Two-Dimensional Algebraic-Geometric Operators with Self-Consistent Potentials

I. M. Krichever ${ }^{\dagger}$

Dedicated to I. M. Gel'fand on his 80th birthday

§1. Introduction. Statement of Results

The dynamics of strings in strong gravitational fields and especially in the vicinity of space-time singularities has recently attracted special attention. One of the main goals of this paper is to construct exact solutions of string equations in $(2+1)$-de Sitter space-time. The simplest solutions of this equation were obtained in [1], which stimulated our work and where the physical motivation and bibliographical references can be found.

From the geometric viewpoint the problem is to construct minimal surfaces in a pseudosphere, i.e., if $q=\left\{q_{i}(\sigma, \tau)\right\}$ is a parametrization of such a surface, then

$$
\begin{equation*}
\langle q, q\rangle=\sum_{i=1}^{D} \eta_{i} q_{i} q_{i}=1 \tag{1.1}
\end{equation*}
$$

Unless otherwise specified, the constants η_{i} that define the metric are assumed to be given by $\eta=$ $(-1,1, \ldots)$. The equations that define embeddings of minimal surfaces in the quadric (1.1) have the form

$$
\begin{equation*}
\left(\partial_{+} \partial_{-}+u\right) q=0, \quad \partial_{ \pm}=\partial / \partial x_{ \pm}, x_{ \pm}=(\tau \pm \sigma) / 2 \tag{1.2}
\end{equation*}
$$

As follows from (1.1) and (1.2), the Lagrange multiplier $u=u\left(x_{+}, x_{-}\right)$in (1.2) is equal to

$$
\begin{equation*}
u=\left\langle\partial_{+} q, \partial_{-} q\right\rangle \tag{1.3}
\end{equation*}
$$

Equations (1.2) and (1.3) form a system of nonlinear equations for the functions $q_{i}(\sigma, \tau)$. They are a particular case of the general σ-models

$$
\begin{equation*}
\partial_{+} \partial_{-} \Psi+\left\langle\partial_{+} \Psi, \partial_{-} \Psi\right\rangle_{*} \Psi=0 \tag{1.4}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle_{*}$ stands for the inner product defined by some matrix $\left(g_{i j}\right)$. Equations (1.4) can be considered as linear equations with self-consistent potentials. The well-known nonlinear Schrödinger equation can be treated in the same manner. It can be represented as the linear equation

$$
\begin{equation*}
\left(i \partial_{t}-\partial_{x}^{2}+u(x, t)\right) \psi=0 \tag{1.5}
\end{equation*}
$$

with the self-consistency condition

$$
\begin{equation*}
u=\alpha|\psi|^{2} \tag{1.6}
\end{equation*}
$$

Numerous physical models that describe the interactions of long and short waves also have the form of a system comprising linear equation (1.5) and various self-consistency conditions. For example,

$$
\begin{align*}
u_{t}+u_{x} & =|\psi|_{x}^{2} \tag{1.7}\\
u_{t t}-u_{x x}+\alpha u_{x x x x} & +\beta\left(u^{2}\right)_{x x}=|\psi|_{x x}^{2} \tag{1.8}
\end{align*}
$$

[^0]Landau Institute for Theoretical Physics. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 28, No. 1, pp. 26-40, January-March, 1994. Original article submitted May 27, 1993.

The general construction of exact solutions to the nonstationary Schrödinger equation (1.5) with various types of self-consistency conditions was proposed in [4] (its realization for the construction of soliton solutions was presented in [5]). Such a scheme was originally advanced in [6] for the construction of exact solutions to the nonlinear Schrödinger equation and its vector analogs.

The main goal of this paper is to show that the ideas of this scheme are universal enough to be applied to many other systems. In particular, for σ-models the construction can be considered as an alternative to the inverse transform method. In the author's opinion the essential advantage of the scheme is that it allows us to construct solutions of the σ-model which, in addition, satisfy the so-called string constraints. The string constraints follow from the reparametrization invariance of the world surface of the string. They have the form

$$
\begin{equation*}
T_{+,+}=\left\langle\partial_{+} q, \partial_{+} q\right\rangle=0, \quad T_{-,-}=\left\langle\partial_{-} q, \partial_{-} q\right\rangle=0 \tag{1.9}
\end{equation*}
$$

(Equations (1.9) are the classical analogs of the quantum equations

$$
L_{n}|0\rangle=0, \quad n>-1, \quad\langle 0| L_{n}=0, \quad n<1,
$$

that define the vacuum state in the model of a bosonic string. Here L_{n} are the generators of the Virasoro algebra.) The basic idea of constructing exact solutions to Eqs. (1.4) can be presented in the following form. First we construct "integrable potentials" $u=u\left(x_{+}, x_{-}\right)$of the two-dimensional wave operator

$$
\begin{equation*}
\left(\partial_{+} \partial_{-}+u\left(x_{+}, x_{-}\right)\right) \psi\left(x_{+}, x_{-}, Q\right)=0 \tag{1.10}
\end{equation*}
$$

i.e., potentials such that a set of solutions to (1.10) with spectral parameter which is a point Q of an auxiliary Riemann surface of finite genus is known. We shall say that the self-consistency conditions are satisfied if there exist values $Q_{i}, i=1, \ldots, 2 N$, of the spectral parameter such that

$$
\begin{equation*}
u\left(x_{+}, x_{-}\right)=\sum_{i, j} g_{i j} \partial_{+} \psi_{i} \partial_{-} \psi_{j} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}\left(x_{+}, x_{-}\right)=\psi_{i}\left(x_{+}, x_{-}, Q_{i}\right) \tag{1.12}
\end{equation*}
$$

Linear equation (1.10), in conjunction with the self-consistency conditions, implies nonlinear equations (1.4) for the vector $\Psi\left(x_{+}, x_{-}\right)=\left(\psi_{1}, \ldots, \psi_{N}\right)$ with components that are values of the wave function $\psi\left(x_{+}, x_{-}, Q\right)$ at Q_{i}.

Thus, the approach described for solving the nonlinear equations (1.4) is to construct integrable linear problems and then to select those of them whose corresponding potentials satisfy the self-consistency conditions.

