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§1. Introduction.  Statement  of Results  

The dynamics of strings in strong gravitational fields and especially in the vicinity of space-time sin- 
gularities has recently attracted special attention. One of the main goals of this paper is to construct 
exact solutions of string equations in (2 + 1)-de Sitter space-time. The simplest solutions of this equation 
were obtained in [1], which stimulated our work and where the physical motivation and bibliographical 
references can be found. 

From the geometric viewpoint the problem is to construct minimal surfaces in a pseudosphere, i.e., if 
q = {qi(a, ~)} is a parametrization of such a surface, then 

D 

<q' q) = E ~iqiq{ = 1. (1.1) 
~-----1 

Unless otherwise specified, the constants ~/i that define the metric are assumed to be given by ~ = 
( -1 ,  1 , . . .  ). The equations that define embeddings of minimal surfaces in the quadric (1.1) have the form 

(a+a_ + ~ )q  = 0, a± = a/ax±,  ~± = (~ + a ) / 2 .  (1.2) 

As follows from (1.1) and (1.2), the Lagrange multiplier u = u (x+ ,x_ )  in (1.2)is equal to 

u = (O+q, O_q>. (1.3) 

Equations (1.2) and (1.3) form a system of nonlinear equations for the functions qi(a, r) .  They are a 
particular case of the general a-models 

o+o_~ + (o+ ~, o_~) .~  = o, (1.4) 

where ( . , . ) .  stands for the inner product defined by some matrix (gij). Equations (1.4) can be considered 
as linear equations with self-consistent potentials. The well-known nonlinear SchrSdinger equation can be 
treated in the same manner. It can be represented as the linear equation 

(io, - o~ + u(x, t ) ) ¢  = 0 (1.5) 

with the self-consistency condition 
u = ~1¢12. (1.6) 

Numerous physicM models that describe the interactions of long and short waves also have the form of a 
system comprising linear equation (1.5) and various self-consistency conditions. For example, 

u~ + u~ = I¢1~ [2], (1.7) 

u , -  u ~  + ~ u ~ x ~  + Z ( ~ 2 ) ~  = I ¢ l ~  [3]. (1.s) 
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The general construction of exact solutions to the nonstationary SchrSdinger equation (1.5) with various 
types of self-consistency conditions was proposed in [4] (its realization for the construction of soliton 
solutions was presented in [5]). Such a scheme was originally advanced in [6] for the construction of exact 
solutions to the nonlinear SchrSdinger equation and its vector analogs. 

The main goal of this paper is to show that the ideas of this scheme are universal enough to be applied 
to many other systems. In particular, for or-models the construction can be considered as an alternative 
to the inverse transform method. In the author's opinion the essential advantage of the scheme is that it 
allows us to construct solutions of the ~r-model which, in addition, satisfy the so-called string constraints. 
The string constraints follow from the reparametrization invariance of the world surface of the string. 
They have the form 

T+,+ = (O+q, O+q) = O, T_,_ = (O_q, O_q) = O. (1.9) 

(Equations (1.9)are the classical analogs of the quantum equations 

LnlO)=O, n > - l ,  (OILn=O, n < l ,  

that define the vacuum state in the model of a bosonic string. Here Ln are the generators of the Virasoro 
algebra.) The basic idea of constructing exact solutions to Eqs. (1.4) can be presented in the following 
form. First we construct "integrable potentials" u = u(x+, x_) of the two-dimensional wave operator 

(0+0_ + u(x+, x_))~b(x+, x_,  Q) = O, (1.10) 

i.e., potentials such that a set of solutions to (1.10) with spectral parameter which is a point Q of an 
auxiliary Riemann surface of finite genus is known. We shall say that the self-consistency conditions are 
satisfied if there exist values Qi, i = 1, . . .  , 2N, of the spectral parameter such that 

where 

u(x+, x_) = (1.11) 
i,j 

~3i(37+, 37_) -~- ~ i ( 3 7 + ,  37- ,  Q i ) .  . ( 1 .12 )  

Linear equation 1.10), in conjunction with the self-consistency conditions, implies nonlinear equations 
(1.4) for the vector ¢(37+, z_) = (~bl,. . .  , ~N) with components that are values of the wave function 

Q) at Qi. 
Thus, the approach described for solving the nonlinear equations (1.4) is to construct integrable linear 

problems and then to select those of them whose corresponding potentials satisfy the self-consistency 
conditions. 

