models with elliptic R-matrix) is

e−4ην φ(uj)

φ(uj − 2)
= −

∏

k

σ(η(uj − uk + 2))

σ(η(uj − uk − 2))
, (1.2)

where σ(x) is the Weierstrass σ-function and

φ(u) =

N
∏

k=1

σ(η(u − yk)) . (1.3)

Entries of these equations which encode information of the model are the function ε(u) (entering through
φ(u)), quasiperiods ω1, ω2 of the σ-function, parameters η, ν, yk and size of the system N .

Different solutions of the Bethe equations correspond to different quantum states of the model.

In this paper we show that these equations, which are usually considered as a tool inherent to the
quantum integrability, arise naturally as a result of the solution of entirely classical non-linear discrete
time integrable equations. This suggests an intriguing interrelation (if not equivalence) between integrable
quantum field theories and classical soliton equations in discrete time. In forthcoming papers we will
show that the Bethe equations themselves may be considered as a discrete integrable dynamical system.

In 1981 Hirota [3] proposed a difference equation which unifies the majority of known continuous
soliton equations, including their hierarchies [4].

A particular case of the Hirota equation is a bilinear difference equation for a function τ(n, l,m) of
three discrete variables:

ατ(n, l+1,m)τ(n, l,m+1)+βτ(n, l,m)τ(n, l+1,m+1)+γτ(n+1, l+1,m)τ(n−1, l,m+1) = 0 , (1.4)

where it is assumed that α + β + γ = 0. Different continuum limits at different boundary conditions
then reproduce continuous soliton equations (KP, Toda lattice, etc). On the other hand, τ(n, l,m) can
be identified [4] with the τ -function of a continuous hierarchy expressed through special independent
variables.

The same equation (with a particular boundary condition) has quite unexpectedly appeared in the
theory of quantum integrable systems as a fusion relation for the transfer matrix (trace of the quantum
monodromy matrix).

The transfer matrix is one of the key objects in the theory of quantum integrable systems [5]. Transfer
matrices form a commutative family of operators acting in the Hilbert space of a quantum problem. Let
Ri,A(u) be the R-matrix acting in the tensor product of Hilbert spaces Vi⊗VA. Then the transfer matrix
is a trace over the auxiliary space VA of the monodromy matrix. The latter being, the matrix product
of N R-matrices with a common auxiliary space:

T̂A(u|yi) = RN,A(u− yN ) . . . R2,A(u− y2)R1,A(u− y1) ,

TA(u) = trAT̂A(u|yi) . (1.5)

The transfer matrices commute for all values of the spectral parameter u and different auxiliary spaces:

[TA(u), TA′(u′)] = 0. (1.6)
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They can be diagonalized simultaneously. The family of eigenvalues of the transfer matrix is an object of
primary interest in an integrable system, since the spectrum of the quantum problem can be expressed
in terms of eigenvalues of the transfer matrix.

The transfer matrix corresponding to a given representation in the auxiliary space can be constructed
out of transfer matrices for some elementary space by means of the fusion procedure [6], [7], [8]. The
fusion procedure is based on the fact that at certain values of the spectral parameter u the R-matrix
becomes essentially a projector onto an irreducible representation space. The fusion rules are especially
simple in the A1-case. For example, the R1,1(u)-matrix for two spin-1/2 representations in a certain
normalization of the spectral parameter is proportional to the projector onto the singlet (spin-0 state)
at u = +2 and onto the triplet (spin-1 subspace) at u = −2, in accordance with the decomposition
[1/2]+ [1/2] = [0]+ [1]. Then the transfer matrix T 1

2 (u) with spin-1 auxiliary space is obtained from the
product of two spin-1/2 monodromy matrices T̂ 1

1 (u) with arguments shifted by 2:

T 1
2 (u) = tr[1]

(

R1,1(−2)T̂ 1
1 (u + 1)T̂ 1

1 (u− 1)R1,1(−2)
)

.

A combination of the fusion procedure and the Yang-Baxter equation results in numerous functional
relations (fusion rules) for the transfer matrix [6], [9]. They were recently combined into a universal
bilinear form [10], [11]. The bilinear functional relations have the most simple closed form for the
models of the Ak−1-series and representations corresponding to rectangular Young diagrams.

Let T a
s (u) be the transfer matrix for the rectangular Young diagram of length a and height s. If η

can not be represented in the form η = r1ω1 + r2ω2 with rational r1, r2 (below we always assume that
this is the case; for models with trigonometric R-matrices this means that the quantum deformation
parameter q would not be a root of unity), they obey the following bilinear functional relation:

T a
s (u+ 1)T a

s (u− 1) − T a
s+1(u)T

a
s−1(u) = T a+1

s (u)T a−1
s (u) . (1.7)

Since T a
s (u) commute at different u, a, s,, the same equation holds for eigenvalues of the transfer

matrices, so we can (and will) treat T a
s (u) in eq. (1.7) as number-valued functions. The bilinear fusion

relations for models related to other Dynkin graphs were suggested in ref. [11].

Remarkably, the bilinear fusion relations (1.7) appear to be identical to the Hirota equation (1.4).
Indeed, one can eliminate the constants α, β, γ by the transformation

τ(n, l,m) =
(−α/γ)n2/2

(1 + γ/α)lm
τn(l,m),

so that

τn(l + 1,m)τn(l,m+ 1) − τn(l,m)τn(l + 1,m+ 1) + τn+1(l + 1,m)τn−1(l,m+ 1) = 0 (1.8)

and then change variables from light-cone coordinates n, l,m to the ”direct” variables

a = n, s = l +m, u = l −m− n,

τn(l,m) ≡ T a
l+m(l −m− n). (1.9)

At least at a formal level, this transformation provides the equivalence between eqs. (1.7), (1.4) and
(1.8). In what follows we call eq. (1.8) (or (1.7)) Hirota’s bilinear difference equation (HBDE).

Leaving aside more fundamental aspects of this ”coincidence”, we exploit, as a first step, some
technical advantages it offers. Specifically, we treat the functional relation (1.7) not as an identity but as
a fundamental equation which (together with particular boundary and analytical conditions) completely
determines all the eigenvalues of the transfer matrix. The solution to HBDE then appears in the form
of the Bethe equations. We anticipate that this approach makes it possible to use some specific tools of
classical integrability and, in particular, the finite gap integration technique.

The origin of T a
s (u) as an eigenvalue of the transfer matrix (1.5) imposes specific boundary conditions

and, what is perhaps even more important, requires certain analytic properties of the solutions. As a
general consequence of the Yang-Baxter equation, the transfer matrices may always be normalized to
be elliptic polynomials in the spectral parameter, i.e. finite products of Weierstrass σ-functions (as in
(1.3)). The problem therefore is stated as of finding elliptic solutions of HBDE.
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A similar problem appeared in the theory of continuous soliton equations since the works [12], [13],
wherein a remarkable connection between motion of poles of the elliptic solutions to the KdV equation
and the Calogero-Moser dynamical system was revealed. Elliptic solutions to Kadomtsev-Petviashvili
(KP), matrix KP equations and the matrix 2D Toda lattice (2DTL) were analyzed in the Refs. [14],
[15], [16], respectively. It was shown, in particular, that poles of elliptic solutions to the abelian 2DTL
(i.e. zeros of corresponding τ -functions and Baker-Akhiezer functions) move according to the equations
of motion for the Ruijsenaars-Schneider (RS) system of particles [17].

Analytic properties of solutions to HBDE relevant to the Bethe ansatz suggest a similar interpretation
of Bethe ansatz equations. We will show that the nested Bethe ansatz for Ak−1-type models is equivalent
to a chain of Bäcklund transformations of HBDE. The nested Bethe ansatz equations arise as equations
of motion for zeros of the Baker-Akhiezer functions in discrete time (discrete time RS system 1). The
discrete time variable is identified with level of the nested Bethe ansatz.

The paper is organized as follows. In Sect. 2 we review general properties and boundary conditions
of solutions to HBDE that yield eigenvalues of quantum transfer matrices. In Sect. 3 the zero curvature
representation of HBDE and the auxiliary linear problems are presented. We also discuss the duality re-
lation between ”wave functions” and ”potentials” and define Bäcklund flows on the set of wave functions.
These flows are important ingredients of the nested Bethe ansatz scheme. For illustrative purposes, in
Sect. 4, we give a self-contained treatment of the A1-case, where major part of the construction contains
familiar objects from the usual Bethe ansatz. Sect. 5 is devoted to the general Ak−1-case. We give a
general solution to HBDE with the required boundary conditions. This leads to a new type of determi-
nant formulas for eigenvalues of quantum transfer matrices. The explicit form of generalized Baxter’s
relations (difference equations for Qt(u)) is presented. They are used for examining the equivalence to
the standard Bethe ansatz results. In Sect. 6 a part of the general theory of elliptic solutions to HBDE
is given. Sect. 7 contains a discussion of the results.

2 General properties of solutions to Hirota’s equation relevant

to Bethe ansatz

2.1 Boundary conditions and analytic properties

HBDE has many different solutions. Not all of them give eigenvalues of the transfer matrix (1.5). There
are certain boundary and analytic conditions imposed on the transfer matrix (1.5).

(i) It is known that T k
s (u), the transfer matrix in the most antisymmetrical representation in the

auxiliary space, is a scalar, i.e. it has only one eigenvalue (sometimes called quantum determinant
detq T̂s(u) of the monodromy matrix). It depends on the representation in the quantum space of the
model and is known explicitly. In the simplest case of the vector representation (one-box Young diagram)
in the quantum space it is [19]:

T k
s (u) = φ(u− s− k)

k−1
∏

l=0

s−1
∏

p=1

φ(u + s+ k − 2l− 2p− 2)
k−1
∏

l=1

φ(u + s+ k − 2l), (2.1)

T 0
s (u) = 1. (2.2)

These values of T 0
s (u) and T k

s (u) should be considered as boundary conditions. Let us note that they
obey the discrete Laplace equation:

T k
s (u + 1)T k

s (u − 1) = T k
s+1(u)T

k
s−1(u). (2.3)

This leads to the boundary condition (b.c.)

T a
s (u) = 0 as a < 0 and a > k (2.4)

1It should be noted that equations of motion for the discrete time RS system were already written down in the paper
[18]. However, the relation to elliptic solutions of discrete soliton equations and their nested Bethe ansatz interpretation
were not discussed there.
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(with this b.c. eq. (1.8) is known as the discrete two-dimensional Toda molecule equation [20], an
integrable discretization of the conformal Toda field theory [21]).

(ii) The second important condition (which follows, eventually, from the Yang-Baxter equation) is
that T a

s (u) has to be an elliptic polynomial in the spectral parameter u. By elliptic polynomial we mean
essentially a finite product of Weierstrass σ-functions. For models with rational R-matrix it degenerates
to a usual polynomial in u.

To give a more precise formulation of this property, let us note that eq. (1.7) has the gauge invariance
under a transformation parametrized by four arbitrary functions χi of one variable:

T a
s (u) → χ1(a+ u+ s)χ2(a− u+ s)χ3(a+ u− s)χ4(a− u− s)T a

s (u) (2.5)

These transformations can remove all zeros from the characteristics a± s± u = const. We require that
the remaining part of all T a

s (u) should be an elliptic (trigonometric, rational) polynomial of one and the
same degree N , where N is the number of sites on the lattice (see (1.3)).

One can formulate this condition in a gauge invariant form by introducing the gauge invariant com-
bination

Y a
s (u) =

T a
s+1(u)T

a
s−1(u)

T a+1
s (u)T a−1

s (u)
. (2.6)

We require Y a
s (u) to be an elliptic function having 2N zeros and 2N poles in the fundamental domain.

