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General Rational  Reductions of the KP Hierarchy 
and Their Symmetries  

I .  M .  K r i c h e v e r  UDC 530.1 

The main goal of this paper  is to prove the existence of a new general type of reductions for the hierarchy 
of the Kadomtsev-Petviashvil i  (KP) equation. The KP equation 

~tyy Jv (~tt - ~?z?-tx3 _ i~txzx)z l  = 0 (1)  

was the first spatially two-dimensional equation included in the framework of the inverse problem method. 
As was observed in [1, 2], Eq. (1) possesses the zero-curvature representation 

[Oy - L ,  Ot - d] = O, (2) 

w h e r e  

L = O~ + ~(x, ~, t), A = O: + ~Ox  + w(x, y, t) .  (3) 

The zero-curvature representation was also used to describe an infinite set of nonlinear equations com- 
patible with the KP equation. These equations form a system of equations for the coefficients vi,n of an 
infinite set of ordinary linear differential operators 

n - - 2  

Ln : 0 :  4- Z V i , n ( t l , t 2 , . . . ) o i ~ ,  (4) 
i=0 

and are equivalent to the operator equations 

[ O m - L m , O n - L n ]  = 0 ,  O n = O / O t n .  (5) 

In this form the "hierarchy" of the KP equation is an infinite system of equations for infinitely many 
unknown functions depending on infinitely many variables. 

The KP hierarchy was defined in [3] as a system of commuting evolution equations on the space of infinite 
tuples u i ( x ) ,  i = 1 ,2 ,  . . .  , of functions of one variable. The corresponding equations are equivalent to 
the Lax equations 

o . ~ =  [ ~ ; , q  (6) 

for the pseudodifferential operator 

~ = a. + ~ ~ a ;  '. (7) 
i----1 

(From now on D+ stands for the differential part  of a pseudodifferential operator D.)  The equivalence 
of these two definitions of KP hierarchy was proved in [4]. 

The basic type of reductions that  has been considered in the theory of KP hierarchy is the reduc- 
tion to stat ionary points of one of the flows of the hierarchy (or of a linear combination of such flows). 
The corresponding invariant submanifolds are characterized by the property that  the n th  power of the 
corresponding pseudodifferential operator L is a differential operator,  that  is, 

n--2 

~ = ~+ = L = a~ + ~ ~ , (~ )  . (s) 
i=1 

The coefficients of ~ are differential polynomiMs in the coe~cients wi of the differential operator L, and 
wi parametrize the corresponding invariant subspace of the KP hierarchy. 
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Let 9(m,~ be the manifold of pseudodifferential operators L such that 

L n = L~ -1L~, (9) 

where L1 and L2 are coprime differential operators of degrees m and n + m ,  respectively. (Two differential 
operators are said to be coprime if their kernels do not intersect.) The coefficients of these operators 

rn--1 n + m - - 1  

= + L2 = 0 W  + (i0) 
i=1  j = l  

are parameters that specify the points of :K,~,~. The normalization of L such that there is no free term 
on the right-hand side in (7) is equivalent to the only relation on the coefficients of L~ and L2: 

W l , m - - 1  ~- W 2 , n + m - - 1 .  (ii) 

The coefficients of pseudodifferential operators that belong to :K,,,~ are differential polynomials in wl ,i 
and w2,j. 

A priori, the definition of 9~,~,n depends on the order of factors in the right-hand side in (9). But we 
are going to show that the corresponding submanifold of pseudodifferential operators is independent of 
this order and depends only on the degrees of the numerator and denominator of the noncommutative 
fraction. 

L e m m a  1. For any coprime differential operators L3 and L4 of degrees rn and n + ra, respectively, 
there exist unique normalized differential operators L1 and L2 of degrees m and n + m ,  respectively, such 
that 

L-~i L2 = L4L;  1. (12) 
(A differential operator is said to be normalized if its leading coefficient is equal to 1 .) 

R e m a r k .  This result is well known. Exact formulas for the coefficients of L1 and L2 can be found 
in [5]. Nevertheless, we are going to present the proof in a form that will be useful later. 