This scheme is developed for the string equations (1.1)-(1.3) and (1.9) in the next two sections. In the 
second section the necessary results [8, 9] on the integrable potentials of the two-dimensional Schr6dinger 
operator are presented. In the third section, the constraints on the construction parameters for such 
potentials are imposed to guarantee the self-consistency conditions (1.11) and the string constraints (1.9). 

• The algebraic-geometric solutions thus constructed are determined by an auxiliary algebraic curve F0 
of genus go with two marked points P± and by a meromorphic function E ( P ) ,  P E F0, with simple poles 
Q,0., i = 1, . . .  , N .  Let F be a double covering of.F0 with exactly two branch points P±.  The matrix 
of the b-periods of the normalized odd (with respect to the permutation of the sheets) differentials on F 
defines the Pr im theta function ~ p r ( Z ) ,  Z = ( Z l ,  . . .  , Zgo). In terms of the Prim theta function the exact 
solutions have the form 

/~pr(Aj q- U+ x+ -]- U - x -  -]- Z)/gpr(Z) eiPJ-X++ipT x- 
99j(x+, x_) = rj Opr(Aj + Z)Opr(U+x+ + U - z _  + Z) ' 

(1.13) 
/gpr(-A j q- U+x+ + U - x _  q- Z)Opr(Z) e_(ip~x++ip-~x_) " 

v (37+, x_) = Opr(-A  + z)opr(Y+x+ +U-x_ + Z) 

"~iere Z is an arbitrary vector; the constants rj ,  p~ and the go-dimensional vectors U ±,  At ,  j = 
1, , . .  , N ,  are expressed in quadratures via F, P±,  and E(P) .  
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The functions (1.13)satisfy Eq. (1.10), where 

U = O+O_Opr(V+x+ -]- U - x _  + Z)  + coast . (1.14) 

Furthermore, 

N 

E ~P'~P~ = 1, (1.15) 
i = l  

N 

2u = E O+~iO-~[ + O+~[O-~i" (1.16) 
i - --1 

Hence the functions 

ql = ( ~ 9 1  - -  q2 = + 

= - = + j = 2 , . . .  , N ,  

satisfy system (1.1)-(1.3). 
In terms of the original algebraic-geometric data F0, P+,  and E(P)  the solutions satisfying the string 

constraints can be distinguished as follows. Suppose that the differential of the function E(P)  vanishes 
at the marked points, i.e., dE(P+) = 0. Then 

N 

E O + ~ i O + ~ 7 = O .  (1.18) 
i=l 

The solutions of string equations for the (2 + 1)-de Sitter space-time correspond to the case N = 2. The 
(2 + 1)-de Sitter space-time can be represented as the one-sheet hyperboloid 

1 = - q l  2 + q~ + q~2 + q~ (1.19) 

in the flat Minkowski space with coordinates q = (ql, q2, q3, q4) and metric 

ds 2 = H-2( -dq~ + dq~ + dq~ + dq~), (1.20) 

where H is the Habble constant. This implies that the original curve F0 should be a hyperelliptic curve. 
This case is considered in detail in §4. All the parameters rj,  p-f, A j ,  and U +, j = 1 ,2 ,  occurring in 
(1.13) are expressed by quadratures via the original data formed by the set E_ < E1 < . . .  < E2~ < E+ 
(n = go) of branching points of the hyperelliptic curve and by an arbitrary n-dimensional vector Z.  Each 
set of original data determines a solution to the string equations in (2 + 1)-de Sitter space-time. These 
solutions are almost periodic functions of ~r. The closed strings correspond to the 2zr-periodic solutions 
of string equations. The periodicity condition is satisfied if 

p+~ - p~ = 2zr, U+k -- U;  = rcmk, mk e Z, (1.21) 

where Uk :k, k = 1, . . .  , n ,  are the coordinates of the vector U +.  Relations (1.21) form a set of n + 1 
equations for 2n + 2 parameters Es.  Therefore, for each n we have a 2n + 1-parametric (the vector Z 
in (1.13) is arbitrary) family of 2zr-periodic exact solutions of string equations in de Sitter space-time. As 
r --~ =t=e~, the functions qi(G, r ) ,  i = 1, 2, tend to ±ee .  But it should be emphasized that, as follows 
from (1.14), the "internal size" of the string defined by the invariant metric 

ds 2 = u(x+, x_)(da 2 - dr2)/2H 2 (1.22) 

is an almost periodic function of r .  
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§2. Schr~idinger  Operators with a Finite-Gap P r o p e r t y  on  an  E n e r g y  Level  