This implies that T a
s (u) has the general form2

T a
s (u) = Aa

se
µ(a,s)u

N
∏

j=1

σ(η(u − z
(a,s)
j )) , (2.7)

where z
(a,s)
j , Aa

s , µ(a, s) do not depend on u and the following constraints hold:

N
∑

j=1

(z
(a,s+1)
j + z

(a,s−1)
j ) =

N
∑

j=1

(z
(a+1,s)
j + z

(a−1,s)
j ) , (2.8)

µ(a, s+ 1) + µ(a, s− 1) = µ(a+ 1, s) + µ(a− 1, s) . (2.9)

Another gauge invariant combination,

Xa
s (u) = −

T a
s (u + 1)T a

s (u− 1)

T a+1
s (u)T a−1

s (u)
= −1 − Y a

s (u) , (2.10)

is also convenient.

As a reference, we point out gauge invariant forms of HBDE [11]:

Y a
s (u + 1)Y a

s (u − 1) =
(1 + Y a

s+1(u))(1 + Y a
s−1(u))

(1 + (Y a+1
s (u))−1)(1 + (Y a−1

s (u))−1)
, (2.11)

Xa
s+1(u)X

a
s−1(u) =

(1 +Xa
s (u + 1))(1 +Xa

s (u− 1))

(1 + (Xa+1
s (u))−1)(1 + (Xa−1

s (u))−1)
. (2.12)

It can be shown that the minimal polynomial appears in the gauge

T a
s (u) → T a

s (u)

(

a−1
∏

l=0

s−1
∏

p=1

φ(u + s+ a− 2l− 2p− 2)

a−1
∏

l=1

φ(u+ s+ a− 2l)

)−1

, (2.13)

where all the ”trivial” zeros (common for all the eigenvalues) of the transfer matrix are removed (see
e.g. [23]). The boundary values at a = 0, k then become:

T 0
s (u) = φ(u+ s),

T k
s (u) = φ(u− s− k) . (2.14)

2This differs from a more traditional expression in terms of Jacobi θ-functions by a simple normalization factor.
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¿From now on we adopt this normalization.

(iii) The analyticity conditions and b.c. (2.14) lead to a particular ”initial condition” in s. It is
convenient, however, to take advantage of it before the actual derivation. The condition reads

T a
s (u) = 0 for any − k < s < 0, 0 < a < k . (2.15)

This is consistent with (1.7), (2.14) and implies

T a
0 (u) = φ(u − a) (2.16)

for 0 ≤ a ≤ k.

Under the analyticity conditions (i) and the b.c. (2.14) (and their consequences (2.15), (2.16)) each
solution to HBDE (1.7) corresponds to an eigenstate of the Ak−1-transfer matrix.

The same conditions are valid for higher representations of the quantum space. However, in that
case there are certain constraints on zeros of φ(u) (they should form ”strings”), whence T a

s (u) acquires
extra ”trivial” zeros. Here we do not address this question.

2.2 Plücker relations and determinant representations of solutions

Classical integrable equations in Hirota’s bilinear form are known to be naturally connected [24], [25],
[26], with geometry of Grassmann’s manifolds (grassmannians) (see [27] [28], [29]), in general of an infinite
dimension. Type of the grassmannian is specified by boundary conditions. Remarkably, the b.c. (2.4)
required for Bethe ansatz solutions corresponds to finite dimensional grassmannians. This connection
suggests a simple way to write down a general solution in terms of determinants and to transmit the
problem to the boundary conditions. Numerous determinant formulas may be obtained in this way.

The grassmannian G
r+1
n+1 is a collection of all (r + 1)-dimensional linear subspaces of the complex

(n + 1)-dimensional vector space C
n+1. In particular, G

1
n+1 is the complex projective space P

n. Let

X ∈ G
r+1
n+1 be such a (r+1)-dimensional subspace spanned by vectors x

(j) =
∑n

i=0 x
(j)
i e

i, j = 1, . . . , r+1,
where e

i are basis vectors in C
n+1. The collection of their coordinates form a rectangular (n+1)×(r+1)-

matrix x
(j)
i . Let us consider its (r + 1) × (r + 1) minors

det
pq

(x
(q)
ip

) ≡ (i0, i1, . . . , ir), p, q = 0, 1, . . . , r , (2.17)

obtained by choosing r + 1 lines i0, i1, . . . , ir. These Cr+1
n+1 minors are called Plücker coordinates of X .

They are defined up to a common scalar factor and provide the Plücker embedding of the grassmannian
G

r+1
n+1 into the projective space P

d, where d = Cr+1
n+1 − 1 (Cr+1

n+1 is the bimomial coefficient).

The image of G
r+1
n+1 in P

d is realized as an intersection of quadrics. This means that the coordinates
(i0, i1, . . . , ir) are not independent but obey the Plücker relations [28], [29]:

(i0, i1, ..., ir)(j0, j1, ..., jr) =

r
∑

p=0

(jp, i1, ..., ir)(j0, ...jp−1, i0, jp+1..., jr) (2.18)

for all ip, jp, p = 0, 1, . . . , r. Here it is implied that the symbol (i0, i1, . . . , ir) is antysymmetric in all
the indices, i.e., (i0, . . . , ip−1, ip, . . . , ir) = −(i0, . . . , ip, ip−1, . . . , ir) and it equals zero if any two indices
coincide. If one treats these relations as equations rather than identities, then determinants (2.17) would
give a solution to Hirota’s equations.

The Plucker relations in their general form (2.18) most likely describe fusion rules for transfer matrices
corresponding to arbitrary Young diagrams. In order to reduce them to the 3-term HBDE, one should
take ip = jp for p 6= 0, 1. Then all terms but the first two in the r.h.s. of (2.18) vanish and one is left
with the 3-term relation

(i0, i1, . . . , ir)(j0, j1, i2, . . . , ir) = (j0, i1, i2, . . . , ir)(i0, j1, i2, . . . ir) + (j1, i1, i2, . . . , ir)(j0, i0, i2, . . . ir).
(2.19)
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After the substitution (2.17) these elementary Plücker relations turn into certain determinant identities.

For example, choosing x
(j)
i0

= δpj , x
(j)
j0

= δqj , q 6= p, one can recast eq. (2.19) into the form of the Jacobi
identity:

D[p|p] ·D[q|q] −D[p|q] ·D[q|p] = D[p, q|p, q] ·D . (2.20)

where D is determinant of a (r+1)× (r+1)-matrix and D[p1, p2|q1, q2] denotes determinant of the same
matrix with p1,2-th rows and q1,2-th columns removed. Another useful identity contained in eq. (2.19)
connects minors D[l1, l2] of a (r+3)× (r+1) rectangular matrix, where the two rows l1, l2 are removed:

D[l1, l2] ·D[l3, l4] −D[l1, l3] ·D[l2, l4] = D[l1, l4] ·D[l2, l3] , l1 < l2 < l3 < l4 . (2.21)

Identifying terms in eq. (2.19) with terms in HBDE (1.8), one obtains various determinant represen-
tations of solutions to HBDE. Two of them follow from the Jacobi identity (2.20):

τa(l,m) = det
(

τ1(l + i− a,m− j + a)
)

, i, j = 1, . . . , a, τ0(l,m) = 1 (2.22)

or, in ”direct” variables

T a
s (u) = det

(

T 1
s+i−j(u + i+ j − a− 1)

)

, i, j = 1, . . . , a, T 0
s (u) = 1 . (2.23)

This representation determines an evolution in a from the initial values at a = 1. The size of the
determinant grows with a. A similar formula exists for the evolution in s:

T a
s (u) = det

(

T a+i−j
1 (u+ i+ j − s− 1)

)

, i, j = 1, . . . , s , T a
0 (u) = 1 . (2.24)

The size of this determinant grows with s. Determinant formulas of this type have been known in the
literature on quantum integrable models (see e.g. [22]). They allow one to express T a

s (u) through T a
1 (u)

or T 1
s (u).

A different kind of determinant representation follows from (2.21):

τa(l,m) = detMij ,

Mji =

{

hi(u + s+ a+ 2j) if j = 1, ..., k − a; i = 1, ..., k
h̄i(u − s+ a+ 2j) if j = k − a+ 1, ..., k; i = 1, ..., k

(2.25)

where hi(x) and h̄i(x) are 2k arbitrary functions of one variable. The size of this determinant is equal
to k for all 0 ≤ a ≤ k. This determinant formula plays an essential role in what follows.

The determinant representations give a solution to discrete nonlinear equations and expose the essence
of the integrability. Let us note that they are simpler and more convenient than their continuous
counterparts.

2.3 Examples of difference and continuous A1-type equations

For illustrative purposes we specialize the Hirota equation to the A1-case and later study it separately.
At k = 2 eq. (1.7) is

Ts(u+ 1)Ts(u− 1) − Ts+1(u)Ts−1(u) = φ(u + s)φ(u − s− 2) (2.26)

with the condition T−1(u) = 0 (here we set Ts(u) ≡ T 1
s (u)).

This equation is known as a discrete version of the Liouville equation [20] written in terms of the
τ -function. It can be recast to somewhat more universal form in terms of the discrete Liouville field

Y 1
s (u) ≡ Ys(u) =

Ts+1(u)Ts−1(u)

φ(u + s)φ(u − s− 2)
(2.27)

(see (2.6)), which hides the function φ(u) in the r.h.s. of (2.26). The equation becomes

Ys(u − 1)Ys(u+ 1) = (Ys+1(u) + 1)(Ys−1(u) + 1) . (2.28)
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(Let us note that the same functional equation but with different analytic properties of the solutions
appears in the thermodynamic Bethe ansatz [30], [31].)

In the continuum limit one should put Ys(u) = δ−2 exp(−ϕ(x, t)), u = δ−1x, s = δ−1t. An expansion
in δ → 0 then gives the continuous Liouville equation

∂2
sϕ− ∂2

uϕ = 2 exp(ϕ) . (2.29)

To stress the specifics of the b.c. (2.15) and for further reference let us compare it with the quasiperi-
odic b.c. Then the A1-case corresponds to the discrete sine-Gordon (SG) equation [32]:

T a+1
s (u) = eαλ2aT a−1

s (u− 2), (2.30)

where α and λ are parameters.Substituting this condition into (1.7), we get:

T 1
s (u+ 1)T 1

s (u − 1) − T 1
s+1(u)T

1
s−1(u) = eαλ2T 0

s (u)T 0
s (u − 2), (2.31)

T 0
s (u+ 1)T 0

s (u − 1) − T 0
s+1(u)T

0
s−1(u) = e−αT 1

s (u)T 1
s (u + 2). (2.32)

Let us introduce two fields ρs,u and ϕs,u on the square (s, u) lattice

T 0
s (u) = exp(ρs,u + ϕs,u), (2.33)

T 1
s (u + 1) = λ1/2 exp(ρs,u − ϕs,u). (2.34)

and substitute them into (2.31), (2.32). Finally, eliminating ρs,u, one gets the discrete SG equation:

sinh(ϕs+1,u + ϕs−1,u − ϕs,u+1 − ϕs,u−1) = λsinh(ϕs+1,u + ϕs−1,u + ϕs,u+1 + ϕs,u−1 + α) . (2.35)

The constant α can be removed by the redefinition ϕs,u → ϕs,u − 1
4α.

Another useful form of the discrete SG equation appears in variables Xa
s (u) (2.10). Under condition

(2.30) one has
Xa+1

s (u) = Xa−1
s (u − 2), λ2Xa+1

s (u+ 1)Xa
s (u) = 1 , (2.36)

so there is only one independent function

X1
s (u) ≡ xs(u) = −e−αλ−1 exp

(

− 2ϕs,u − 2ϕs,u−2
)

. (2.37)

The discrete SG equation becomes [32], [33], [34]:

xs+1(u)xs−1(u) =
(λ+ xs(u+ 1))(λ + xs(u− 1))

(1 + λxs(u+ 1))(1 + λxs(u− 1))
. (2.38)

In the limit λ→ 0 eq. (2.38) turns into the discrete Liouville equation (2.28) for Ys(u) = −1−λ−1xs(u).