This scheme is developed for the string equations (1.1)-(1.3) and (1.9) in the next two sections. In the second section the necessary results $[8,9]$ on the integrable potentials of the two-dimensional Schrödinger operator are presented. In the third section, the constraints on the construction parameters for such potentials are imposed to guarantee the self-consistency conditions (1.11) and the string constraints (1.9).

The algebraic-geometric solutions thus constructed are determined by an auxiliary algebraic curve Γ_{0} of genus g_{0} with two marked points $P_{ \pm}$and by a meromorphic function $E(P), P \in \Gamma_{0}$, with simple poles $Q_{i}^{0}, i=1, \ldots, N$. Let Γ be a double covering of Γ_{0} with exactly two branch points $P_{ \pm}$. The matrix of the b-periods of the normalized odd (with respect to the permutation of the sheets) differentials on Γ defines the Prim theta function $\theta_{\operatorname{Pr}}(z), z=\left(z_{1}, \ldots, z_{g_{0}}\right)$. In terms of the Prim theta function the exact solutions have the form

$$
\begin{align*}
\varphi_{j}\left(x_{+}, x_{-}\right) & =r_{j} \frac{\theta_{\mathrm{Pr}}\left(A_{j}+U^{+} x_{+}+U^{-} x_{-}+Z\right) \theta_{\mathrm{Pr}}(Z)}{\theta_{\mathrm{Pr}}\left(A_{j}+Z\right) \theta_{\mathrm{Pr}}\left(U^{+} x_{+}+U^{-} x_{-}+Z\right)} e^{i p_{j}^{+} x_{+}+i p_{j}^{-} x_{-}} \tag{1.13}\\
\varphi_{j}^{\sigma}\left(x_{+}, x_{-}\right) & =r_{j} \frac{\theta_{\mathrm{Pr}}\left(-A_{j}+U^{+} x_{+}+U^{-} x_{-}+Z\right) \theta_{\mathrm{Pr}}(Z)}{\theta_{\mathrm{Pr}}\left(-A_{j}+Z\right) \theta_{\mathrm{Pr}}\left(U^{+} x_{+}+U^{-} x_{-}+Z\right)} e^{-\left(i p_{j}^{+} x_{+}+i p_{j}^{-} x_{-}\right)}
\end{align*}
$$

Here Z is an arbitrary vector; the constants $r_{j}, p_{j}^{ \pm}$and the g_{0}-dimensional vectors $U^{ \pm}, A_{j}, j=$ $1, \ldots, N$, are expressed in quadratures via $\Gamma, P_{ \pm}$, and $E(P)$.

The functions (1.13) satisfy Eq. (1.10), where

$$
\begin{equation*}
u=\partial_{+} \partial_{-} \theta_{\mathrm{Pr}}\left(U^{+} x_{+}+U^{-} x_{-}+Z\right)+\text { const } . \tag{1.14}
\end{equation*}
$$

Furthermore,

$$
\begin{gather*}
\sum_{i=1}^{N} \varphi_{i} \varphi_{i}^{\sigma}=1 \tag{1.15}\\
2 u=\sum_{i=1}^{N} \partial_{+} \varphi_{i} \partial_{-} \varphi_{i}^{\sigma}+\partial_{+} \varphi_{i}^{\sigma} \partial_{-} \varphi_{i} \tag{1.16}
\end{gather*}
$$

Hence the functions

$$
\begin{gather*}
q_{1}=\left(\varphi_{1}-\varphi_{1}^{\sigma}\right) / 2, \quad q_{2}=\left(\varphi_{1}+\varphi_{1}^{\sigma}\right) / 2 \\
q_{2 j}=\left(\varphi_{j}-\varphi_{j}^{\sigma}\right) / 2 i, \quad q_{2 j+1}=\left(\varphi_{j}+\varphi_{j}^{\sigma}\right) / 2, \quad j=2, \ldots, N \tag{1.17}
\end{gather*}
$$

satisfy system (1.1)-(1.3).
In terms of the original algebraic-geometric data $\Gamma_{0}, P_{ \pm}$, and $E(P)$ the solutions satisfying the string constraints can be distinguished as follows. Suppose that the differential of the function $E(P)$ vanishes at the marked points, i.e., $d E\left(P_{ \pm}\right)=0$. Then

$$
\begin{equation*}
\sum_{i=1}^{N} \partial_{ \pm} \varphi_{i} \partial_{ \pm} \varphi_{i}^{\sigma}=0 \tag{1.18}
\end{equation*}
$$

The solutions of string equations for the $(2+1)$-de Sitter space-time correspond to the case $N=2$. The $(2+1)$-de Sitter space-time can be represented as the one-sheet hyperboloid

$$
\begin{equation*}
1=-q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2} \tag{1.19}
\end{equation*}
$$

in the flat Minkowski space with coordinates $q=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ and metric

$$
\begin{equation*}
d s^{2}=H^{-2}\left(-d q_{1}^{2}+d q_{2}^{2}+d q_{3}^{2}+d q_{4}^{2}\right) \tag{1.20}
\end{equation*}
$$

where H is the Habble constant. This implies that the original curve Γ_{0} should be a hyperelliptic curve. This case is considered in detail in §4. All the parameters $r_{j}, p_{j}^{ \pm}, A_{j}$, and $U^{ \pm}, j=1,2$, occurring in (1.13) are expressed by quadratures via the original data formed by the set $E_{-}<E_{1}<\cdots<E_{2 n}<E_{+}$ ($n=g_{0}$) of branching points of the hyperelliptic curve and by an arbitrary n-dimensional vector Z. Each set of original data determines a solution to the string equations in $(2+1)$-de Sitter space-time. These solutions are almost periodic functions of σ. The closed strings correspond to the 2π-periodic solutions of string equations. The periodicity condition is satisfied if

$$
\begin{equation*}
p_{2}^{+}-p_{2}^{-}=2 \pi, \quad U_{k}^{+}-U_{k}^{-}=\pi m_{k}, \quad m_{k} \in \mathbb{Z} \tag{1.21}
\end{equation*}
$$

where $U_{k}^{ \pm}, k=1, \ldots, n$, are the coordinates of the vector $U^{ \pm}$. Relations (1.21) form a set of $n+1$ equations for $2 n+2$ parameters E_{s}. Therefore, for each n we have a $2 n+1$-parametric (the vector Z in (1.13) is arbitrary) family of 2π-periodic exact solutions of string equations in de Sitter space-time. As $\tau \rightarrow \pm \infty$, the functions $q_{i}(\sigma, \tau), i=1,2$, tend to $\pm \infty$. But it should be emphasized that, as follows from (1.14), the "internal size" of the string defined by the invariant metric

$$
\begin{equation*}
d s^{2}=u\left(x_{+}, x_{-}\right)\left(d \sigma^{2}-d \tau^{2}\right) / 2 H^{2} \tag{1.22}
\end{equation*}
$$

is an almost periodic function of τ.