Consider the two-dlmensionM Schrhdinger operator 

H = (O~ - i A l ( x ,  y))  ~ + (O~ - i A ~ ( x ,  y ) )  ~ + u ( x ,  y) (2.1) 

in the magnetic field. The inverse problem based on the spectral data corresponding to a single energy 
level E = E0 was posed and considered for the operator H in [7]. In this paper a class of operators with 
a finite-gap property on a single energy level was constructed. From the viewpoint of spectral theory this 
class is distinguished by the condition that the Riemann surface of Bloch functions corresponding to this 
energy level (the complex Fermi surface) is of finite genus. Veselov and Novikov [8, 9] found conditions 
on the algebraic-geometric data of the construction [7] that distinguish real smooth potential (A~ = 0) 
operators H = H0, 

H0 = 0~ + 0~ + ~(~, ~). (2.2) 

Here we present the needed results of the cited papers with slight modifications, allowing for the fact that 
the operator (1.10) is hyperbolic in contrast to the elliptic operator (2.2). The complex theory is the same 
in both cases. The only difference is in the reality and smoothness conditions on the potentials. 

Let F be a smooth algebraic curve of genus g with two marked points P+ and fixed local coordinates 
/~:~I(Q) in neighborhoods of these points, k~ I(P±) = 0. Assume that there exists a holomorphic involution 

a:  F ~-~ F (2.3) 

on F such that P:~ are its only fixed points, i.e., 

a(P+) = P+. (2.4) 

The local parameters are assumed to be "odd," i.e., 

k ± ( a ( Q ) )  = - k + ( Q )  . (2.5) 

The factor-curve will be denoted by F0. The projection 

~: r ~ r0 = r / ~  (2.~) 

represents F as a double covering over F0 with two braach points P±.  In this realization ~r is the 
permutation of the sheets. Since there are only two branch points, we have 

~ = 2~o, (2.7) 

where go is the genus of F0. Let us consider a meromorphic differential dY/(Q) of the third kind on F0 
with residues :}:1 at the points P± and holomorphic outside P±.  The differential d ~  has g zeros, which 
will be denoted by ~i, i = 1, . . .  , 2g0 = g, 

dn(~i)  = 0 .  (2.S) 

For each i let us choose a point ~i on F such that 

7r(')'i) : ~ i ,  i : 1 , . . .  , g .  (2.9)  

(In what follows such divisors ~'8 are said to be admissible.) 
By definition, the Baker-Akhiezer function ¢ (x+ ,  x_ ,  Q) corresponding to this set of data is the unique 

function that has the following analytic properties with respect to the variable Q E F: 

1) Outside the points P+ the function ¢ is meromorphic and has at most simple poles at the points 
78 (if they are all distinct); 

2) In some neighborhoods of P+ the function ¢ has the form 

) ¢ ( x + , x _  Q) ~ k ~  1 +  ~ ( x +  x ' )  ± , , = , ~-8 (2.10) 
s----1 

~ = ~±(Q),  Q -~ p ~ .  

For almost all values of x± (which are external parameters in the definition) the function ¢ (x+ ,  x_,  Q) 
exists and is unique. 
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T h e o r e m  2.1 [8]. The Baker-Akhiezer function ¢(x+,  x_ ,  Q) satisfies the equation 

(0+0_ + ~(~+, ~_) )¢(~+,  ~_, Q ) = 0 ,  (2.11) 

where 
u(z +, x_ ) = - 0 _ ~  + = -0 +  ~7, (2.12) 

and ~+ = ~(~+ ~-) are the first co¢~cients in the expansion (2.10). 
1 ~ 

In the  general  case the  funct ion  u(x+, x_) is a meromorph ic  funct ion  of the  variables x+ .  Its expression 
in te rms  of the  P r i m  the t a  funct ion  was ob ta ined  in [9] (see formula  (1.14)). The  following condit ions on 
the  set of algebraic-geometr ic  da t a  are sufficient for reality and regulari ty of the  corresponding potent ial  
u(~+,~_) .  