3 Linear problems and Bäcklund transformations

3.1 Zero curvature condition

Consider the square lattice in two light cone variables l and m and a vector function ψa(l,m) on this
lattice. Let La,a′(l,m) and Ma,a′(l,m) be two shift operators in directions l and m:

∑

a′

La,a′(l,m)ψa′(l + 1,m) = ψa(l,m),

∑

a”

Ma,a′(l,m)ψa′(l,m+ 1) = ψa(l,m). (3.1)

The zero curvature condition states that the result of subsequent shifts from an initial point to a fixed
final point does not depend on the path:

L(l,m) ·M(l + 1,m) = M(l,m) · L(l,m+ 1). (3.2)
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HBDE (1.7) possesses [35] a zero-curvature representation by means of the following two-diagonal infinite
matrices:

La,a′ = δa,a′−1 + δa,a′V a
l ,

Ma,a′ = δa,a′ + δa,a′+1W
a
m , (3.3)

where

V a
l =

τa(l + 1,m)τa+1(l,m)

τa(l,m)τa+1(l + 1,m)
,

W a
m =

τa−1(l,m+ 1)τa+1(l,m)

τa(l,m)τa(l,m+ 1)
. (3.4)

More precisely, the compatibility condition of the two linear problems

ψa(l,m) − ψa+1(l + 1,m) = V a
l ψa(l + 1,m) ,

ψa(l,m) − ψa(l,m+ 1) = W a
mψa−1(l,m+ 1) (3.5)

combined with the b.c. (2.14) yields HBDE (1.8). Introducing an unnormalized ”wave function”

fa(l,m) = ψa(l,m)τa(l,m) , (3.6)

we can write the linear problems in the form

τa+1(l + 1,m)fa(l,m) − τa+1(l,m)fa(l + 1,m) = τa(l,m)fa+1(l + 1,m) ,

τa(l,m+ 1)fa(l,m) − τa(l,m)fa(l,m+ 1) = τa+1(l,m)fa−1(l,m+ 1) , (3.7)

or in ”direct” variables

T a+1
s+1 (u)F a(s, u) − T a+1

s (u− 1)F a(s+ 1, u+ 1) = T a
s (u)F a+1(s+ 1, u) ,

T a
s+1(u− 1)F a(s, u) − T a

s (u)F a(s+ 1, u− 1) = T a+1
s (u− 1)F a−1(s+ 1, u) , (3.8)

where F a(l +m, l −m− a) ≡ fa(l,m).

An advantage of the light cone coordinates is that they are separated in the linear problems (there
are shifts only of l (m) in the first (second) eq. (3.7)).

The wave function and potential possess a redundant gauge freedom:

V a
l →

χ(a− l + 1)

χ(a− l)
V a

l , W a
m →

χ(a− l)

χ(a− l − 1)
W a

m, ψa(l,m) → χ(a− l + 1)ψa (3.9)

with an arbitrary function χ.

The b.c. (2.4) implies a similar condition for the object of the linear problems

F a(s, u) = 0 as a < 0 and a > k − 1 (3.10)

so that the number of functions F is one less than the number of T ’s. Then from the second equation of
the pair (3.8) at a = 0 and from the first one at a = k − 1 it follows that F 0(s, u) (F k−1(s, u)) depends
on one cone variable u+ s (resp., u− s). We introduce a special notation for them:

F 0(s, u) = Qk−1(u + s), F k−1(s, u) = Q̄k−1(u− s). (3.11)

Furthermore, it can be shown that the important condition (2.15) relates the functions Q and Q̄:

Q̄k−1(u) = Qk−1(u− k + 1). (3.12)

The special form of the functions F a at the ends of the Dynkin graph (a = 0, k− 1) reflects the specifics
of the ”Liouville-type” boundary conditions. This is to be compared with nonlinear equations with the
quasiperiodic boundary condition (2.30): in this case all the functions F depend on two variables and
obey the quasiperiodic b.c.
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3.2 Continuum limit

In the continuum limit l = −δt+, m = −δt−, τa → δa2

τa, fa → δa2+afa, δ → 0, we recover the
auxiliary linear problems for the 2D Toda lattice [36] (∂± ≡ ∂/∂t±):

∂+ψa = ψa+1 + ∂+(log
τa+1

τa
)ψa,

∂−ψa =
τa+1τa−1

τ2
a

ψa−1 , (3.13)

or, in terms of fa,

τa+1∂+fa − (∂+τa+1)fa = τafa+1 ,

τa∂−fa − (∂−τa)fa = τa+1fa−1 . (3.14)

The compatibility condition of these equations yields the first non-trivial equation of the 2D Toda lattice
hierarchy:

∂+τa∂−τa − τa∂+∂−τa = τa+1τa−1. (3.15)

In terms of

ϕa(t+, t−) = log
τa+1(t+, t−)

τa(t+, t−)

it has the familiar form
∂+∂−ϕa = eϕa−ϕa−1 − eϕa+1−ϕa . (3.16)

3.3 Duality

The discrete nonlinear equation has a remarkable duality between ”potentials” T a and ”wave functions”
F a first noticed in [35]. In the continuum version it is not so transparent. Eqs.(3.8) are symmetric under
the interchange of F and T . Then one may treat (3.8) as linear problems for a nonlinear equation on
F ’s. It is not surprising that one again obtains HBDE (1.7):

F a(s, u+ 1)F a(s, u− 1) − F a(s+ 1, u)F a(s− 1, u) = F a+1(s, u)F a−1(s, u) . (3.17)

Moreover, conditions (3.10)-(3.12) mean that even the b.c. for F a(s, u) are the same as for T a
s (u) under

a substitution φ(u) by Qk−1(u). The only change is a reduction of the Dynkin graph: k → k− 1. Using
this property, one can successively reduce the Ak−1-problem up to A1. Below we use this trick to derive
Ak−1 (”nested”) Bethe ansatz equations.

3.4 Bäcklund flow

To elaborate the chain of these transformations, let us introduce a new variable t = 0, 1, . . . , k to mark
a level of the flow Ak−1 → A1 and let F a

t+1(s, u) be a solution to the linear problem at (k − t)-th level.
In this notation, F a

k (s, u) = T a
s (u) and F a

k−1(s, u) = F a(s, u) is the corresponding wave function. The
wave function itself obeys the nonlinear equation (3.17), so F a

k−2(s, u) denotes its wave function and so
on. For each level t the function F a

t (s, u) obeys HBDE of the form (3.17) with the b.c.

F a
t (s, u) = 0 as a < 0 and a > t . (3.18)

As a consequence of (3.18), the first and the last components of the vector F a
t (s, u) obey the discrete

Laplace equation (2.3) and under the condition (3.11) are functions of only one of the light-cone variables
(u+ s and u− s respectively). We denote them as follows:

F 0
t (s, u) ≡ Qt(u+ s) , F t

t (s, u) ≡ Q̄t(u− s) , (3.19)

where it is implied that Qk(u) = φ(u). It can be shown that ellipticity requirement (ii) and condition
(2.14) impose the relation Q̄t(u) = Qt(u− t).

10



In this notation the linear problems (3.8) at level t,

F a+1
t+1 (s+ 1, u)F a

t (s, u) − F a+1
t+1 (s, u− 1)F a

t (s+ 1, u+ 1) = F a
t+1(s, u)F

a+1
t (s+ 1, u) , (3.20)

F a
t+1(s+ 1, u− 1)F a

t (s, u) − F a
t+1(s, u)F

a
t (s+ 1, u− 1) = F a+1

t+1 (s, u− 1)F a−1
t (s+ 1, u) (3.21)

look as bilinear equations for a functions of 4 variables. However, eq. (3.20) (resp., eq. (3.21)) leaves
the hyperplane u − s + a = const (resp., u + s + a = const) invariant, and actually depends on three
variable.

Restricting the variables in eq. (3.20) to the hyperplane u − s + a = v (where v is a constant), by
setting

τu(t, a) ≡ F a
k−t(u+ a− v, u) (3.22)

we reduce eq. (3.20) to the form of the same HBDE (1.8) in cone coordinates t and a. The b.c. is

τu(t, 0) = Qk−t(2u− v), τu(t, k − t) = Q̄k−t(v + t− k) = const. (3.23)

Similar equations can be obtained from the second linear problem (3.21) by setting

τ̄u(b, t) = F k−t−b
k−t (v̄ + b− u, u+ t− k) (3.24)

(v̄ is a constant). This function obeys eq. (1.8),

τ̄u(b + 1, t)τ̄u(b, t+ 1) − τ̄u(b, t)τ̄u(b + 1, t+ 1) = τ̄u+1(b+ 1, t)τ̄u−1(b, t+ 1) , (3.25)

where t now plays the role of the light cone coordinate m. The b.c. is

τ̄u(0, t) = Q̄k−t(2u+ t− k − v̄), τ̄u(k − t, t) = Qk−t(v) = const. (3.26)

It is convenient to visualize this array of τ -functions on a diagram; here is an example for the A3-case
(k = 4):

0 1 0

0 Q1(u+ s) Q̄1(u − s) 0

0 Q2(u+ s) F 1
2 (s, u) Q̄2(u− s) 0

0 Q3(u+ s) F 1
3 (s, u) F 2

3 (s, u) Q̄3(u − s) 0

0 φ(u + s) T 1
s (u) T 2

s (u) T 3
s (u) φ̄(u − s) 0

(3.27)

Functions in each horizontal (constant t) slice satisfy HBDE (3.17), whereas functions on the u−s+a =
const slice satisfy HBDE (1.8) with t, a being light cone variables l, m respectively.

A general solution of the bilinear discrete equation (1.7) with the b.c. (2.14) is determined by 2k
arbitrary functions of one variable Qt(u) and Q̄t(u), t = 1, ..., k. The additional requirement (ii) of
ellipticity determines these functions through the Bethe ansatz.

3.5 Nested Bethe ansatz scheme

Here we elaborate the nested scheme of solving HBDE based on the chain of successive Bäcklund trans-
formations (Sect. 3.4). This is an alternative (and actually the shortest) way to obtain nested Bethe
ansatz equations (3.31). Recall that the function τu(t, a) = F a

k−t(u + a, u) (3.22) (where we put v = 0
for simplicity) obeys HBDE in light cone variables:

τu(t+ 1, a)τu(t, a+ 1) − τu(t, a)τu(t+ 1, a+ 1) = τu+1(t+ 1, a)τu−1(t, a+ 1) . (3.28)

Since τu(t, 0) = Qk−t(2u), nested Bethe ansatz equations can be understood as ”equations of motions”
for zeros of Qt(u) in discrete time t (level of the Bethe ansatz). The simplest way to derive them is to
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consider the auxiliary linear problems for eq. (3.28). Here we present an example of this derivation in
the simplest possible form.