§2. Schrödinger Operators with a Finite-Gap Property on an Energy Level

Consider the two-dimensional Schrödinger operator

$$
\begin{equation*}
H=\left(\partial_{x}-i A_{1}(x, y)\right)^{2}+\left(\partial_{y}-i A_{2}(x, y)\right)^{2}+u(x, y) \tag{2.1}
\end{equation*}
$$

in the magnetic field. The inverse problem based on the spectral data corresponding to a single energy level $E=E_{0}$ was posed and considered for the operator H in [7]. In this paper a class of operators with a finite-gap property on a single energy level was constructed. From the viewpoint of spectral theory this class is distinguished by the condition that the Riemann surface of Bloch functions corresponding to this energy level (the complex Fermi surface) is of finite genus. Veselov and Novikov [8, 9] found conditions on the algebraic-geometric data of the construction [7] that distinguish real smooth potential ($A_{i}=0$) operators $H=H_{0}$,

$$
\begin{equation*}
H_{0}=\partial_{x}^{2}+\partial_{y}^{2}+u(x, y) \tag{2.2}
\end{equation*}
$$

Here we present the needed results of the cited papers with slight modifications, allowing for the fact that the operator (1.10) is hyperbolic in contrast to the elliptic operator (2.2). The complex theory is the same in both cases. The only difference is in the reality and smoothness conditions on the potentials.

Let Γ be a smooth algebraic curve of genus g with two marked points $P_{ \pm}$and fixed local coordinates $k_{ \pm}^{-1}(Q)$ in neighborhoods of these points, $k_{ \pm}^{-1}\left(P_{ \pm}\right)=0$. Assume that there exists a holomorphic involution

$$
\begin{equation*}
\sigma: \Gamma \mapsto \Gamma \tag{2.3}
\end{equation*}
$$

on Γ such that $P_{ \pm}$are its only fixed points, i.e.,

$$
\begin{equation*}
\sigma\left(P_{ \pm}\right)=P_{ \pm} \tag{2.4}
\end{equation*}
$$

The local parameters are assumed to be "odd," i.e.,

$$
\begin{equation*}
k_{ \pm}(\sigma(Q))=-k_{ \pm}(Q) \tag{2.5}
\end{equation*}
$$

The factor-curve will be denoted by Γ_{0}. The projection

$$
\begin{equation*}
\pi: \Gamma \mapsto \Gamma_{0}=\Gamma / \sigma \tag{2.6}
\end{equation*}
$$

represents Γ as a double covering over Γ_{0} with two branch points $P_{ \pm}$. In this realization σ is the permutation of the sheets. Since there are only two branch points, we have

$$
\begin{equation*}
g=2 g_{0} \tag{2.7}
\end{equation*}
$$

where g_{0} is the genus of Γ_{0}. Let us consider a meromorphic differential $d \Omega(Q)$ of the third kind on Γ_{0} with residues ∓ 1 at the points $P_{ \pm}$and holomorphic outside $P_{ \pm}$. The differential $d \Omega$ has g zeros, which will be denoted by $\widehat{\gamma}_{i}, i=1, \ldots, 2 g_{0}=g$,

$$
\begin{equation*}
d \Omega\left(\hat{\gamma}_{i}\right)=0 \tag{2.8}
\end{equation*}
$$

For each i let us choose a point γ_{i} on Γ such that

$$
\begin{equation*}
\pi\left(\gamma_{i}\right)=\widehat{\gamma}_{i}, \quad i=1, \ldots, g \tag{2.9}
\end{equation*}
$$

(In what follows such divisors γ_{s} are said to be admissible.)
By definition, the Baker-Akhiezer function $\psi\left(x_{+}, x_{-}, Q\right)$ corresponding to this set of data is the unique function that has the following analytic properties with respect to the variable $Q \in \Gamma$:

1) Outside the points $P_{ \pm}$the function ψ is meromorphic and has at most simple poles at the points γ_{s} (if they are all distinct);
2) In some neighborhoods of $P_{ \pm}$the function ψ has the form

$$
\begin{align*}
& \psi\left(x_{+}, x_{-}, Q\right)=e^{k_{ \pm} x_{ \pm}}\left(1+\sum_{s=1}^{\infty} \xi_{s}^{ \pm}\left(x_{+}, x_{-}\right) k_{ \pm}^{-s}\right), \tag{2.10}\\
& k_{ \pm}=k_{ \pm}(Q), Q \rightarrow P_{ \pm}
\end{align*}
$$

For almost all values of $x_{ \pm}$(which are external parameters in the definition) the function $\psi\left(x_{+}, x_{-}, Q\right)$ exists and is unique.

Theorem 2.1 [8]. The Baker-Akhiezer function $\psi\left(x_{+}, x_{-}, Q\right)$ satisfies the equation

$$
\begin{equation*}
\left(\partial_{+} \partial_{-}+u\left(x_{+}, x_{-}\right)\right) \psi\left(x_{+}, x_{-}, Q\right)=0 \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
u\left(x_{+}, x_{-}\right)=-\partial_{-} \xi_{1}^{+}=-\partial_{+} \xi_{1}^{-}, \tag{2.12}
\end{equation*}
$$

and $\xi_{1}^{ \pm}=\xi_{1}^{ \pm}\left(x_{+}, x_{-}\right)$are the first coefficients in the expansion (2.10).
In the general case the function $u\left(x_{+}, x_{-}\right)$is a meromorphic function of the variables $x_{ \pm}$. Its expression in terms of the Prim theta function was obtained in [9] (see formula (1.14)). The following conditions on the set of algebraic-geometric data are sufficient for reality and regularity of the corresponding potential $u\left(x_{+}, x_{-}\right)$.