Assume tha t  there  is an an t iho lomorphic  involut ion 

~: r ~ r (2.13) 

on F such tha t  
-r(P+) = P+, k+(v(Q)) = k+(Q). (2.14) 

L e m m a  2.1.  Let the divisor of the poles 71, . . .  , "~ of the Baker-Akhiezer function be invariant with 
respect to the anti-involution ~-, that is, 

~-(D) = D,  D = 7")' 1 -~- • " "  --}- " ) ' g .  (2.15) 

¢(x+, x_, ~(Q)) = ¢(~+, ~_, Q), 

and the corresponding potential u(x+, x_) in (2.11) is real, 

(2.16) 

u(x+, z_) = u(x+, x_) .  (2.17) 

According to the  Hurwitz  theorem,  the  n u m b e r  of fixed ovals of an an t iholomorphic  involut ion is not 
greater  t han  g + 1. Curves with g + 1 fixed ovals are called M-curves.  

L e m m a  2.2.  Let F be an M-curve with respect to the anti-involution ~- (i.e., ~- has g +  1 fixed ovals 
a0, a l , . . .  , ag), and let the marked points P+ and the points 71 , . . .  , 7g be chosen in such a way that 

P+ E a0, "/s ~ as .  (2.18) 

Then the corresponding potential u(x+ ,  x_) is real and smooth for all real x+. 

R e m a r k .  It is likely tha t  the  cited condit ions are not  only sufficient, bu t  Mso necessary for the 
algebraic-geometric potent iMs to be real and  smooth .  

Both  l emmas  can be proved in the  same way as the  corresponding s ta tements  for the  elliptic equat ion 
(2.2) (see [8, 9]; the  p roof  can also be found  in [10]). 

§3. S e l f - C o n s i s t e n c y  C o n d i t i o n s  

Let E(P)  be a meromorph ic  funct ion  on Fo with simple poles Q,O. E Fo, i = 1, . . .  , N .  The  preimages 
of these points  on F will be deno ted  by Qi ,  Q~ = ~(Qi).  
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L e m m a  3.1. Let ¢(x+,  x_,  Q) be the Baker-Akhiezer function; then 

N 

E ~i(x+ , 
i=1  

x-)~p~[(x+,x_) = 1, 

~.ohere 

(3.1) 

vi(x+,  ~ - )  = t iC(z+,  x_,  Qi), 
~ ( z + ,  x_) = t iC(x+, z_ ,  Q~'), 

and the constants ri are given by the formula 

~ resQ, E(Q)d~(Q)  
r i ~ E+ - E_ ' E~ = E(P~). 

(3.2) 
(3.3) 

(3.4) 

Proof .  Consider the differential 

d~&(x+,x_,_.~ Q) = ¢(x+,  x_,  Q)¢" (x+ ,x_ ,  Q)E(Q)d~(Q)  
E+ - E_ 

where, by definition, 

(3.5) 

¢~(x+, z_ ,  Q) = ¢(z+ ,  x_,  a(Q)). (3.6) 

The functions ¢ (x+ ,x_ ,  Q), ¢~'(x+, x_,  Q) are meromorphic outside the marked points P±, where they 
have essential singularities. It follows from (2.5) and (2.10) that the differential dg/ is meromorphic 
everywhere on F, including the points P+. Condition (2.8) implies that this differential is holomorphic at 
the points % and 7~. Therefore, d'-~ can have poles only at the points Qi, Q~[, and P±. The residues 
of this differential at these points are equal to 

h ~ 

rest,  d~ = r e s ~  d~  = ~i(x+,  x - ) C ( ~ + ,  ~ - ) ,  (3.7) 

res p~ d~'~ E± (3.8) 
= =t=E+ - E _  

The sum of residues of a meromorphic differential on a compact Riemann surface is equal to zero, i.e., the 
sum of the right-hand sides in (3.7) and (3.S) is equal to zero, whence follows (3.1). 