Let us assume that Qt(u) has the form

Qt(u) = eνtηu
Mt
∏

j=1

σ(η(u − ut
j)) (3.29)

(note that we allow the number of roots Mt to depend on t). Since we are interested in dynamics in t
at a fixed a, it is sufficient to consider only the first linear equation of the pair (3.7):

τu+1(t+ 1, a)fu(t, a) − τu+1(t, a)fu(t+ 1, a) = τu(t, a)fu+1(t+ 1, a) . (3.30)

An elementary way to derive equations of motion for roots of τu(t, 0) is to put u equal to the roots
of fu(t + 1, 0), fu(t, 0) and fu+1(t + 1, 0), so that only two terms in (3.30) would survive. Combining
relations obtained in this way, one can eliminate f ’s and obtain the system of equations

Qt−1(u
t
j + 2)Qt(u

t
j − 2)Qt+1(u

t
j)

Qt−1(ut
j)Qt(ut

j + 2)Qt+1(ut
j − 2)

= −1 . (3.31)

as the necessary conditions for solutions of the form (3.29) to exist. In the more detailed notation they
look as follows:

Mt−1
∏

k=1

σ(η(ut
j − ut−1

k + 2))

σ(η(ut
j − ut−1

k ))

Mt
∏

k=1

σ(η(ut
j − ut

k − 2))

σ(η(ut
j − ut

k + 2))

Mt+1
∏

k=1

σ(η(ut
j − ut+1

k ))

σ(η(ut
j − ut+1

k − 2))
= −e2η(2νt−νt+1−νt−1) .

(3.32)
With the ”boundary conditions”

Q0(u) = 1, Qk(u) = φ(u), (3.33)

this system of M1 + M2 + . . . + Mk−1 equations is equivalent to the nested Bethe ansatz equations
for Ak−1-type quantum integrable models with Belavin’s elliptic R-matrix. The same equations can be
obtained for the right edge of the diagram (3.27) from the second linear equation in (3.7). In Sect. 5 we
explicitly identify our Q’s with similar objects known from the Bethe ansatz solution.

Let us remark that the origin of equations (3.32) suggests to consider them as equations of motion
for the elliptic Ruijsenaars-Schneider model in discrete time. Taking the continuum limit in t (provided
Mt = M does not depend on t), one can check that eqs. (3.32) do yield the equations of motion for the
elliptic RS model [17] with M particles. The additional limiting procedure η → 0 with finite ηuj = xj

yields the well known equations of motion for the elliptic Calogero-Moser system of particles.

However, integrable systems of particles in discrete time seem to have a richer structure than their
continuous time counterparts. In particular, the total number of particles in the system may depend on
(discrete) time. Such a phenomenon is possible in continuous time models only for singular solutions,
when particles can move to infinity or merge to another within a finite period of time.

Remarkably, this appears to be the case for the solutions to eqs. (3.32) corresponding to eigenstates
of the quantum model. It is known that the number of excitations Mt at t-th level of the Bethe ansatz
solution does depend on t. In other words, the number of ”particles” in the corresponding discrete time
RS model is not conserved. Though, the numbers Mt may not be arbitrary.

In the elliptic case degrees of the elliptic polynomials Qt(u) are equal to Mt = N/k (provided η is
incommensurable with the lattice spanned by ω1, ω2 and N is divisible by k). This fact follows directly
from Bethe equations (3.31). Indeed, the elliptic polynomial form (3.29) implies that if ut

j is a zero of
Qt(u), i.e., Qt(u

t
j) = 0, then ut

j + 2n1ω1 + 2n2ω2 for all integers n1, n2 are its zeros too. Taking into
account the well known monodromy properties of the σ-function, one concludes that this is possible if
and only if

Mt+1 +Mt−1 = 2Mt , (3.34)

which has a unique solution

Mt =
N

k
t (3.35)

satisfying b.c. (3.33). This means that the nested scheme for elliptic Ak−1-type models is consistent
only if N is divisible by k. In trigonometric and rational cases the restrictions on degrees of Qt’s are not
so strong.
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4 The A1-case: discrete Liouville equation

In this section we consider the A1-case separately. Although in this case the general nested scheme is
missing, the construction is more explicit and contains familiar objects from the Bethe ansatz literature.

4.1 General solution

The basic functional relation is

Ts(u+ 1)Ts(u− 1) − Ts+1(u)Ts−1(u) = φ(u + s)φ̄(u− s), (4.1)

where we consider a more general b.c. parametrized by the functions φ, φ̄ and set Ts(u) ≡ T 1
s (u). The

auxiliary linear problems (3.8) acquire the form

Ts+1(u)Q(u+ s) − Ts(u − 1)Q(u+ s+ 2) = φ(u + s)Q̄(u− s− 1), (4.2)

Ts+1(u)Q̄(u− s+ 1) − Ts(u+ 1)Q̄(u− s− 1) = φ̄(u − s)Q(u+ s+ 2) . (4.3)

Here we set Q(u) ≡ Q1(u) and φ(u) = Q2(u). Rearranging these equations we obtain

φ(u− 2)Q(u+ 2) + φ(u)Q(u − 2) = A(u)Q(u), (4.4)

φ̄(u)Q̄(u + 3) + φ̄(u + 2)Q̄(u− 1) = Ā(u)Q̄(u+ 1), (4.5)

where we introduce the quantities

A(u) =
φ(u − 2)Ts+1(u − s) + φ(u)Ts−1(u− s− 2)

Ts(u − s− 1)
, (4.6)

Ā(u) =
φ̄(u + 2)Ts+1(u + s) + φ̄(u)Ts−1(u+ s+ 2)

Ts(u + s+ 1)
. (4.7)

Due to consistency condition (4.1) A(u) and Ā(u) are functions of one variable and do not depend on s.
The symmetry between u and s allows one to construct similar objects which in turn do not depend on
u. Functions A(u) and Ā(u), in the r.h.s. of (4.4), (4.5) are the conservation lows of the s-dynamics.

Running ahead, let us note that the connection between φ and φ̄, φ̄(u) = φ(u−2), and its consequence
T−1(u) = 0 (see (2.15)), simplifies eqs. (4.4)-(4.7). Putting s = 0 and using the b.c. T−1(u) = 0, we find

A(u) = Ā(u) = T1(u) . (4.8)

Therefore, the following holds

Ts(u − 1)T1(u+ s) = φ(u + s− 2)Ts+1(u) + φ(u + s)Ts−1(u− 2), (4.9)

Ts(u + 1)T1(u− s) = φ(u − s)Ts+1(u) + φ(u − s− 2)Ts−1(u+ 2), (4.10)

φ(u − 2)Q(u+ 2) + φ(u)Q(u− 2) = T1(u)Q(u) . (4.11)

These equalities are known as fusion relations [6], [37], [38] while eq. (4.11) is Baxter’s T -Q-relation
[1]. So Baxter’s Q function and the T -Q-relation naturally appear in the context of the auxiliary linear
problems for HBDE.

A general solution of the discrete Liouville equation (for arbitrary φ and φ̄) may be expressed through
two independent functions Q(u) and Q̄(u). One may follow the same lines developed for solving the
continuous classical Liouville equation (see e.g. [39], [40] and references therein). Let us consider eq. (4.4)
(resp., (4.5)) as a second order linear difference equation, where the function A(u) (Ā(u)) is determined
from the initial data. Let R(u) (resp., R̄(u)) be a second (linearly independent) solution of eq. (4.4)
(resp., (4.5)) normalized so that the wronskians are

W (u) =

∣

∣

∣

∣

R(u) Q(u)
R(u+ 2) Q(u+ 2)

∣

∣

∣

∣

= φ(u), (4.12)
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W̄ (u) =

∣

∣

∣

∣

R̄(u) Q̄(u)
R̄(u+ 2) Q̄(u + 2)

∣

∣

∣

∣

= φ̄(u+ 1). (4.13)

Then the general solution of the eq. (4.1) is given in terms of Q and R:

Ts(u) =

∣

∣

∣

∣

Q(u+ s+ 1) R(u+ s+ 1)
Q̄(u− s) R̄(u− s)

∣

∣

∣

∣

, (4.14)

This formula is a particular case of the general determinant representation (2.25).

For any given Q(u) and Q̄(u) the second solution R(u) and R̄(u) (defined modulo a linear transfor-
mation R(u) → R(u) + αQ(u) ) can be explicitly found from the first order recurrence relations (4.12),
(4.13), if necessary. Let Q(u0) and R(u0) be initial values at u = u0. Then, say, for even r ≥ 0,

R(u0 + r) = Q(u0 + r)



−

r/2
∑

j=1

φ(u0 + 2j − 2)

Q(u0 + 2j)Q(u0 + 2j − 2)
+
R(u0)

Q(u0)



 (4.15)

and so on for other r’s and R̄(u).

Finally, one can express solution to eq. (4.1) through two independent functions Q(u) and Q̄(u):

Ts(u+ s− 1) = Q(u+ 2s)Q̄(u− 1)





T0(u − 1)

Q(u)Q̄(u− 1)
+

s
∑

j=1

φ(u + 2j − 2)

Q(u+ 2j)Q(u+ 2j − 2)



 . (4.16)

where T0(u) can be found from (4.16) by putting s = 0:

−
T0(u− 1)

Q(u)Q̄(u− 1)
+

T0(u+ 1)

Q(u+ 2)Q̄(u+ 1)
=

φ(u)

Q(u)Q(u+ 2)
−

φ̄(u)

Q̄(u− 1)Q̄(u+ 1)
. (4.17)

Note also the following useful representations:

A(u) = Q(u+ 2)R(u− 2) −R(u+ 2)Q(u− 2), (4.18)

Ā(u) = R̄(u+ 3)Q̄(u − 1) − Q̄(u + 3)R̄(u− 1), (4.19)

which are direct corollaries of (4.4), (4.5).

4.2 Equivalent forms of Baxter’s equation

The key ingredient of the construction is Baxter’s relation (4.11) and its ”chiral” versions (4.4), (4.5).
For completeness, we gather some other useful forms of them.

Consider first ”chiral” linear equations (4.4), (4.5) (thus not implying any specific b.c. in s). Assum-
ing that Ts(u) obeys HBDE (4.1), one can represent eqs. (4.4), (4.5) in the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ts(u) Ts+1(u− 1) Q(u+ s+ 1)

Ts+1(u+ 1) Ts+2(u) Q(u+ s+ 3)

Ts+2(u+ 2) Ts+3(u+ 1) Q(u+ s+ 5)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 , (4.20)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ts(u) Ts+1(u+ 1) Q̄(u− s)

Ts+1(u− 1) Ts+2(u) Q̄(u− s− 2)

Ts+2(u− 2) Ts+3(u− 1) Q̄(u− s− 4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 , (4.21)

respectively. This representation can be straightforwardly extended to the Ak−1-case (see eqs. (5.37),
(5.38)).
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A factorized form of these difference equations is
(

e2∂u −
φ(u)Q(u− 2)

φ(u − 2)Q(u)

)(

e2∂u −
Q(u)

Q(u− 2)

)

X(u− 2) = 0 , (4.22)

(

e2∂u −
φ̄(u+ 2)Q̄(u − 1)

φ̄(u)Q̄(u+ 1)

)(

e2∂u −
Q̄(u + 1)

Q̄(u − 1)

)

X̄(u− 1) = 0 . (4.23)

Here e∂u acts as the shift operator, e∂uf(u) = f(u + 1), and X(u) (X̄(u)) stands for any linear combi-
nation of Q(u), R(u) (Q̄(u), R̄(u)).

Specifying eqs. (4.20), (4.21) to the b.c. T−1(u) = 0 (see (4.8)), we see that both of them turn into
the equation

2
∑

a=0

(−1)aT a
1 (u+ a− 1)X(u+ 2a− 2) = 0 (4.24)

that is Baxter’s relation (4.11). Furthermore, the difference operator in (4.24) admits a factorization of
the form (4.22):

2
∑

a=0

(−1)aT a
1 (u+ a− 1)e2a∂u =

(

e2∂u −
φ(u)Q(u− 2)

φ(u− 2)Q(u)

)(

e2∂u −
Q(u)

Q(u− 2)

)

, (4.25)

which is equivalent to the well known formula for T1(u) in terms of Q(u).

4.3 Double-Bloch solutions to Baxter’s equation

In this section we formulate the analytic properties of solutions to Baxter’s functional relation (4.4) that
are relevant to models on finite lattices.