P roo f .  Let 0 i ,  i = 3, 4, be the kernel of Li, i.e., 

y(x) e 0 , :  L,y(x)  = o.  (13) 

The dimension of the linear space 04 is n + m.  It follows from the hypothesis of the lemma that the 
image L3(04) of this space has the same dimension. Therefore, the equation 

L2y(z) : 0, y(x) e L3((94), t14) 

uniquely defines a normalized differential operator L2 of degree n + m.  The operator L1 of degree n is 
defined by the equation 

Lly(x)  = O, y(x) e L4(03). (15) 

It  follows from the definition of L1 and L2 that the differential operators L2L3 and LIL4 of degree 
2n + m have the same kernel 03 + (94. Therefore, they are equal. The equation 

L1L4 =- L2L3 (16) 

is equivalent to (12). The lemma is thereby proved. 

In the s~me way one can prove the converse statement: for any coprime differential operators L1 and 
L2 there exist unique normalized differential operators L3 and L4 such that Eq. (12) is valid. 

T h e o r e m  1. For any n and m the space 9G~,,~ is invariant with respect to the KP hierarchy (6). 
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Proof .  Equation (6) for I5 6 ~m,n is equivalent to the equation 

It follows from (17) that 

Oi(L-~ 1L~) : [(Z~ -1L2)i/+ n , L ;  1L~] . 

(OiL~)L~ - (0iLl)L4 = LI(L~ I L~)i+/,~L4 _ L2(L 1-1L2)+i/nL3, 

(17) 

(18) 

where L3 and L4 are differential operators such that (12) is satisfied. 
To prove the theorem, it suffices to show that for given L1 and L2 Eq. (18) uniquely defines operators 

OiL 1 and cgiL2 of degrees m - 1 and n + m - 1, respectively. 
Let D be the operator defined by the right-hand side in (18). The coefficients of this operator are 

differential polynomials in the coefficients of L1 and L2, that is, D = D(L1, L2). In the same wa.v 
as in the proof of the correctness of the KP hierarchy, one can show that this operator is of degree 
n + 2m - 1. Indeed, any operator commutes with the powers of itself (including fractional powers). Hence, 
the differential part of the operator (L-~L2) ff'~ can be replaced in (17) by its integral part 

(19) 

Therefore, 

(Z~ -1L2)i_/'~ = (Li-' L2)i/" _ (Z~ -1Z2)~ n .  

D : L2(L~IL2)i/_nLa - LI(L~L2)i/_nLt.  (20) 

The last equation shows that the degree of the differential operator D is less than or equal to n + 2rn - 1. 

L e m m a  2. For any differential operator D of degree n + 2rn - 1 and for any coprirne differential 
operators La and L4 of degrees rn and n + rn, respectively, there exist unique differential operators A~ 
and A~ of degrees rn - 1 and n + rn - 1, respectively, such that 

A:La - AIL4 - D = 0. (21) 

P roof .  A differential operator A1 of degree m - 1 is uniquely determined by its action on any m- 
dimensional linear space. Therefore, it can be specified by the equation 

A similar equation, 

A~y(x) : Dy(x), y(x) e L4(03). (22) 

A2y(x) : Dy(x), y(x) e Za(04), (23) 

specifies the operator A2. It follows from Eqs. (21) and (22) that the differential operator specified by the 
left-hand side in (21) is of degree n + 2rn - 1 and that the dimension of its kernel is greater than or equal 
to n + 2m. Hence, this operator is zero. Lemma 2 is thereby proved. 

If La, L4 and D are given by Eqs. (12) and (20), then the operators Ai are uniquely determined by 
L1 and L2, that is, Ai : Ai(L~, L~). Therefore, the equations 

O{L~ : A~(L1, Ze), O { L : :  A~(L~, L~) (24) 

correctly define the evolution of the operators L~ and L2. The theorem is proved. 
When discussing this result with the author, T. Shiota proposed an explicit form of the equations that 

define the evolution of L~ and L~. 