L e m m a  3.2. If u(x+, x_) is the potential of the operator (2.11) corresponding to the Baker-Akhiezer 
function, then 

N 
2~(~+ ,~_)  = ~ o + ~ i ( ~ + , ~ _ ) o _ ~ 7 ( ~ + , ~ _ ) + o - ~ i ( ~ + , ~ - ) o + ~ 7 ( ~ + , ~ - ) .  (3.9) 

i----1 

Proof .  Consider the meromorphic differentiM 

E(Q) d~2(Q) (0+¢0_¢~ d ~ l ( X + , x - , Q ) =  - ~ - +  _- -~--~_ ~ -t- 0 - ¢ 0 + ¢ a )  • ( 3 . 1 0 )  

It is holomorphic everywhere except for the points Qi, Q~, and P±.  The sum of its residues at the points 
Qi and Q7 is equal to the right-hand side in (3.9). It follows from (2.10) and (2.12) that 

E± E± (3.11) 
resp~ d~ l  = ~:2 E + ' -  E_ 0 : ~  = =F2 E+ - E_ u. 

Again using the fact that the sum of all residues of a meromorphic differential is equal to zero, we 
obtain (3.9). 
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L e m m a  3 .3 .  Suppose that the differential of the function E(Q) 

dE(P+) = O . Then 
N 

= o .  

i = 1  

is zero at the points P+, i.e., 

(3.12) 

P r o o f .  The  le f t -hand side of (3.12) is equal to the  sum of residues at the  points  Qi and Q~ of the 

differentials 
dft+ = (E(Q) - E+)O+¢(x+, x_ ,  Q)O+¢'~(x+, x_ ,  Q) drY(Q). (3.13) 

Hence, to prove (3.12) it suffices to show tha t  the  residues of these differentials at the  points  P+ are zero. 
The  condi t ion dE(P+) := 0 implies tha t  in some ne ighborhoods  of P+ we have 

E(Q) = E+ + O(k_;'). (3.14) 

It follows f rom (3.14) and  f rom the expansion (2.10) for the  Baker-Akhiezer  funct ion  tha t  

resp+ df~+ = 0, resp:~ d f t_  = 0. (3.15) 

So far, as well as in the  beginning of the  preceding section,  we have considered the  complex theory. Let 
us now suppose  tha t  the. condi t ions  of L e m m a  3.3 are satisfied. These  condi t ions  are sufficient for reality 
and regulari ty of the  potent ia l  u(x+, x_)  corresponding to the  algebraic-geometric  da ta  

{F, ~'1, . . .  , 7g, P + } .  (3.16) 

Under  these condi t ions  the  factor-curve F0 = F/~r is an M-curve  wi th  respect  to the  anti- involution 
0 i = 1  • go, To: F0 --~ Fo induced  by the  ant i- involut ion T: F ~-~ F.  Over each of the  fixed ovals a i , , .. , 

of T0 there  are two fixed ovals ai and a~ of the  ant i - involut ion v ,  o ( a i )  = a ~ .  The  fixed oval a0 of T0 
which contains the points  P+  is divided by these points  into two segments  a0 + and  a~-. The  preimage of 
one of them,  say, ao + , is a fixed cycle a0 of the  ant i- involut ion ~', i.e., 

T(Q) = Q, Q E ao. (3.17) 

The  pre image  of a~- is a cycle 5o fixed wi th  respect  to the  mati-involution v~r, t ha t  is, 

ra(Q) = Q, Q ~ 5o. (3.18) 

In addi t ion  to the  condi t ions  of L e m m a  3.3, we assume tha t  the  meromorph ic  funct ion  E(Q) is real and 
tha t  

1 
2 resooE(Q)dg t (Q)  > 0 (3.19) ri - -  E+ - E_ - i  " 

Moreover, assume tha t  one of poles Q~0 lies on the  curve a0 + and  all the  others  are on the  curve a~-. This  
means  tha t  

It follows f rom (2.16) t ha t  

r (Q1)  = Q~, r(Q~') = Q~', (3.20) 

r (Qi )  = QT, i > 1. (3.21) 

m 

~1 = ~---i-, V~' = V~, (3.22) 

~i = ~2~, i > 1. (3.23) 

T h e o r e m  3.1 .  Let ¢ ( x + ,  x _ ,  Q) be the Baker-Akhiezer function determined by the curve F, the 
pole divisors 7i, the points P+, and local parameters in the corresponding neighborhoods, satisfying the 
cbnditions of  Lemma 3.2. Let a meromorphic function E(Q) satisfy conditions (3.19)-(3.21). Then the 
vector function q = qi(x+, x_)  with coordinates given by (1.17), where ¢Pi and ~P7 are defined in (3.2) 
and (3.3), is a real nonsingular solution to the system of equations 