First let us transform Baxter’s relation to a difference equation with elliptic (i.e. double-periodic
with periods 2ω1/η, 2ω2/η) coefficients.

The formal substitution

Ψ̃(u) =
Q(u)P (u)

φ(u − 2)
(4.26)

with a (as yet not specified ) function P (u) yields

Ψ̃(u+ 2) +
P (u+ 2)φ(u − 4)

P (u− 2)φ(u − 2)
Ψ̃(u − 2) =

A(u)P (u+ 2)

φ(u)P (u)
Ψ̃(u) . (4.27)

Below we restrict ourselves to the case when the degree N of the elliptic polynomial φ(u) (1.3) is
even. Then for any P (u) of the form

P (u) =

N/2
∏

j=1

σ(η(u − pj)) (4.28)

with arbitrary pj the coefficients in (4.27) are elliptic functions. Indeed, for the coefficient in front of

Ψ̃(u− 2) this is obvious. As for the coefficient in the r.h.s. of (4.27), its double-periodicity follows from
the ”sum rule” (2.8).

Let us represent φ(u) in the form
φ(u) = φ0(u)φ1(u) , (4.29)

where φ0(u), φ1(u) are elliptic polynomials of degree N/2 (of course for N > 2 there are many ways to
do that). Specifying P (u) as

P (u) = φ1(u − 2) , (4.30)

we rewrite (4.27) in the form

Ψ(u+ 2) +
φ0(u− 4)φ1(u)

φ0(u − 2)φ1(u− 2)
Ψ(u− 2) =

A(u)

φ0(u)φ1(u− 2)
Ψ(u) , (4.31)
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where

Ψ(u) =
Q(u)

φ0(u− 2)
. (4.32)

Now, the coefficients in eq. (4.31) being double-periodic, it is natural to consider its double-Bloch
solutions. A meromorphic function f(x) is said to be double-Bloch if it obeys the following monodromy
properties:

f(x+ 2ωα) = Bαf(x), α = 1, 2. (4.33)

The complex numbers Bα are called Bloch multipliers. It is easy to see that any double-Bloch function
can be represented as a linear combination of elementary ones:

f(x) =

M
∑

i=1

ciΦ(x− xi, z)κ
x/η, (4.34)

where [16]

Φ(x, z) =
σ(z + x+ η)

σ(z + η)σ(x)

[

σ(z − η)

σ(z + η)

]x/(2η)

. (4.35)

and complex parameters z and κ are related by

Bα = κ2ωα/η exp(2ζ(ωα)(z + η))

(

σ(z − η)

σ(z + η)

)ωα/η

(4.36)

(ζ(x) = σ′(x)/σ(x) is the Weierstrass ζ-function). Considered as a function of z, Φ(x, z) is double-
periodic:

Φ(x, z + 2ωα) = Φ(x, z).

For general values of x one can define a single-valued branch of Φ(x, z) by cutting the elliptic curve
between the points z = ±η. In the fundamental domain of the lattice defined by 2ωα the function
Φ(x, z) has a unique pole at the point x = 0:

Φ(x, z) =
1

x
+O(1) .

Coming back to the variable u = x/η, one can formulate the double-Bloch property of the function
Ψ(u) (4.32) in terms of its numerator Q(u). It follows from (4.34) that the general form of Q(u) is

Q(u) = Q(u; ν) = eνηu
M
∏

j=1

σ(η(u − uj)) , (4.37)

where M = N/2 and ν determines Bloch multipliers.

For the trigonometric and rational degeneration of eqs. (4.4), (4.31), (4.37) the meaning of ν is quite
clear: it plays the role of the ”boundary phase” for twisted b.c. in the horizontal (auxiliary) direction.
For each ν eq. (4.11) has a solution of the form (4.37). The corresponding value of T1(u) = A(u) depends
on ν as a parameter: T1(u) = T1(u; ν). If there exist ν 6= ν′ such that T1(u; ν) = T1(u; ν

′), one may put
Q(u) = Q(u, ν), R(u) = Q(u; ν′). In the elliptic case the boundary phase in general is not compatible
with integrability and so ν should have a different physical sense which is still unclear.

4.4 Bethe equations

It can be shown that for double-Bloch solutions the relation between φ and φ̄, φ̄(u) = φ(u− 2), implies

Q̄(u) = Q(u− 1), R̄(u) = R(u− 1) , (4.38)

so that (see (4.14)

Ts(u) =

∣

∣

∣

∣

Q(u+ s+ 1) R(u+ s+ 1)
Q(u− s− 1) R(u− s− 1)

∣

∣

∣

∣

. (4.39)
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It is clear that if Q(u) and R(u) are elliptic polynomials of degree N/2 multiplied by an exponential
function (as in (4.37)), Ts(u) has the desired general form (2.7).

Under condition (4.38) eq. (4.16) yields the familiar result:

Ts(u) = Q(u+ s+ 1)Q(u− s− 1)

s
∑

j=0

φ(u − s+ 2j − 1)

Q(u− s+ 2j + 1)Q(u− s+ 2j − 1)
. (4.40)

This formula was obtained in [37], [38] by direct solution of the fusion recurrence relations (4.9), (4.10).

Let uj and vj , j = 1, . . . ,M , be zeros of Q(u) and R(u), respectively. Then, evaluating (4.12) at
u = uj , u = uj − 2 and u = vj , u = vj − 2 we obtain the relations

φ(uj) = Q(uj + 2)R(uj) , φ(uj − 2) = −Q(uj − 2)R(uj) , (4.41)

whence it holds
φ(uj)

φ(uj − 2)
= −

Q(uj + 2)

Q(uj − 2)
, (4.42)

φ(vj)

φ(vj − 2)
= −

R(vj + 2)

R(vj − 2)
. (4.43)

Equations (4.42) are exactly the standard Bethe equations (1.2). We refer to equations (4.43) as
complementary Bethe equations. It is easy to check that eqs. (4.42) ensure cancellation of poles in
(4.40). A more standard way to derive Bethe equations (4.42), (4.43) is to substitute zeros of Q(u)
(or R(u)) directly into Baxter’s relation (4.11). However, the wronskian relation (4.12) is somewhat
more informative: in addition to Bethe equations for uj, vj it provides the connection (4.41) between
them. In the next section we derive the system of nested Bethe ansatz equations starting from a proper
generalization of eq. (4.12).

In the elliptic case degrees of the elliptic polynomials Q(u), R(u) (for even N) are equal to M = N/2
(provided η is incommensurable with the lattice spanned by ω1, ω2). This fact follows directly from
Bethe equations (4.42), (4.43) by the same argument as in Sect. 3.5.

In trigonometric and rational cases there are no such strong restrictions on degrees M and M̃ of Q
and R respectively. This is because a part of their zeros may tend to infinity thus reducing the degree.
Whence M and M̃ can be arbitrary integers not exceeding N . However, they must be complementary
to each other: M + M̃ = N . The traditional choice is M ≤ N/2. In particular, the solution Q(u) = 1
(M = 0) corresponds to the simplest reference state (”bare vacuum”) of the model.

We already pointed out that the function Q(u) originally introduced by Baxter (see e.g. [1] and
references therein) emerged naturally in the context of the auxiliary linear problems. Let us mention
that for models with the rational R-matrix this function can be treated as a limiting value of Ts(u) as
s→ ∞ [6]. Rational degeneration of eqs. (2.7), (4.37) gives

Ts(u) = As

N
∏

j=1

(u− z
(s)
j ) , (4.44)

Q(u) = eν
M
∏

j=1

(u− uj) , (4.45)

where

As =
sinh(2ν(s+ 1))

sinh(2ν)
. (4.46)

(The last expression follows from (4.40) by extracting the leading term as u → ∞.) If the ”boundary
phase” −iνη is real and ν 6= 0, one has from (4.39):

Q(u) = ±2 sinh(2ν)eνu lim
s→∓∞

e2νs T∓s−1(u+ s)

(2s)N−M
. (4.47)

For each finite s ≥ 0 Ts(u) has N zeros but in the limit some of them tend to infinity. The degenerate
case ν = 0 needs special analysis since the limits ν → 0 and s→ ∞ do not commute.
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Another remark on the rational case is in order. Fusion relations (4.9), (4.10) give ”Bethe ansatz like”
equations for zeros of Ts(u) (4.44). Substituting zeros of Ts(u± 1) into (4.9), (4.10) and using (4.46) one
finds:

sinh(2ν(s+ 2))

sinh(2νs)

φ(z
(s)
j + s− 1)

φ(z
(s)
j + s+ 1)

= −

N
∏

k=1

z
(s)
j − z

(s−1)
k − 1

z
(s)
j − z

(s+1)
k + 1

, (4.48)

sinh(2ν(s+ 2))

sinh(2νs)

φ(z
(s)
j − s− 1)

φ(z
(s)
j − s− 3)

= −
N
∏

k=1

z
(s)
j − z

(s−1)
k + 1

z
(s)
j − z

(s+1)
k − 1

. (4.49)

These equations give the discrete dynamics of zeros in s. They are to be compared with dynamics of
zeros of rational solutions of classical nonlinear equations [12], [15]. It is an interesting open problem to
find elliptic analogues of eqs. (4.47)-(4.49).

5 The Ak−1-case: discrete time 2D Toda lattice

5.1 General solution

The family of bilinear equations arising as a result of the Bäcklund flow (Sect. 3.4),

F a
t (s, u+ 1)F a

t (s, u− 1) − F a
t (s+ 1, u)F a

t (s− 1, u) = F a+1
t (s, u)F a−1

t (s, u) , (5.1)

and the corresponding linear problems,

F a+1
t+1 (s+ 1, u)F a

t (s, u) − F a+1
t+1 (s, u− 1)F a

t (s+ 1, u+ 1) = F a
t+1(s, u)F

a+1
t (s+ 1, u) , (5.2)

F a
t+1(s+ 1, u− 1)F a

t (s, u) − F a
t+1(s, u)F

a
t (s+ 1, u− 1) = F a+1

t+1 (s, u− 1)F a−1
t (s+ 1, u) , (5.3)

subject to the b.c.
F a

t (s, u) = 0 as a < 0 and a > t (5.4)

They may be solved simultaneously by using the determinant representation (2.25). The set of functions
F a

t (s, u) entering these equations as illustrated by the following diagram:

0 1 0

0 F 0
1 F 1

1 0

0 F 0
2 F 1

2 F 2
2 0

· · · · · · · · · · · · · · ·

0 F 0
t F 1

t F 2
t · · · F t

t 0

(5.5)

(cf. (3.27)). Functions in each horizontal slice satisfy HBDE (5.1). By level of eq. (5.1) we understand
the number t. Level 0 is introduced for later convenience. At the moment we do not assume any relations
between solutions at different levels.