Assume that there is an antiholomorphic involution

$$
\begin{equation*}
\tau: \Gamma \mapsto \Gamma \tag{2.13}
\end{equation*}
$$

on Γ such that

$$
\begin{equation*}
\tau\left(P_{ \pm}\right)=P_{ \pm}, \quad k_{ \pm}(\tau(Q))=\overline{k_{ \pm}(Q)} \tag{2.14}
\end{equation*}
$$

Lemma 2.1. Let the divisor of the poles $\gamma_{1}, \ldots, \gamma_{g}$ of the Baker-Akhiezer function be invariant with respect to the anti-involution τ, that is,

$$
\begin{equation*}
\tau(D)=D, \quad D=\gamma_{1}+\cdots+\gamma_{g} \tag{2.15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\psi\left(x_{+}, x_{-}, \tau(Q)\right)=\overline{\psi\left(x_{+}, x_{-}, Q\right)} \tag{2.16}
\end{equation*}
$$

and the corresponding potential $u\left(x_{+}, x_{-}\right)$in (2.11) is real,

$$
\begin{equation*}
u\left(x_{+}, x_{-}\right)=\overline{u\left(x_{+}, x_{-}\right)} \tag{2.17}
\end{equation*}
$$

According to the Hurwitz theorem, the number of fixed ovals of an antiholomorphic involution is not greater than $g+1$. Curves with $g+1$ fixed ovals are called M-curves.

Lemma 2.2. Let Γ be an M-curve with respect to the anti-involution τ (i.e., τ has $g+1$ fixed ovals $\left.a_{0}, a_{1}, \ldots, a_{g}\right)$, and let the marked points $P_{ \pm}$and the points $\gamma_{1}, \ldots, \gamma_{g}$ be chosen in such a way that

$$
\begin{equation*}
P_{ \pm} \in a_{0}, \quad \gamma_{s} \in a_{s} \tag{2.18}
\end{equation*}
$$

Then the corresponding potential $u\left(x_{+}, x_{-}\right)$is real and smooth for all real $x_{ \pm}$.
Remark. It is likely that the cited conditions are not only sufficient, but also necessary for the algebraic-geometric potentials to be real and smooth.

Both lemmas can be proved in the same way as the corresponding statements for the elliptic equation (2.2) (see [8, 9]; the proof can also be found in [10]).

§3. Self-Consistency Conditions

Let $E(P)$ be a meromorphic function on Γ_{0} with simple poles $Q_{i}^{0} \in \Gamma_{0}, i=1, \ldots, N$. The preimages of these points on Γ will be denoted by $Q_{i}, Q_{i}^{\sigma}=\sigma\left(Q_{i}\right)$.

Lemma 3.1. Let $\psi\left(x_{+}, x_{-}, Q\right)$ be the Baker-Akhiezer function; then

$$
\begin{equation*}
\sum_{i=1}^{N} \varphi_{i}\left(x_{+}, x_{-}\right) \varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right)=1 \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{i}\left(x_{+}, x_{-}\right) & =r_{i} \psi\left(x_{+}, x_{-}, Q_{i}\right) \tag{3.2}\\
\varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right) & =r_{i} \psi\left(x_{+}, x_{-}, Q_{i}^{\sigma}\right) \tag{3.3}
\end{align*}
$$

and the constants r_{i} are given by the formula

$$
\begin{equation*}
r_{i}^{2}=\frac{\operatorname{res}_{Q_{i}} E(Q) d \Omega(Q)}{E_{+}-E_{-}}, \quad E_{ \pm}=E\left(P_{ \pm}\right) \tag{3.4}
\end{equation*}
$$

Proof. Consider the differential

$$
\begin{equation*}
\widehat{d \Omega}\left(x_{+}, x_{-}, Q\right)=\frac{\psi\left(x_{+}, x_{-}, Q\right) \psi^{\sigma}\left(x_{+}, x_{-}, Q\right) E(Q) d \Omega(Q)}{E_{+}-E_{-}} \tag{3.5}
\end{equation*}
$$

where, by definition,

$$
\begin{equation*}
\psi^{\sigma}\left(x_{+}, x_{-}, Q\right)=\psi\left(x_{+}, x_{-}, \sigma(Q)\right) \tag{3.6}
\end{equation*}
$$

The functions $\psi\left(x_{+}, x_{-}, Q\right), \psi^{\sigma}\left(x_{+}, x_{-}, Q\right)$ are meromorphic outside the marked points $P_{ \pm}$, where they have essential singularities. It follows from (2.5) and (2.10) that the differential $\widehat{d \Omega}$ is meromorphic everywhere on Γ, including the points $P_{ \pm}$. Condition (2.8) implies that this differential is holomorphic at the points γ_{s} and γ_{s}^{σ}. Therefore, $\widehat{d \Omega}$ can have poles only at the points Q_{i}, Q_{i}^{σ}, and $P_{ \pm}$. The residues of this differential at these points are equal to

$$
\begin{align*}
\operatorname{res}_{Q_{i}} \widehat{d \Omega}= & \operatorname{res}_{Q_{i}^{\sigma}} \widehat{d \Omega} \tag{3.7}
\end{align*}=\varphi_{i}\left(x_{+}, x_{-}\right) \varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right), ~=\mp \frac{E_{ \pm}}{E_{+}-E_{-}} .
$$

The sum of residues of a meromorphic differential on a compact Riemann surface is equal to zero, i.e., the sum of the right-hand sides in (3.7) and (3.8) is equal to zero, whence follows (3.1).

Lemma 3.2. If $u\left(x_{+}, x_{-}\right)$is the potential of the operator (2.11) corresponding to the Baker-Akhiezer function, then

$$
\begin{equation*}
2 u\left(x_{+}, x_{-}\right)=\sum_{i=1}^{N} \partial_{+} \varphi_{i}\left(x_{+}, x_{-}\right) \partial_{-} \varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right)+\partial_{-} \varphi_{i}\left(x_{+}, x_{-}\right) \partial_{+} \varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right) \tag{3.9}
\end{equation*}
$$

Proof. Consider the meromorphic differential

$$
\begin{equation*}
d \Omega_{1}\left(x_{+}, x_{-}, Q\right)=\frac{E(Q) d \Omega(Q)}{E_{+}-E_{-}}\left(\partial_{+} \psi \partial_{-} \psi^{\sigma}+\partial_{-} \psi \partial_{+} \psi^{\sigma}\right) \tag{3.10}
\end{equation*}
$$

It is holomorphic everywhere except for the points Q_{i}, Q_{i}^{σ}, and $P_{ \pm}$. The sum of its residues at the points Q_{i} and Q_{i}^{σ} is equal to the right-hand side in (3.9). It follows from (2.10) and (2.12) that

$$
\begin{equation*}
\operatorname{res}_{P_{ \pm}} d \Omega_{1}=\mp 2 \frac{E_{ \pm}}{E_{+}-E_{-}} \partial_{\mp} \xi_{1}^{ \pm}=\mp 2 \frac{E_{ \pm}}{E_{+}-E_{-}} u \tag{3.11}
\end{equation*}
$$

Again using the fact that the sum of all residues of a meromorphic differential is equal to zero, we obtain (3.9).