(0+0,  + u)q = 0, (q, q) = 1, (3.24) 
u = (a+q, a_q), (a+q, a+q) = o. 
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§4, Theta Function, Formulas 

In this section we present exact theta function formulas for solutions of the string equations in (2 + 1)-de 
Sitter space-time. We begin with an explicit construction of the double covering over the hyperelliptic 
curve F0 defined by the equation 

2 n  

y~ = ( E -  E _ ) ( E -  E+) E ( E -  Ei) = Rz,~+z(E). 
i=1 

We assume that  the real roots of the polynomial R2,~+2 are enumerated as follows: 

E_ < El < E2 < . . .  < E2n-1 < E2n < E+. 

The real ovals of the anti-involution 
- -  

~0: (~, E) ~ (~, E) 
0 are the cycles a i over the forbidden zones [E~i-~, E2i]. 

As usual we introduce the basis of holomorphic differentials 

1 ~-~ 
wj = V ~  ~ vii E j dE, 

j=O 

normalized by the conditions 

(4.1) 

(4.~) 

(4.~) 

(4.4) 

[ E2~ 1 
w 1 =  ~ij. (4.5) 

d E2i- ~ "~ 

The b-periods of these differentials define the so-called Riemann matrix 

E 2 j  - 1 

Bkj = 2 Wk. 
dE_ 

(4.6) 

The basis, vectors ek and the vectors Bk that are the columns of the matrix (4.6) generate a lattice B 
in C n . The n-dimensional complex torus 

J(r0) = c ' v s ,  B = ~ ~,~k + .~kB~, ,~ ,  , ~  c z ,  (4.7) 

is called the Jacobian variety of F0. The vector with coordinates 

Ak(P) = Wk (4.8) 

defines the Abel map 
A: F0 -~ J ( r 0 ) .  (4.9) 

The Riemann matrix is symmetric and has positive-definite imaginary part. The entire function of n 
variables 

O ( z )  = O(zlB) = yL'~e 2"(z'm)+'i(Bm'm), 
mE~.,~ 

Z = ( Z l , . . . , Z n ) ,  m = ( m l , . . . , m n ) ,  ( z , m ) = z l r r ~ l + . . . + Z n m n ,  

(4.10) 

determined by this matrix, is called the Riemman theta function. It has the monodromy properties 

O(Z. q-- ek)  ~--~- O(Z) ,  O(g "q- Bk);=e--9~rizk--"iBkkO(Z). (4.11) 
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Although  the  funct ion  0 ( A ( P )  - Z)  is a many-va lued  funct ion  of P ,  the  zeros of this funct ion  are well- 
defined according to (4.11). For Z in a generic posi t ion,  the  equat ion  

0 (A(%)  - Z) = 0, s = 1 , . . .  , n ,  (4.12) 

has n roots.  At the  same t ime,  

Zk = wk . (4.13) 
i = 1  21 

It follows f rom (4.13) and (4.12) tha t  for the  vectors Z + wi th  coordinates  

Z~ = Wk, (4.14) 
2 

the roots  of Eq. (4.12) are the  points  

E+, E2i, i = 2 , 3 , . . .  , n .  

Therefore,  the  funct ion  

) , (p)  = O ( A ( P ) -  Z + ) O ( A ( P ) -  Z - )  Z + + Z -  

0 ~ (A (P)  - ~) ' ~ - 2 ' 
(4.15) 

has simple zeros at the  points  E=t: and  double  zeros at the  points  E2i,  i = 2 , . . .  , n .  It also has double 
poles at the  points  

0 ~ 0 e a 0  0, "~2ea~,  ~ 3 e a ~ , . . . ,  " ~ n e a  n.  

(It should  be men t ioned  tha t  it follows f rom (4.11) tha t  the r igh t -hand  side in (4.15) has trivial monodromy  
with respect  to the  lat t ice /3. This  means  tha t  ),(P) is a well-defined funct ion  on F0 .) 