Determinant formula (2.25) gives the solution to these equations for each level t in terms of t arbi-

trary holomorphic3 functions h
(j)
t (u + s) and t arbitrary antiholomorphic functions h̄

(j)
t (u − s). This is

illustrated by the diagrams:

1

h
(1)
1 h

(2)
1

h
(1)
2 h

(2)
2 h

(3)
2

· · · · · · · · ·

h
(1)
t h

(2)
t · · · h

(t+1)
t

1

h̄
(2)
1 h̄

(1)
1

h̄
(3)
2 h̄

(2)
2 h̄

(1)
2

· · · · · · · · ·

h̄
(t+1)
t h̄

(t)
t · · · h̄

(1)
t

(5.6)

3Here we call holomorphic (antiholomorphic) a function of u + s (resp., u − s).
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Then, according to (2.25), the general solution to eq. (5.1) is

F a
t+1(s, u) = χa

t (u+ s)χ̄a
t (u− s)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h
(t+1)
t (u + s− a+ 2) · · · h

(1)
t (u + s− a+ 2)

h
(t+1)
t (u + s− a+ 4) · · · h

(1)
t (u + s− a+ 4)

· · · · · · · · ·

h
(t+1)
t (u + s+ a) · · · h

(1)
t (u + s+ a)

h̄
(t+1)
t (u − s+ a− t) · · · h̄

(1)
t (u − s+ a− t)

h̄
(t+1)
t (u − s+ a− t+ 2) · · · h̄

(1)
t (u − s+ a− t+ 2)

· · · · · · · · ·

h̄
(t+1)
t (u − s− a+ t) · · · h̄

(1)
t (u − s− a+ t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (5.7)

where 0 ≤ a ≤ t + 1 and the gauge functions χa
t (u), χ̄a

t (u) (introduced for normalization ) satisfy the
following equations:

χa
t (u + 1)χa

t (u− 1) = χa+1
t (u)χa−1

t (u) ,

χ̄a
t (u + 1)χ̄a

t (u− 1) = χ̄a+1
t (u)χ̄a−1

t (u) . (5.8)

(cf. (2.5)). The size of the determinant is t+ 1. The first a rows contain functions h
(j)
i , the remaining

t − a + 1 rows contain h̄
(j)
i . The arguments of h

(j)
i , h̄

(j)
i increase by 2, going down a column. Note

that the determinant in (5.7) (without the prefactors) is a solution itself. At a = 0 (a = t + 1) it
is an antiholomorphic (holomorphic) function. The required b.c. (3.19) can be satisfied by choosing
appropriate gauge functions χa

t , χ̄a
t .

5.2 Canonical solution

The general solution (5.7) gives the function T a
s (u) ≡ F a

k (s, u) in terms of 2k functions of one variable
hi

k−1 and h̄i
k−1. However, we need to represent the solution in terms of another set of 2k functions Qt(u)

and Q̄t(u) by virtue of conditions (5.4) in such a way that eqs. (5.2) (5.3) connecting two adjacent levels
are fulfilled. We refer to this specification as the canonical solution.

To find it let us notice that at a = 0 eq. (5.2) consist the holomorphic function Qt(u + s) and a
function F 1. According to eq. (5.7), F 1 is given by the determinant of the matrix with the holomorphic

entries h
(i)
t (u+ s+1) in the first row. Other rows contain antiholomorphic functions only, so F 1

t (u, s) =
∑

i h
(i)
t (u + s + 1)ηi(u − s), where ηi(u − s) are corresponding minors of the matrix (5.7) at a = 1.

Substituting this into eq. (5.2) at a = 0 and separating holomorphic and antiholomorphic functions one

gets relations connecting h
(i)
t , h

(i)
t−1 and Qt(u), Qt+1(u). Similar arguments can be applied to eq. (5.3) at

another boundary a = t+ 1. As a result one obtains

h
(1)
t (u+ s) = Qt(u+ s) , h̄

(1)
t (u− s) = Q̄t(u− s) (5.9)

and

Qt+1(u− 2)h
(i)
t−1(u) =

∣

∣

∣

∣

∣

h
(i+1)
t (u − 2) Qt(u − 2)

h
(i+1)
t (u) Qt(u)

∣

∣

∣

∣

∣

, (5.10)

Q̄t+1(u+ 1)h̄
(i)
t−1(u+ 1) =

∣

∣

∣

∣

∣

h̄
(i+1)
t (u) Q̄t(u)

h̄
(i+1)
t (u+ 2) Q̄t(u+ 2)

∣

∣

∣

∣

∣

, (5.11)
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where 1 ≤ i ≤ t. Functions χ, χ̄ in front of the determinant (5.7) are then fixed as follows:

χa
t (u) = (−1)at





a−1
∏

j=1

Qt+1(u− a+ 2j)





−1

, a ≥ 2 ,

χ0
t (u) = Qt+1(u) , χ1

t (u) = (−1)t , (5.12)

χ̄a
t (u) =





t−a
∏

j=1

Q̄t+1(u + a− t+ 2j − 1)





−1

, a ≤ t− 1 ,

χ̄t
t(u) = 1 , χ̄t+1

t (u) = Q̄t+1(u) . (5.13)

It is easy to check that they do satisfy eqs. (5.8). The recursive relations (5.10), (5.11) allow one to

determine functions h
(i)
t and

¯
h

(i)
t starting from a given set of Qt(u). These formulas generalize wronskian

relations (4.12), (4.13) to the Ak−1-case.

Let us also note that this construction resembles the Leznov-Saveliev solution [41] to the continuous
2DTL with open boundaries.

5.3 The Bethe ansatz and canonical solution

The canonical solution of the previous section immediately leads to the nested Bethe ansatz for elliptic
solutions.

In this case all functions h
(i)
t , h̄

(i)
t are elliptic polynomials multiplied by an exponential function:

h
(i)
t (u) = a

(i)
t eν

(i)
t

ηu

M
(i)
t
∏

j=0

σ(η(u − ut,i
j )) , (5.14)

h̄
(i)
t (u) = ā

(i)
t eν̄

(i)
t ηu

M̄
(i)
t
∏

j=0

σ(η(u − ūt,i
j )) . (5.15)

This implies a number of constraints on their zeros.

The determinant in (5.10) should be divisible by Qt+1(u− 2) and h
(i)
t−1(u), whence

h
(i+1)
t (ut+1

j )

h
(i+1)
t (ut+1

j + 2)
=

Qt(u
t+1
j )

Qt(u
t+1
j + 2)

, (5.16)

h
(i+1)
t (ut−1,i

j )

h
(i+1)
t (ut−1,i

j − 2)
=

Qt(u
t−1,i
j )

Qt(u
t−1,i
j − 2)

, (5.17)

where ut
j ≡ ut,1

j . Furthermore, it is possible to get a closed system of constraints for the roots of Qt(u)

only. Indeed, choosing u = ut
j, u = ut

j + 2 in (5.10), we get

Qt+1(u
t
j − 2)Qt−1(u

t
j) = −Qt(u

t
j − 2)h

(2)
t (ut

j) , (5.18)

Qt+1(u
t
j)Qt−1(u

t
j + 2) = Qt(u

t
j + 2)h

(2)
t (ut

j) . (5.19)

Dividing eq. (5.18) by eq. (5.19) we obtain the system of nested Bethe equations:

Qt−1(u
t
j + 2)Qt(u

t
j − 2)Qt+1(u

t
j)

Qt−1(ut
j)Qt(ut

j + 2)Qt+1(ut
j − 2)

= −1 , (5.20)

which coincides with (3.31) from Sect. 3.5.
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Similar relations hold true for the h̄-diagram:

h̄
(i+1)
t (ūt+1

j + 1)

h̄
(i+1)
t (ūt+1

j − 1)
=
Q̄t(ū

t+1
j + 1)

Q̄t(ū
t+1
j − 1)

, (5.21)

h̄
(i+1)
t (ūt−1,i

j + 1)

h̄
(i+1)
t (ūt−1,i

j − 1)
=
Q̄t(ū

t−1,i
j + 1)

Q̄t(ū
t−1,i
j − 1)

, (5.22)

Q̄t+1(ū
t
j + 1)Q̄t−1(ū

t
j + 1) = Q̄t(ū

t
j + 2)h̄

(2)
t (ūt

j) , (5.23)

Q̄t+1(ū
t
j − 1)Q̄t−1(ū

t
j − 1) = −Q̄t(ū

t
j − 2)h̄

(2)
t (ūt

j) , (5.24)

Q̄t−1(ū
t
j + 1)Q̄t(ū

t
j − 2)Q̄t+1(ū

t
j + 1)

Q̄t−1(ūt
j − 1)Q̄t(ūt

j + 2)Q̄t+1(ūt
j − 1)

= −1 . (5.25)

These conditions are sufficient to ensure that the canonical solution for T a
s (u) (i.e., for F a

k (s, u))
has the required general form (2.7). To see this, take a generic Q-factor from the product (5.12),
(Qt+1(u−a+2j))−1. It follows from (5.16) that at its poles the j-th and j+1-th rows of the determinant
(5.7) become proportional. The same argument repeated for Q̄-factors shows that F a

t+1(s, u) has no poles.

Finally, it is straightforward to see from (5.7) that the constraint Q̄t(u) = Qt(u−t) leads to condition
(2.15) (for −t ≤ s ≤ −1 two rows of the determinant become equal).

To summarize, the solution goes as follows. First, one should find a solution to Bethe equations
(3.31) thus getting a set of elliptic polynomials Qt(u), t = 1, . . . , k − 1, Q0(u) = 1, Qk(u) = φ(u) being
a given function. To make the chain of equations finite, it is convenient to use the formal convention
Q−1(u) = Qk+1(u) = 0. Second, one should solve step by step relations (5.10), (5.11) and find the

functions h
(i)
t (u), h̄

(i)
t (u). All these relations are of the same type as the wronskian relation (4.12) in the

A1-case: each of them is a linear inhomogeneous first order difference equation.

5.4 Conservation laws

The solution described in Sects. 5.2 and 5.3 provides compact determinant formulas for eigenvalues of
quantum transfer matrices. It also provides determinant representations for conservation laws of the
s-dynamics which generalize eqs. (4.6), (4.7) to the Ak−1-case. The generalization comes up in the form
of eqs. (4.20), (4.21) and (4.24). The conservation laws (i.e., integrals of the s-dynamics) follow from the
determinant representation (5.7) of the general solution to HBDE.

Let us consider (Ca
k + 1) × (Ca

k + 1)-matrices

T a
B,B′(s, u) ≡ T a

s+B+B′(u − s+B −B′), B,B′ = 1, . . . , Ca
k + 1 , (5.26)

T̄ a
B,B′(s, u) = T a

s−B−B′(u + s+B −B′), B,B′ = 1, . . . , Ca
k + 1 , (5.27)

where Ca
k is the binomial coefficient. Let T a[P |R](s, u) be minors of the matrix (5.26) with row P and

column R removed (similarly for (5.27)).

Theorem 5.1 Let T a
s (u) be the general solution to HBDE given by eq. (5.7). Then any ratio of the form

Ia,R
P,P ′(s, u) ≡

T a[P |R](s, u)

T a[P ′|R](s, u)
(5.28)

does not depend on s. These quantities are integrals of the s-dynamics: Ia,R
P,P ′(s, u) = Ia,R

P,P ′(u). Similarly,

minors of the matrix (5.27) give in the same way a complimentary set of conservation laws4.

4compare with (4.6), (4.7).
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A sketch of proof is as follows.

Consider the Laplace expansion of the determinant solution (5.7) with respect to the first a (holo-
morphic) rows:

T a
s (u) =

Ca
k
∑

P=1

ψa
P (u+ s)ψ̄a

P (u − s) (5.29)

Here P numbers (in an arbitrary order) sets of indices (p1, p2, . . . , pa) such that k ≥ p1 > p2 > . . . >
pa ≥ 1, ψa

P (u+s) is minor of the matrix in eq. (5.7) constructed from first a rows and columns p1, . . . , pa

(multiplied by χa
k−1(u+ s)), ψ̄a

P (u− s) is the complimentary minor (multiplied by χ̄a
k−1(u− s)).

Substitute R-th column of the matrix (5.26) by the column vector with components ψa
P (u+2B), B =

1, . . . , Ca
k + 1. The matrix obtained this way (let us call it (T a;R,P )B,B′) depends on R = 1, . . . , Ca

k + 1,
P = 1, . . . , Ca

k and a = 1, . . . , k−1. The ”complementary” matrix (T̄ a;R,P )B,B′ is defined by the similar
substitution of the column vector ψ̄a

P (u+ 2B), B = 1, . . . , Ca
k + 1, into the matrix (5.27).