Lemma 3.3. Suppose that the differential of the function $E(Q)$ is zero at the points $P_{ \pm}$, i.e., $d E\left(P_{ \pm}\right)=0$. Then

$$
\begin{equation*}
\sum_{i=1}^{N} \partial_{ \pm} \varphi_{i}\left(x_{+}, x_{-}\right) \partial_{ \pm} \varphi_{i}^{\sigma}\left(x_{+}, x_{-}\right)=0 \tag{3.12}
\end{equation*}
$$

Proof. The left-hand side of (3.12) is equal to the sum of residues at the points Q_{i} and Q_{i}^{σ} of the differentials

$$
\begin{equation*}
d \Omega_{ \pm}=\left(E(Q)-E_{ \pm}\right) \partial_{ \pm} \psi\left(x_{+}, x_{-}, Q\right) \partial_{ \pm} \psi^{\sigma}\left(x_{+}, x_{-}, Q\right) d \Omega(Q) \tag{3.13}
\end{equation*}
$$

Hence, to prove (3.12) it suffices to show that the residues of these differentials at the points $P_{ \pm}$are zero. The condition $d E\left(P_{ \pm}\right)=0$ implies that in some neighborhoods of $P_{ \pm}$we have

$$
\begin{equation*}
E(Q)=E_{ \pm}+O\left(k_{ \pm}^{-4}\right) \tag{3.14}
\end{equation*}
$$

It follows from (3.14) and from the expansion (2.10) for the Baker-Akhiezer function that

$$
\begin{equation*}
\operatorname{res}_{P_{ \pm}} d \Omega_{+}=0, \quad \operatorname{res}_{P_{ \pm}} d \Omega_{-}=0 \tag{3.15}
\end{equation*}
$$

So far, as well as in the beginning of the preceding section, we have considered the complex theory. Let us now suppose that the conditions of Lemma 3.3 are satisfied. These conditions are sufficient for reality and regularity of the potential $u\left(x_{+}, x_{-}\right)$corresponding to the algebraic-geometric data

$$
\begin{equation*}
\left\{\Gamma, \gamma_{1}, \ldots, \gamma_{g}, P_{ \pm}\right\} \tag{3.16}
\end{equation*}
$$

Under these conditions the factor-curve $\Gamma_{0}=\Gamma / \sigma$ is an M-curve with respect to the anti-involution $\tau_{0}: \Gamma_{0} \rightarrow \Gamma_{0}$ induced by the anti-involution $\tau: \Gamma \mapsto \Gamma$. Over each of the fixed ovals $a_{i}^{0}, i=1, \ldots, g_{0}$, of τ_{0} there are two fixed ovals a_{i} and a_{i}^{σ} of the anti-involution $\tau, \sigma\left(a_{i}\right)=a_{i}^{\sigma}$. The fixed oval a_{0} of τ_{0} which contains the points $P_{ \pm}$is divided by these points into two segments a_{0}^{+}and a_{0}^{-}. The preimage of one of them, say, a_{0}^{+}, is a fixed cycle a_{0} of the anti-involution τ, i.e.,

$$
\begin{equation*}
\tau(Q)=Q, \quad Q \in a_{0} \tag{3.17}
\end{equation*}
$$

The preimage of a_{0}^{-}is a cycle \tilde{a}_{0} fixed with respect to the anti-involution $\tau \sigma$, that is,

$$
\begin{equation*}
\tau \sigma(Q)=Q, \quad Q \in \tilde{a}_{0} \tag{3.18}
\end{equation*}
$$

In addition to the conditions of Lemma 3.3, we assume that the meromorphic function $E(Q)$ is real and that

$$
\begin{equation*}
r_{i}^{2}=\frac{1}{E_{+}-E_{-}} \operatorname{res}_{Q_{i}^{\circ}} E(Q) d \Omega(Q)>0 \tag{3.19}
\end{equation*}
$$

Moreover, assume that one of poles Q_{1}^{0} lies on the curve a_{0}^{+}and all the others are on the curve a_{0}^{-}. This means that

$$
\begin{gather*}
\tau\left(Q_{1}\right)=Q_{1}, \quad \tau\left(Q_{1}^{\sigma}\right)=Q_{1}^{\sigma} \tag{3.20}\\
\tau\left(Q_{i}\right)=Q_{i}^{\sigma}, \quad i>1 \tag{3.21}
\end{gather*}
$$

It follows from (2.16) that

$$
\begin{array}{rr}
\varphi_{1}=\overline{\varphi_{1}}, \quad \varphi_{1}^{\sigma}=\overline{\varphi_{1}^{\sigma}} \\
\varphi_{i}=\overline{\varphi_{i}^{\sigma}}, \quad i>1 . \tag{3.23}
\end{array}
$$

Theorem 3.1. Let $\psi\left(x_{+}, x_{-}, Q\right)$ be the Baker-Akhiezer function determined by the curve Γ, the pole divisors γ_{i}, the points $P_{ \pm}$, and local parameters in the corresponding neighborhoods, satisfying the conditions of Lemma 3.2. Let a meromorphic function $E(Q)$ satisfy conditions (3.19)-(3.21). Then the vector function $q=q_{i}\left(x_{+}, x_{-}\right)$with coordinates given by (1.17), where φ_{i} and φ_{i}^{σ} are defined in (3.2) and (3.3), is a real nonsingular solution to the system of equations

$$
\begin{array}{ll}
\left(\partial_{+} \partial_{-}+u\right) q=0, & \langle q, q\rangle=1 \\
u=\left\langle\partial_{+} q, \partial_{-} q\right\rangle, & \left\langle\partial_{ \pm} q, \partial_{ \pm} q\right\rangle=0 \tag{3.24}
\end{array}
$$