T h e o r e m  2. The restriction of the KP hierarchy to ~m,n is equivalent to the equations 

(25) 

(26) 

OiL1 i l ( i ~ l i 2 ) ~  n -1 i/n = - (L2L1)+ L1, 

OiL2 : L2(L~ -IL2)i+/n -- (Z2z~-l)~nZ2. 
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Proof .  It follows from Theorem 1 that (17) correctly defines the evolution of L1 and L2. On the 
other hand, it can readily be verified that Eq. (17) follows from Eqs. (25) and (26). Therefore, to prove 
the theorem it suffices to verify that the right-hand sides in Eqs. (25) and (26) are differential operators 
of degrees not greater than rn - 1 and n + m - 1, respectively. The last statement follows from the fact 
that, by virtue of the identities 

L~I(L2L-~I)i / '~L1 = (L-~I L2) i/'~ , L~I(L2L-~I)~/'~L2 = (L-~I L2) ~/'~ , (27) 

Eqs. (25) and (26) are equivalent to the equations 

OiL~ = (n2L~) i /_nn~  - L I ( L ~ X L 2 ) ~  n, (28) 

OiL2 = ( L 2 L ~ I ) ~ n L 2  - L 2 ( L ~ I L 2 ) ~  n. (29) 

The theorem is proved. 

R e m a r k .  Equations (28) and (29) are similar to the formulas obtained in [6] that describe the evolution 
of the factors L = LIL2,  where Li are differential operators or pseudodifferential operators of some special 
kind. 

E x a m p l e .  A particular case of the cited statements is given by the results in the papers [8, 9], where it 
was proved that the hierarchy of the nonlinear Schrbdinger equation can be obtained as a special reduction 
of the KP hierarchy. In the notation of the present work, the corresponding reduction is the reduction to 
the space ~1,2. 

The coefficients of the pseudodifferentiM operator 
oo 

f~ : (Ox + V)--I (0x 2 ~" VOx -~- W) = Ox + E ~tiO-~i (30) 
i=1 

are differential polynomials in the functions v and w and are recursively defined by the equations 

ul = w ,  U i + l + U i ~ + v u i = 0 ,  i > l .  (31)  

Let us consider the second flow of the KP hierarchy (6), that is, the equation that defines the dependence 
of L on the variable t2. For n = 2, we have L~ : 0~ 2 + 2ul .  The corresponding equations for the first 
two coefficients of L can be reduced to a closed system of two equations for two unknown functions by 
using Eq. (31) for i = 1,2: 

02ul = U l ~  + 2u2~, u2 = -Ul~ + VUl, (32) 

0 : ~ :  = ~ : x .  + 2 ~ .  + 2 u 1 ~  = ~ .  - 2 ( ~  + w : ) .  + 2~1~1~.  (33) 

Let us define two new unknown functions r and q by setting 

u~ : rq, v : - r x / r .  (34) 

Equations (32) and (33) are equivalent to the system 

02r : rxx + rqr ,  02q = - q x x  + qrq, (35) 

which for r = +q* and t2  : it transforms into the nonlinear Schrbdinger equation 

i~, - r ~  ~= I~1~ = o .  (36) 

R e m a r k .  Equations (35) admit the Lax representation Lt  : [A, L], where L is the Dirac operator. 
It seems quite natural to conjecture that the proposed reductions of the KP hierarchy contain all equations 
that have a Lax representation with differential operators L with matrix coefficients of an arbitrary 
dimension. 

The restrictions of the KP hierarchy to the spaces X,,.,,~ give a "quuntization" of the corresponding 
algebraic orbits [7] of the dispersionless KP hierarchy. The hierarchy of the dispersionless KP equation is 
a system of commuting evolution equations 

0 ~ "  : {~+,~ K }  = O,(~)O~K - 0 ~ ( ~ ) 0 ~ , "  (37) 
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for the coefficients of the Laurent series 
(x) 

I (p) = p + v i ( x ,  t l ,  . . . ) p - i .  (3s) 
i = 1  

(In (37), [ . . .  ]+ stands for the part of the Laurent series containing the nonnegative powers of p.) The 
reductions of the hierarchy (37) to spaces of Laurent series such that 