Lemma 5.1 Determinants of all the four matrices introduced above vanish:

det(T a) = det(T̄ a) = det(T a;R,P ) = det(T̄ a;R,P ) = 0 . (5.30)

The proof follows from the Laplace expansion (5.29). ¿From this representation it is obvious that
Ca

k + 1 columns of the matrices in (5.30) are linearly dependent. This identity is valid for arbitrary

functions h
(i)
t (u + s), h̄

(i)
t (u− s) in eq. (5.7).

The conservation laws immediately follow from these identities. Indeed, let us rewrite the determinant
of the matrix T a;R,P as a linear combination of entries of the R-th column:

det(T a;R,P ) =

Ca
k+1
∑

B′=1

(−1)B′+Rψa
P (u+ 2B′)T a[B′|R](s, u) = 0 . (5.31)

Dividing by T a[P ′|R](s, u), we get, using the notation (5.28):

Ca
k+1
∑

B′=1,B′ 6=P ′

(−1)B′

ψa
P (u+ 2B′)Ia,R

B′,P ′(s, u) = (−1)P ′+1ψa
P (u+ 2P ′) . (5.32)

The latter identity is a system of Ca
k linear equations for Ca

k quantities Ia,R
1,P ′(s, u), I

a,R
2,P ′ (s, u), . . . ,

Ia,R
P ′−1,P ′(s, u), I

a,R
P ′+1,P ′(s, u), . . ., I

a,R
Ca

k
+1,P ′(s, u). In the case of general position wronskians of the func-

tions ψa
P (u) is nonzero, whence system (5.32) has a unique solution for Ia,R

P,P ′(s, u). The coefficients of

the system do not depend on s. Therefore, Ia,R
P,P ′(s, u) are s-independent too. Similar arguments are

applied to minors of the matrix (5.27).

Another form of eq. (5.31) may be obtained by multiplication its l.h.s. by ψ̄a
P (u−2s) and summation

over P . This yields
Ca

k+1
∑

B=1

(−1)BT a
s+B(u− s+B)T a[B|R](s, u) = 0 , (5.33)

which is a difference equation for T a
s (u) as a function of the ”holomorphic” variable u + s with fixed

u− s.

5.5 Generalized Baxter’s relations

Equation (5.31) can be considered as a linear difference equation for a function ψa(u) having Ca
k linearly

independent solutions ψa
P (u). It provides the Ak−1-generalization of Baxter’s relations (4.4), (4.5). This

generalization comes up in the form of eqs. (4.20), (4.21) and (4.24).

The simplest cases are a = 1 and a = k−1. Then there are k+1 terms in the sum (5.31). Furthermore,
it is easy to see that

ψ1
i (u) = h

(i)
k−1(u+ 1), ψ̄k−1

i (u) = h̄
(i)
k−1(u) . (5.34)
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Then eq. (5.31) and a similar equation for antiholomorphic parts read:

k+1
∑

j=1

(−1)jh(i)(u+ 2j + 1)T 1[j|k + 1](s, u) = 0 , (5.35)

k+1
∑

j=1

(−1)jh̄(i)(u+ 2j)T̄ k−1[j|k + 1](s, u) = 0 , (5.36)

where we put R = k+1 for simplicity. These formulas may be understood as linear difference equations
of order k. Indeed, eq. (5.35) can be rewritten as the following equation for a function X(u):

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T 1
s (u) T 1

s+1(u− 1) . . . T 1
s+k−1(u− k + 1) X(u+ s+ 1)

T 1
s+1(u+ 1) T 1

s+2(u) . . . T 1
s+k(u− k + 2) X(u+ s+ 3)

. . . . . . . . . . . . . . .

T 1
s+k(u+ k) T 1

s+k+1(u+ k − 1) . . . T 1
s+2k−1(u+ 1) X(u+ s+ 2k + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 , (5.37)

This equations has k solutions h
(i)
k−1(u), i = 1, . . . , k. One of them is Qk−1 ≡ h

(1)
k−1(u) (see eq.(5.9)).

Similar equation (5.36) for the antiholomorphic parts,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T k−1
s (u) T k−1

s−1 (u− 1) . . . T k−1
s−k+1(u − k + 1) X̄(u− s)

T k−1
s−1 (u + 1) T k−1

s−2 (u) . . . T k−1
s−k (u− k + 2) X̄(u− s+ 2)

. . . . . . . . . . . . . . .

T k−1
s−k (u + k) T k−1

s−k−1(u + k − 1) . . . T k−1
s−2k+1(u + 1) X̄(u− s+ 2k)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 , (5.38)

has k solutions h̄
(i)
k−1(u), i = 1, . . . , k. One of them is Q̄k−1 ≡ h̄

(1)
k−1(u).

Difference equations (5.37), (5.38) can be rewritten in the factorized form. This fact follows from a
more general statement. Fix an arbitrary level k and set T a

s (u) = F a
k (s, u) (as in Sect. 3). Then for

each j = 0, 1, . . . , k − 1 it holds:

(

e∂s+∂u −R
(j)
j+1(s, u)

)(

e∂s+∂u −R
(j)
j (s, u)

)

. . .
(

e∂s+∂u −R
(j)
1 (s, u)

)

F k−1−j(s, u) = 0 , (5.39)

(

e∂s−∂u − R̄
(j)
j+1(s, u)

)(

e∂s−∂u − R̄
(j)
j (s, u)

)

. . .
(

e∂s−∂u − R̄
(j)
1 (s, u)

)

F j(s, u) = 0 , (5.40)

where

R
(k−1−j)
i (s, u) =

T j
s+i−1(u + i− 1)T j+i−1

s+i−2 (u− 1)T j+i
s+i (u)

T j
s+i−2(u+ i− 2)T j+i−1

s+i−1 (u)T j+i
s+i−1(u− 1)

, (5.41)

R̄
(j)
i (s, u) =

T j+1
s+i−1(u − l)T j−i+1

s+l (u− 1)T j−i+2
s+i−2 (u)

T j+1
s+i−2(u− i+ 1)T j−i+1

s+i−1 (u)T j−i+2
s+i−1 (u− 1)

(5.42)

The proof is by induction. At j = 0 eq. (5.39) turns into

(

e∂s+∂u −
T k

s+1(u)

T k
s (u− 1)

)

F k−1(s, u) = 0 .
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This means that F k−1(s, u) does not depend on u+ s. Further,

F a(s+ 1, u) = −
T a

s (u − 1)

T a−1
s (u)

(

e∂s+∂u −
T a

s+1(u)

T a
s (u− 1)

)

F a−1(s, u) , (5.43)

(see (3.8)). The inductive step is then straightforward. The proof of (5.40) is absolutely identical.

Now, putting j = k − 1 we get the following difference equations in one variable:

(

e2∂u+∂s −R
(k−1)
k (s, u− s)

)(

e2∂u+∂s −R
(k−1)
k−1 (s, u− s)

)

. . .
(

e2∂u+∂s −R
(k−1)
1 (s, u− s)

)

Qk−1(u) = 0 ,
(5.44)

(e−2∂u+∂s − R̄
(k−1)
k (s, u+ s))(e−2∂u+∂s − R̄

(k−1)
k−1 (s, u+ s)) . . . (e−2∂u+∂s − R̄

(k−1)
1 (s, u+ s))Q̄k−1(u) = 0 .

(5.45)
Note that operators e±∂s act only on the coefficient functions in (5.44), (5.45). These equations provide
a version of the discrete Miura transformation of generalized Baxter’s operators, which is different from
the one discussed in the Ref. [43] (see also below).

Coming back to eq. (5.31) and using relations (5.10), (5.11), one gets after some algebra:

ψk−1
k (u) = h

(1)
1 (u+ k − 1) = Q1(u+ k − 1) , (5.46)

ψ̄1
k(u) = h̄

(1)
1 (u) = Q̄1(u) (5.47)

(the proof is straightforward but too lengthy to present it here).

Then, in complete analogy with eqs. (5.37), (5.38), one obtains from (5.31) the following difference
equations:
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∣

∣

∣

∣

∣

T k−1
s (u) T k−1

s+1 (u− 1) . . . T k−1
s+k−1(u− k + 1) X(u+ s+ k − 1)

T k−1
s+1 (u+ 1) T k−1

s+2 (u) . . . T k−1
s+k (u− k + 2) X(u+ s+ k + 1)

. . . . . . . . . . . . . . .

T k−1
s+k (u+ k) T k−1

s+k+1(u+ k − 1) . . . T k−1
s+2k−1(u+ 1) X(u+ s+ 3k − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

= 0 , (5.48)
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T 1
s (u) T 1

s−1(u − 1) . . . T 1
s−k+1(u− k + 1) X̄(u− s)

T 1
s−1(u + 1) T 1

s−2(u) . . . T 1
s−k(u− k + 2) X̄(u− s+ 2)

. . . . . . . . . . . . . . .

T 1
s−k(u+ k) T 1

s−k−1(u+ k − 1) . . . T 1
s−2k+1(u+ 1) X̄(u− s+ 2k)

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

= 0 (5.49)

to which Q1(u) (resp., Q̄1(u)) is a solution. The other k − 1 linearly independent solutions to eq. (5.48)
(resp., (5.49)) are other algebraic complements of the last (first) line of the matrix in eq. (5.7) at a = k−1
(a = 1) multipiled by χk−1

k−1 (χ̄1
k−1).

Further specification follows from imposing constraints (3.12) which ensure conditions (2.4) forced
by the usual Bethe ansatz. One can see that under these conditions eqs. (5.48) and (5.49) become the
same. Further, substituting a particular value of s, s = −k, into, say, eqs. (5.48), (5.37), one gets the
following difference equations:

k
∑

a=0

(−1)aT a
1 (u + a− 1)Q1(u+ 2a− 2) = 0 , (5.50)
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k
∑

a=0

(−1)a T a
1 (u− a− 1)

φ(u − 2a)φ(u− 2a− 2)
Qk−1(u − 2a) = 0 (5.51)

(we remind the reader that φ(u) ≡ Qk(u)). The latter equation can be obtained directly from the
determinant formula (5.7): notice that under conditions (2.4) the determinants in eq. (5.7) become

minors of the matrix h
(i)
k−1(u− 2k+ 2j), where i numbers columns running from 1 to k, j numbers lines

and runs from 0 to k skipping the value k−a. Taking care of the prefactors in eq. (5.7) and recalling that

h
(1)
k−1(u) = Qk−1(u), one gets eq. (5.51). These formulas give a generalization of the Baxter equations

(4.4), (4.5), (4.11).

At last, we are to identify our Qt’s with Qt’s from the usual nested Bethe ansatz solution. This is
achieved by factorization of the difference operator in (5.50) in terms of Qt(u):

k
∑

a=0

(−1)aT a
1 (u+ a− 1)e2a∂u =

(

e2∂u −
Qk(u)Qk−1(u− 2)

Qk(u− 2)Qk−1(u)

)

. . .

(

e2∂u −
Q2(u)Q1(u− 2)

Q2(u− 2)Q1(u)

)(

e2∂u −
Q1(u)

Q1(u− 2)

)

. (5.52)

This formula (proved by a straightforward calculation using inductive argument) coincides with the one
known in the literature (see e.g. [38], [44]). It yields T a

1 (u) in terms of elliptic polynomials Qt with roots
constrained by the nested Bethe ansatz equations. They ensure cancellation of poles in the r.h.s. The
l.h.s. of eq. (5.52) is known as the generating function for T a

1 (u); T a
s (u) for s > 1 can be found with the

help of determinant formula (2.24).

6 Regular elliptic solutions of the HBDE and RS system in

discrete time

In this section we study the class of elliptic solutions to HBDE for which the number of zeros Mt of
the τ -function does not depend on t. We call them elliptic solutions of the regular type since they have
a smooth continuum limit. Although it has been argued in the previous section that the situation of
interest for the Bethe ansatz is quite opposite, we find it useful to briefly discuss this class of solutions.