§4. Theta Function Formulas

In this section we present exact theta function formulas for solutions of the string equations in (2+1)-de Sitter space-time. We begin with an explicit construction of the double covering over the hyperelliptic curve Γ_{0} defined by the equation

$$
\begin{equation*}
y^{2}=\left(E-E_{-}\right)\left(E-E_{+}\right) \prod_{i=1}^{2 n}\left(E-E_{i}\right)=R_{2 n+2}(E) \tag{4.1}
\end{equation*}
$$

We assume that the real roots of the polynomial $R_{2 n+2}$ are enumerated as follows:

$$
\begin{equation*}
E_{-}<E_{1}<E_{2}<\ldots<E_{2 n-1}<E_{2 n}<E_{+} \tag{4.2}
\end{equation*}
$$

The real ovals of the anti-involution

$$
\begin{equation*}
\tau_{0}:(y, E) \mapsto(\bar{y}, \bar{E}) \tag{4.3}
\end{equation*}
$$

are the cycles a_{i}^{0} over the forbidden zones $\left[E_{2 i-1}, E_{2 i}\right]$.
As usual we introduce the basis of holomorphic differentials

$$
\begin{equation*}
\omega_{j}=\frac{1}{\sqrt{R}} \sum_{j=0}^{n-1} r_{i j} E^{j} d E \tag{4.4}
\end{equation*}
$$

normalized by the conditions

$$
\begin{equation*}
\int_{E_{2 i-1}}^{E_{2 i}} \omega_{j}=\frac{1}{2} \delta_{i j} \tag{4.5}
\end{equation*}
$$

The b-periods of these differentials define the so-called Riemann matrix

$$
\begin{equation*}
B_{k j}=2 \int_{E_{-}}^{E_{2 j-1}} \omega_{k} \tag{4.6}
\end{equation*}
$$

The basis vectors e_{k} and the vectors B_{k} that are the columns of the matrix (4.6) generate a lattice \mathcal{B} in \mathbb{C}^{n}. The n-dimensional complex torus

$$
\begin{equation*}
J\left(\Gamma_{0}\right)=\mathbb{C}^{n} / \mathcal{B}, \quad \mathcal{B}=\sum n_{k} e_{k}+m_{k} B_{k}, \quad n_{k}, m_{k} \in \mathbb{Z} \tag{4.7}
\end{equation*}
$$

is called the Jacobian variety of Γ_{0}. The vector with coordinates

$$
\begin{equation*}
A_{k}(P)=\int_{E_{-}}^{P} \omega_{k} \tag{4.8}
\end{equation*}
$$

defines the Abel map

$$
\begin{equation*}
A: \Gamma_{0} \rightarrow J\left(\Gamma_{0}\right) \tag{4.9}
\end{equation*}
$$

The Riemann matrix is symmetric and has positive-definite imaginary part. The entire function of n variables

$$
\begin{gather*}
\theta(z)=\theta(z \mid B)=\sum_{m \in \mathbb{Z}^{n}} e^{2 \pi i(z, m)+\pi i(B m, m)}, \tag{4.10}\\
z=\left(z_{1}, \ldots, z_{n}\right), \quad m=\left(m_{1}, \ldots, m_{n}\right), \quad(z, m)=z_{1} m_{1}+\ldots+z_{n} m_{n}
\end{gather*}
$$

determined by this matrix, is called the Riemann theta function. It has the monodromy properties

$$
\begin{equation*}
\theta\left(z+e_{k}\right)=\theta(z), \quad \theta\left(z+B_{k}\right)=e^{-2 \pi i z_{k}-\pi i B_{k k}} \theta(z) \tag{4.11}
\end{equation*}
$$

Although the function $\theta(A(P)-Z)$ is a many-valued function of P, the zeros of this function are welldefined according to (4.11). For Z in a generic position, the equation

$$
\begin{equation*}
\theta\left(A\left(\gamma_{s}\right)-Z\right)=0, \quad s=1, \ldots, n \tag{4.12}
\end{equation*}
$$

has n roots. At the same time,

$$
\begin{equation*}
Z_{k}=\sum_{i=1}^{n} \int_{E_{2 i}}^{\gamma_{i}} \omega_{k} \tag{4.13}
\end{equation*}
$$

It follows from (4.13) and (4.12) that for the vectors $Z^{ \pm}$with coordinates

$$
\begin{equation*}
Z_{k}^{ \pm}=\int_{E_{2}}^{E_{ \pm}} \omega_{k} \tag{4.14}
\end{equation*}
$$

the roots of Eq. (4.12) are the points

$$
E_{ \pm}, \quad E_{2 i}, i=2,3, \ldots, n .
$$

Therefore, the function

$$
\begin{equation*}
\lambda(P)=\frac{\theta\left(A(P)-Z^{+}\right) \theta\left(A(P)-Z^{-}\right)}{\theta^{2}(A(P)-\xi)}, \quad \xi=\frac{Z^{+}+Z^{-}}{2} \tag{4.15}
\end{equation*}
$$

has simple zeros at the points $E_{ \pm}$and double zeros at the points $E_{2 i}, i=2, \ldots, n$. It also has double poles at the points

$$
\widehat{\gamma}_{0} \in a_{0}^{0}, \widehat{\gamma}_{2} \in a_{2}^{0}, \widehat{\gamma}_{3} \in a_{3}^{0}, \ldots, \widehat{\gamma}_{n} \in a_{n}^{0} .
$$

(It should be mentioned that it follows from (4.11) that the right-hand side in (4.15) has trivial monodromy with respect to the lattice \mathcal{B}. This means that $\lambda(P)$ is a well-defined function on Γ_{0}.)

The function $\lambda(P)$ is real on real cycles of Γ_{0}. Since its zeros are double, it follows that it has constant signs on each of the cycles $a_{1}^{0}, \ldots, a_{n}^{0}$. Let

$$
\begin{equation*}
s_{i}=\left.\frac{1}{2} \operatorname{sgn} \lambda(P)\right|_{P \in a_{i}^{0}}, \quad \varepsilon_{i}=\frac{1}{2}+s_{i}, \quad i=1, \ldots, n \tag{4.16}
\end{equation*}
$$

Then the function

$$
\begin{equation*}
\mu(P)=(-1)^{\varepsilon_{1}} \lambda(P) \prod_{i=2}^{n}\left(\frac{E-E_{i}}{E-E_{2 i-1}}\right)^{\varepsilon_{i}} \tag{4.17}
\end{equation*}
$$

has simple zeros at $E_{ \pm}$, double zeros at $E_{2 i}$ or $E_{2 i-1}$ (depending on the sign of s_{i}), and double poles at the points $\hat{\gamma}_{s}, s=0,2,3, \ldots, n$. This function is positive on the cycles $a_{i}^{0}, i=1,2, \ldots, n$.