N nc~ 

K "  = E(p, t) = p" + u . -2p  "-2 + ' "  + uo + E E v i ,~ (P -  P~)-i (39) 
e e = l  i = 1  

were referred to as algebraic orbits in [7]. We should like to point out that it was shown in [7] that the 
algebraic orbits of the dispersionless KP hierarchy have additional symmetries, i.e., that the reductions of 
the hierarchy (37) to a space of Laurent series K satisfying Eq. (39) are compatible with the evolution 
equations 

Oi,~I( = {fti,~, I f}  = Op(ai,a)OxK -- O x ( a i , a ) O p K ,  (40) 

where fti,~ is a polynomial of degree i in the variable (p - p~)-I  such that 

i 

fti,~ = E w ~ , i , . ( p -  p~) -~ = E i/"~ + O ( p -  p~) (41) 
s.~- i 

as p -+ p~. The following theorem shows that these symmetries can be "quantized." 

T h e o r e m  3. The restriction of the KP hierarchy to the invariant spaces J£m,~ is compatible with the 
Lax evolution equations 

L ~ = [ A _ i , L ] ,  (42) 

where 

A - i  = M~I  M2 , (43) 

M1 is a normalized differential operator of degree i, and M2 is a differential operator of degree i - 1. 

Proof .  Equation (42) for L = L~ILz is equivalent to the equation 

(OrL2)L3 - (OrL1)L4 = L IA- iL4  - LzA- iLa ,  (44) 

where La and L4 are operators for which Eq. (12) is satisfied. The pscudodifferential operator A- i  has 
a negative degree. Therefore, the right-hand side ~D in (44) is a pseudodifferential operator of degree less 
than or equal to n + 2m - 1. The final part of the proof of Theorem 1 shows that (44) is a well-defined 
evolution system if and only if the pseudodifferential operator :D on its right-hand side is a differential 
operator. Let us show that this condition allows one to express the coefficients of M1 and M2 via the 
coefficients of L1 and L: ,  thus obtaining a closed system of equations. By Lemma 1, for a generic A-i  
the operator ~D can uniquely be represented in the form 

~) = DID~  1 , (45) 

where D1 and D2 are differential operators and Dz has the degree 2i. Therefore, the condition that D1 
is divisible by Dz is equivalent to a system of 2i ordinary differential equations for 2i unknown coefficients 
of the operators M1 and M2. The theorem is proved. 

R e m a r k  1. It should be pointed out that the above-proved theorem claims the existence of symmetries 
of the form (42), (43) but does not provide an answer to the question of their complete classification. In 
particular, the question about how many of them exist for given i and what algebra they form is still open. 
The commutativity conditions for two symmetries of the form (43) have the form of the zero-curvature 
equations 

[0/07"1 -- M~'IM2, c~/c~"y 2 - -  M~ "1M4] = 0, (46) 

which were considered in the recent paper [10], with no relation to the symmetries of rational reductions 
of the KP hierarchy, as a new form of generating integrable equations. 
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R e m a r k  2. We would like to mention that symmetries of the form (42), (43) exist for the usual Lax 
reductions of the KP hierarchy as well. For example, for the KdV equation (i.e., for L 2 = L 0~ 2 + u) 
and i = 1 the equation 

L, .  = u,- = [(vO~ + w )  -~  , L] (47) 

is equivalent to the equations 

Let 

~,~ + v ( u ~ ) ~  = ~ - w ,~ ,  v(~,~,)~ + 2u~v~o = ~ + 2 ~ ,  

U v V  2 ~-. 2 V  x . 

then it follows from Eqs. (48) and (49) that 

where 9~ is defined from the relation 

Equations (51) and (49) imply that 

(48) 

(49) 

1 (50) w :  -~Vx ; 

1 1 2 u = ~ - i ~ ,  (51) 

v = e~. (52) 

(~ 1 1 2 ~ ( ~ x -  ~ )  = 2 ~ x e - ~  (53) 

is equivalent to the Lax equation (47) with condition (50). 

In the forthcoming publication we are going to consider the cited open questions as well as the problem 
of constructing algebraic-geometrical solutions to general "rational" reductions of the KP hierarchy and 
their rational symmetries. 
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