It is convenient to slightly change the notation: τ l,m(x) ≡ τu(−m,−l), x ≡ uη. HBDE (1.8) acquires
the form

τ l+1,m(x)τ l,m+1(x) − τ l+1,m+1(x)τ l,m(x) = τ l+1,m(x+ η)τ l,m+1(x− η) . (6.1)

We are interested in solutions that are elliptic polynomials in x,

τ l,m(x) =

M
∏

j=1

σ(x − xl,m
j ) . (6.2)

The main goal of this section is to describe this class of solutions in a systematic way and, in particular,
to prove that all the elliptic solutions of regular type are finite-gap.

The auxiliary linear problems (3.5) look as follows:

Ψl,m+1(x) = Ψl,m(x+ η) +
τ l,m(x)τ l,m+1(x+ η)

τ l,m+1(x)τ l,m(x+ η)
Ψl,m(x) , (6.3)

Ψl+1,m(x) = Ψl,m(x) +
τ l,m(x − η)τ l+1,m(x+ η)

τ l+1,m(x)τ l,m(x)
Ψl,m(x − η) . (6.4)

(The notation is correspondingly changed: Ψl,m(uη) ≡ ψu(−m,−l).) The coefficients are elliptic func-
tions of x. Similarly to the case of the Calogero-Moser model and its spin generalizations [14], [15] the
dynamics of their poles is determined by the fact that equations (6.3), (6.4) have infinite number of
double-Bloch solutions (Sect. 4).
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The ”gauge transformation” f(x) → f̃(x) = f(x)eax (a is an arbitrary constant) does not change
poles of any function and transforms a double-Bloch function into another double-Bloch function. If Bα

are Bloch multipliers for f , then the Bloch multipliers for f̃ are B̃1 = B1e
2aω1 , B̃2 = B2e

2aω2 , where ω1,
ω2 are quasiperiods of the σ-function. Two pairs of Bloch multipliers are said to be equivalent if they
are connected by this relation with some a (or by the equivalent condition that the product Bω2

1 B−ω1
2 is

the same for both pairs).

Consider first eq. (6.3). Since l enters as a parameter, not a variable, we omit it for simplicity of the

notation (e.g. xl,m
j → xm

j ).

Theorem 6.1 Eq. (6.3) has an infinite number of linearly independent double-Bloch solutions with
simple poles at the points xm

i and equivalent Bloch multipliers if and only if xm
i satisfy the system of

equations
M
∏

j=1

σ(xm
i − xm+1

j )σ(xm
i − xm

j − η)σ(xm
i − xm−1

j + η)

σ(xm
i − xm+1

j − η)σ(xm
i − xm

j + η)σ(xm
i − xm−1

j )
= −1 . (6.5)

All these solutions can be represented in the form

Ψm(x) =

M
∑

i=1

ci(m, z, κ)Φ(x− xm
i , z)κ

x/η (6.6)

(Φ(x, z) is defined in (4.35)). The set of corresponding pairs (z, κ) are parametrized by points of an
algebraic curve defined by the equation of the form

R(κ, z) = κM +

M
∑

i=1

ri(z)κ
M−i = 0 . (6.7)

Sketch of proof. We omit the detailed proof since it is almost identical to the proof of the corresponding
theorem in [16] and only present the part of it which provides the Lax representation for eq. (6.5).

Let us substitute the function Ψm(x) of the form (6.6) into eq. (6.3). The cancellation of poles at
x = xm

i − η and x = xm+1
i gives the conditions

κci(m, z, κ) + λi(m)

M
∑

j=1

cj(m, z, κ)Φ(xm
i − xm

j − η, z) = 0 , (6.8)

ci(m+ 1, z, κ) = µi(m)

M
∑

j=1

cj(m, z, κ)Φ(xm+1
i − xm

j , z) , (6.9)

where

λi(m) =

∏M
s=1 σ(xm

i − xm
s − η)σ(xm

i − xm+1
s )

∏M
s=1, 6=i σ(xm

i − xm
s )
∏M

s=1 σ(xm
i − xm+1

s − η)
, (6.10)

µi(m) =

∏M
s=1 σ(xm+1

i − xm+1
s + η)σ(xm+1

i − xm
s )

∏M
s=1, 6=i σ(xm+1

i − xm+1
s )

∏M
s=1 σ(xm+1

i − xm
s + η)

. (6.11)

Introducing a vector C(m) with components ci(m, z, κ) we can rewrite these conditions in the form

(L(m) + κI)C(m) = 0 , (6.12)

C(m+ 1) = M(m)C(m) , (6.13)

where I is the unit matrix. Entries of the matrices L(m) and M(m) are:

Lij(m) = λi(m)Φ(xm
i − xm

j − η, z), (6.14)

Mij(m) = µi(m)Φ(xm+1
i − xm

j , z). (6.15)
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The compatibility condition of (6.12) and (6.13),

L(m+ 1)M(m) = M(m)L(m) (6.16)

is the discrete Lax equation.

By the direct commutation of the matrices L, M (making use of some non-trivial identities for the
function Φ(x, z) which are omitted) it can be shown that for the matrices L and M defined by eqs.
(6.14), (6.10) and (6.15), (6.11) respectively, the discrete Lax equation (6.16) holds if and only if the
xm

i satisfy eqs. (6.5). It is worthwhile to remark that in terms of λi(m), µi(m) equations (6.5) take the
form

λi(m+ 1) = −µi(m), i = 1, . . . ,M . (6.17)

Eq. (6.12) implies that
R(κ, z) ≡ det(L(m) + κI) = 0 . (6.18)

The coefficients of R(κ, z) do not depend on m due to (6.16). This equation defines an algebraic curve
(6.7) realized as a ramified covering of the elliptic curve.

Solutions to eq. (6.5) are implicitly given by the equation

Θ(~Uxl,m
i + ~U+l + ~U−m+ ~Z) = 0 , (6.19)

where the Riemann theta-function Θ( ~X) corresponds to the spectral curve (6.7), (6.18), components of

the vectors ~U , ~U+, ~U− are periods of certain dipole differentials on the curve, ~Z is an arbitrary vector.

Elliptic solutions are characterized by the following property: 2ωi
~U , i = 1, 2, belongs to the lattice of

periods of holomorphic differentials on the curve. The matrix L(m) = L(l,m) is defined by fixing xl0,m0

j ,

xl0,m0+1
j , i = 1, . . . ,M . These Cauchy data uniquely define the curve and the vectors ~U , ~U+, ~U− and ~Z

in eq. (6.19). The curve and vectors ~U , ~U+, ~U− do not depend on the choice of l0,m0. According to eq.

(6.19), the vector ~Z depends linearly on this choice and its components are thus angle-type variables.

The same analysis can be repeated for the second linear problem (6.4). Now m enters as a parameter
and we set xl,m → x̂l

i for simplicity. The theorem is literally the same, the equations of motion for the
poles being

M
∏

j=1

σ(x̂l
i − x̂l+1

j + η)σ(x̂l
i − x̂l

j − η)σ(x̂l
i − x̂l−1

j )

σ(x̂l
i − x̂l+1

j )σ(x̂l
i − x̂l

j + η)σ(x̂l
i − x̂l−1

j − η)
= −1 . (6.20)

The corresponding discrete Lax equation is

L̂(l + 1)M̂(l) = M̂(l)L̂(l) , (6.21)

where5

L̂ij(l) = λ̂i(l)Φ(x̂l
i − x̂l

j − η, z), (6.22)

M̂ij(l) = µ̂i(l)Φ(x̂l+1
i − x̂l

j − η, z), (6.23)

and

λ̂i(l) =

∏M
s=1 σ(x̂l

i − x̂l
s − η)σ(x̂l

i − x̂l+1
s + η)

∏M
s=1, 6=i σ(x̂l

i − x̂l
s)
∏M

s=1 σ(x̂l
i − x̂l+1

s )
, (6.24)

µ̂i(l) =

∏M
s=1 σ(x̂l+1

i − x̂l+1
s + η)σ(x̂l+1

i − x̂l
s − η)

∏M
s=1, 6=i σ(x̂l+1

i − x̂l+1
s )

∏M
s=1 σ(x̂l+1

i − x̂l
s)
. (6.25)

All these formulas can be obtained from (6.5), (6.10)-(6.15) by the formal substitutions xm
i → x̂l

i,

xm±1
i → x̂l±1

i ∓ η. According to the comment after eq. (6.19), the Cauchy data for the l-flow xl0,m0

j ,

x
l0+1,m0

j are uniquely determined by fixing the Cauchy data xl0,m0

j , x
l0,m0+1

j for the m-flow and vice
versa.

5A very close version of the discrete L-M pair appeared first in the Ref.[18] as an a priori ansatz
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7 Conclusion and outlook

It turned out that classical and quantum integrable models have a deeper connection than the common
assertion that the former are obtained as a ”classical limit” of the latter. In this paper we have tried
to elaborate perhaps the simplest example of this phenomenon: the fusion rules for quantum transfer
matrices coincide with Hirota’s bilinear difference equation (HBDE).

We have identified the bilinear fusion relations in Hirota’s classical difference equation with particular
boundary conditions and elliptic solutions of Hirota equation, with eigenvalues of the quantum transfer
matrix. Eigenvalues of the quantum transfer matrix play the role of the τ -function. Positions of zeros of
the solution are determined by the Bethe ansatz equations. The latter have been derived from entirely
classical set-up.

We have shown that nested Bethe ansatz equations can be considered as a natural discrete time
analogue of the Ruijsenaars-Schneider system of particles. The discrete time t runs over vertices of the
Dynkin graph of Ak−1-type and numbers levels of the nested Bethe ansatz. The continuum limit in t
gives the continuous time RS system [17]. This is our motivation to search for classical integrability
properties of the nested Bethe ansatz equations.

In addition we constructed the general solution of the Hirota equation with a certain boundary
conditions and obtained new determinant representations for eigenvalues of the quantum transfer matrix.
The approach suggested in Sect. 5 resembles the Leznov-Saveliev solution [41] to the 2D Toda lattice
with open boundaries. It can be considered as an integrable discretization of the classical W -geometry
[42].

We hope that this work gives enough evidence to support the assertion that all spectral characteristics
of quantum integrable systems on finite 1D lattices can be obtained starting from a classical discrete
soliton equations, not implying a quantization. The Bethe ansatz technique, which has been thought
of as a specific tool of quantum integrability is shown to exist in classical discrete nonlinear integrable
equations. The main new lesson is that solving classical discrete soliton equations one recovers a lot of
information about a quantum integrable system.

Soliton equations usually have a huge number of solutions with very different properties. To extract
the information about a quantum model, one should restrict the class of solutions by imposing certain
boundary and analytic conditions. In particular, elliptic solutions to HBDE give spectral properties of
quantum models with elliptic R-matrices.

The difference bilinear equation of the same form, though with different analytical requirements, has
appeared in quantum integrable systems in another context. Spin-spin correlation functions of the Ising
model obey a bilinear difference equation that can be recast into the form of HBDE [46], [47], [48].
More recently, nonlinear equations for correlation functions have been derived for a more general class
of quantum integrable models, by virtue of the new approach of Ref. [49].

Thermodynamic Bethe ansatz equations written in the form of functional relations [30], [31] (see
e.g., [45]) appeared to be identical to HBDE with different analytic properties.

All these suggest that HBDE may play the role of a master equation for both classical and quantum
integrable systems simultaneously, such that the ”equivalence” between quantum systems and discrete
classical dynamics might be extended beyond the spectral properties discussed in this paper. In particu-
lar, it will be very interesting to identify the quantum group structures and matrix elements of quantum
L-0perators and R-matrices with objects of classical hierarchies. We do not doubt that such relation
exists.
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