We denote by Γ the Riemann surface of the function

$$
\begin{equation*}
f=\sqrt{\mu(P)} \tag{4.18}
\end{equation*}
$$

The surface Γ is a double covering over Γ_{0} with two branch points $E_{ \pm}$. The holomorphic differentials on Γ_{0} are even differentials on Γ with respect to permutations of the sheets. Also, there is an n-dimensional space of odd differentials. As a basis of such differentials we shall choose

$$
\begin{equation*}
\tilde{\omega}_{j}^{\text {od }}=\frac{d E}{\sqrt{\mu(P)}} \frac{\theta\left(A(P)-\alpha_{+}\right) \theta\left(A(P)-\alpha_{-}\right)}{\theta(A(P)) \theta\left(A(P)-e_{1} / 2\right)} Y_{j}(P) \tag{4.19}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{j}(P)=\frac{\theta\left(A(P)-e_{j} / 2\right) \theta\left(A(P)-C_{j}\right)}{\theta(A(P)-\xi) \theta(A(P)+\hat{e}-\hat{s})} . \tag{4.20}
\end{equation*}
$$

The vectors $\alpha_{ \pm}$in (4.19) are equal to

$$
\begin{equation*}
\alpha_{ \pm}=A(\pm \infty)-A\left(E_{2}\right) \tag{4.21}
\end{equation*}
$$

where $\pm \infty$ are the preimages of the point $E=\infty$ on the two sheets of Γ_{0}. The vector C_{j} in (4.19) is

$$
\begin{equation*}
C_{j}=-\alpha_{+}-\alpha_{-}-\frac{1}{2} e_{j}+\frac{1}{2} e_{1}+\xi+\hat{s}-\hat{e} . \tag{4.22}
\end{equation*}
$$

It is uniquely determined by the condition that the right-hand side of (4.19) is invariant by translation by periods. In (4.19)-(4.22), e_{j} are basis vectors; $\hat{e}=(0,1,1, \ldots, 1) ; \hat{s}=\left(0, s_{2}, \ldots, s_{n}\right)$ (where s_{i} are given by (4.16)). The basis of normalized differentials $\omega_{j}^{\text {od }}=\sum \alpha_{i j} \widetilde{\omega}_{i}^{\text {od }}$ is defined by the conditions

$$
\begin{equation*}
\oint_{E_{2 i-1}}^{E_{2 i}} \omega_{j}^{\mathrm{od}}=\delta_{i j} \tag{4.23}
\end{equation*}
$$

(Here and below \oint_{P}^{Q} stands for the integral along the cycle lying on one of the sheets of Γ over a cycle that surrounds the points P and Q.) The matrix

$$
\begin{equation*}
B_{i j}^{\mathrm{Pr}}=\oint_{E_{-}}^{E_{2 i-1}} \omega_{j}^{\mathrm{od}} \tag{4.24}
\end{equation*}
$$

of b-periods of normalized odd differentials defines the Prim theta function

$$
\theta_{\operatorname{Pr}}(z)=\theta\left(z \mid B^{\operatorname{Pr}}\right)
$$

via (4.10). Let us introduce some more definitions. First of all, for a point $Q \in \Gamma$ we define

$$
\begin{equation*}
A_{k}^{\text {od }}(Q)=\int_{E_{-}}^{Q} \omega_{k}^{\text {od }}, \quad k=1, \ldots, n . \tag{4.25}
\end{equation*}
$$

This vector is determined up to the lattice of periods of the Prim function. For Z in a generic position the equation

$$
\begin{equation*}
\theta_{\mathrm{Pr}}\left(A^{\text {od }}\left(\gamma_{s}\right)-Z\right)=0, \quad s=1, \ldots, 2 n \tag{4.26}
\end{equation*}
$$

has $2 n$ roots. Moreover, for an arbitrary Z they form an admissible divisor. Recall that this means that the projections of these points $\hat{\gamma}_{s}=\pi\left(\gamma_{s}\right)$ on the hyperelliptic curve Γ_{0} are zeros of a third-kind meromorphic differential, $d \Omega\left(\widehat{\gamma}_{s}\right)=0$. The differential has the form

$$
\begin{equation*}
d \Omega(Q)=\frac{\left(E_{-}-E_{+}\right) d E}{\left(E-E_{+}\right)\left(E-E_{-}\right)} \frac{H(Q)}{H\left(E_{-}\right)}, \tag{4.27}
\end{equation*}
$$

where $E=E(Q)$ is the projection of Q onto the E-plane and

$$
\begin{equation*}
H(Q)=\frac{\theta_{\mathrm{Pr}}\left(A^{\text {od }}(Q)-Z\right) \theta_{\mathrm{Pr}}\left(A^{\text {od }}(Q)+Z\right) \theta^{2}\left(A(P)-e_{*} / 2\right)}{\theta_{\mathrm{Pr}}^{2}\left(A^{\text {od }}(Q)\right) \theta(A(P)) \theta\left(A(P)-e_{*}\right)} . \tag{4.28}
\end{equation*}
$$

(Here θ stands for the Riemann theta function of the hyperelliptic curve Γ_{0} and the vector e_{*} is $(1,1, \ldots, 1)$)

The converse statement is also true, i.e., any admissible divisor γ_{s} in a generic position can be obtained as the roots of Eq. (4.26) for the corresponding vector Z. That is why below we consider the components of Z as free parameters instead of admissible divisors.

Important remark. The exact construction of the covering Γ over the initial curve Γ_{0} and the explicit formulas for normalized odd differentials and the Prim theta function were presented for the case in which Γ_{0} is a hyperelliptic curve. Nevertheless, formula (4.29) below is valid in the general case.

Theorem 4.1 [9]. The Baker-Akhiezer function defined in $\S 2$ can be represented in the form

$$
\begin{equation*}
\psi=\frac{\theta_{\operatorname{Pr}}\left(A^{\text {od }}(Q)+U^{+} x_{+}+U^{-} x_{-}-Z\right) \theta_{\mathrm{Pr}}\left(A^{\text {od }}(Z)\right)}{\theta_{\mathrm{Pr}}\left(A^{\text {od }}(Q)-Z\right) \theta_{\mathrm{Pr}}\left(U^{+} x_{+}+U^{-} x_{-}-Z\right)} e^{i\left(p^{+}(Q) x_{+}+p^{-}(Q) x_{-}\right)} \tag{4.29}
\end{equation*}
$$

Here $p^{ \pm}(Q)$ are Abelian integrals of the second-kind normalized differential $p^{ \pm}$on Γ that have poles of the second order at the points $P_{ \pm}$, respectively; the vectors $2 \pi U^{ \pm}$are the vectors of b-periods of these differentials.

In our case Γ_{0} is a hyperelliptic curve, and the differentials $d p_{ \pm}$with second-order poles at the points $E_{ \pm}$have the form

$$
\begin{equation*}
d p^{ \pm}=\frac{h^{ \pm} d E}{\left(E-E_{ \pm}\right) \sqrt{\mu(P)}}+\alpha_{j}^{ \pm} \omega_{j}^{\text {od }} \tag{4.30}
\end{equation*}
$$

The constants $\alpha_{j}^{ \pm}$are determined by normalization conditions

$$
\begin{equation*}
\oint_{E_{2 i-1}}^{E_{2 i}} d p^{ \pm}=0 \tag{4.31}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U_{k}^{ \pm}=\frac{1}{\pi} \oint_{E_{-}}^{E_{2 k-1}} d p^{ \pm} \tag{4.32}
\end{equation*}
$$

There are two points on Γ_{0} over $E=\infty$. We denote them by $\pm \infty$. At one of them, say $Q_{1}^{0}=+\infty$, the function $\mu\left(Q_{1}^{0}\right)>0$. According to the results of the previous sections, the values of the Baker-Akhiezer function at the points Q_{1}, Q_{1}^{σ} and Q_{2}, Q_{2}^{σ} that cover the points Q_{1}^{0} and $Q_{2}^{0}=-\infty$ define solutions of the string equations in $(2+1)$-de Sitter space-time. So let

$$
\begin{equation*}
A_{j}=A^{\mathrm{od}}\left(Q_{j}\right), \quad p_{j}^{ \pm}=\int_{E_{-}}^{Q_{j}} d p^{ \pm}, \quad j=1,2 \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{j}^{2}=H\left(Q_{j}\right) / H\left(E_{-}\right) \tag{4.34}
\end{equation*}
$$

where $H(Q)$ is given by (4.28). (The constants r_{j}^{2} are the residues of the differential (3.5), where $d \Omega$ is given by (4.27).)

Theorem 4.2. Any set (4.2) of real points E_{s}, an n-dimensional real vector Z, and real constants $h^{ \pm}$define real smooth solutions of the string equations (3.24) in $(2+1)$-de Sitter space-time with the help of formulas (1.13) and (1.17) (where the vectors $U^{ \pm}, A_{j}$, the constants $p_{j}^{ \pm}$and $r_{j}, j=1,2$, are defined by (4.32), (4.33), and (4.34)).

In general, since

$$
\operatorname{Im} p_{1}^{ \pm} \neq 0
$$

the components q_{1}, q_{2} of the corresponding solutions are unbounded or tend to zero as $\tau, \sigma \rightarrow \pm \infty$. The constants $p_{2}^{ \pm}$are real. Hence, the functions q_{3}, q_{4} are almost periodic functions of the variables τ and σ.

Corollary. If for given E_{s} the constants $h^{ \pm}$are chosen in such a way that

$$
\begin{equation*}
p_{1}^{+}-p_{1}^{-}=0 \tag{4.35}
\end{equation*}
$$

then the corresponding solutions of the string equations are almost periodic functions of the variable σ. The additional conditions (1.21) specify a $2 n+1$-parametric family of solutions which are 2π-periodic in σ.

Acknowledgments. The author would like to thank Forschunginstitute für Mathematik ETH Zürich for their kind hospitality during the period when this work was completed.

References

1. H. De Vega, A. Mikhailov, and N. Sanchez, "Exact string solutions in $2+1$-dimensional de Sitter space-time," Teor. Mat. Fiz., 94, No. 2, 232-240 (1993).
2. N. Yajima and M. Oikawa, "Formation and interaction of sonic-Langmuir solitons," Progr. Theor. Phys., 56, 1719-1739 (1976).
3. V. G. Makhankov, "On stationary solutions of the Schrödinger equation with self-consistent potential satisfying Boussinesq's equation," Phys. Lett. A, 50, 42-44 (1974).
4. I. M. Krichever, "Spectral theory of finite-gap nonstationary Schrödinger operators. Nonstationary Peierls model," Funkts. Anal. Prilozhen., 20, No. 3, 42-54 (1986).
5. B. Dubrovin, and I. Krichever, "Exact solutions of nonstationary Schrödinger equation with selfconsistent potentials," Fiz. Elementar. Chastits Atom. Yadra, 19, No. 3, 579-621 (1988).
6. I. Cherednik, "Differential equations for Baker-Akhiezer functions of algebraic curves," Funkts. Anal. Prilozhen., 12, No. 3, 45-54 (1978).
7. B. Dubrovin, I. Krichever, and S. Novikov, "Schrödinger equation in magnetic field and Riemann surfaces," Dokl. Akad. Nauk SSSR, 229, No. 1, 15-18 (1976).
8. A. Veselov and S. Novikov, "Finite-gap two-dimensional periodic Schrödinger operators: potential case," Dokl. Akad. Nauk SSSR, 279, No. 4, 784-788 (1984).
9. A. Veselov and S. Novikov, "Finite-gap two-dimensional periodic Schrödinger operators: exact formulas and evolution equations," Dokl. Akad. Nauk SSSR, 279, No. 1, 20-24 (1984).
10. I. Krichever, "Spectral theory of two-dimensional periodic operators and its applications," Usp. Mat. Nauk, 44, No. 2, 121-184 (1989).

[^0]: ${ }^{\dagger}$ The investigations are supported by the Russian fund of fundamental investigations (grant No. 93-011-16087).