The  funct ion  )~(P) is real on real cycles of P0. Since its zeros are double,  it follows tha t  it has constant  
0 Let signs on each of the  cycles a ~ , . . .  , a n . 

si = ½sgnA(P)l~e~ 7, e , = ½ + s i ,  i =  l , . . .  , n .  (4.16) 

Then  the  funct ion  

.(v)=(_l)~,~(p)i~[ ~-E,  ~ ~=~ t,z= ~_~ )  

¢i 

(4.17) 

has simple zeros at E + ,  double  zeros at E2i or E2i-1 (depending  on the  sign of si),  and  double  poles at 
the points  ~s, s = 0, 2, 3, . . . ,  n .  This  funct ion  is positive on the  cycles a, °. , i = 1, 2, . . .  , n .  

We denote  by F the  Pdemarm surface of the  funct ion 

f = V / ~ .  (4.18) 

The  surface F is a double  covering over F0 wi th  two branch  points  E + .  The  ho lomorphic  differentials on 
F0 are even differentials on  F wi th  respect  to pe rmuta t ions  of the  sheets. Also, there  is an n-d imens ional  
space of odd  differentials. As a basis of such differentials we shall choose 

~ya_ dE O(A(P)-a+)O(A(P)-a_)yj(p)  
V Z g ~  O(A(P))O(A(P) -- ~ 1 / 2 )  ' 

(4.19) 

where 
O(A(P)  - e j / 2 ) ~ ( A ( P )  - Cj) 

Y~(P) : ~ ; ~ ~  ¥ i----y) • (4.20) 
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The  vectors a ±  in (4.19) are equal  to 

aa: = A(=l=cx~) - A(E2) ,  (4.21) 

where q-c~ are the  pre images  of the  point  E = ¢x~ on the  two sheets of F0. The  vector  Cj in (4.19) is 

1 1 Cj = - a +  - a _  - ~ej + ~el + ~ + ~ -  ~. (4.22) 

It is uniquely  de t e rmined  by the  condi t ion tha t  the  r igh t -hand  side of (4.19) is invariant  by t rans la t ion 
by periods.  In (4.19)-(4.22), ej are basis vectors; ~ = (0, 1, 1 , . . .  , 1); g : (0, s2, . . .  , s , )  (where sl are 
given by (4.16)). The  basis of normal ized differentials w~ d : ~'~ ~od aijw i is defined by the  condi t ions 

= 

2~--I 

IHere and ~]o~ ~ ~d~ ~o~ ~h~ i~r~ ~Io~ ~ ~ci~ ]yi~ o~ o~ o~ ~h~ s~ o~ ~ ov~ ~ ~y~I~ 
~ ~o~d~ ~ ~o~s ~ and ~.~ T~ ~H~ 

~ E 2 i -  ~ 

= 

J ~ _  

( 4 . 2 4 )  

of b-periods of normal ized  odd  differentials defines the  P r i m  the t a  funct ion  

Opt(z) =O(zl BPr) 

via (4.10). Let us  in t roduce  some more  definitions. First  of all, for a point  Q E P we define 

/2 A~d(Q) = w~ a, k = 1 , . . .  , n .  (4.25) 
- -  

This  vector is de t e rmined  up  to the  latt ice of per iods of the  P r i m  function.  For Z in a generic posi t ion 
the equat ion  

0p~(A°d(%) -- Z)  = 0, s = 1 , . . .  , 2n,  (4.26) 

has 2n roots.  Moreover~ for an arb i t rary  Z they  form an admissible divisor. RecM1 tha t  this means  
tha t  the  projec t ions  of these poin ts  ~s = r ( % )  on the  hyperel l ipt ic  curve F0 are zeros of a th i rd-kind 
meromorph ic  differential, d ~  (~s) = 0. The  differential has the  fo rm 

( E _ - E + ) d E  H(Q) (4.27) 
d~(Q) = ( E -  E + ) ( E -  E_) H(E_) ' 

where E = E(Q) is the  pro jec t ion  of Q onto  the  E-p lane  and  

Op~(A°d (Q) - Z)Op~(A°d(Q) + Z)O~(A(P) - e . / 2 )  (4.28) 
H(Q) = ~(A°d(Q))O(A(P))O(A(P)  - e.) 

(Here ~ s tands  for the  ~ e m ~  the t a  funct ion  of the  hyperel l ipt ic  curve F0 ~ d  the  vector e. is 
(~, ~ , . . .  ,~) . )  

The  converse s t a t emea t  is Mso true~ i.e.~ any admissible  divisor 7~ in a generic pos i t ion  can be obtMned 
as the roots  of Eq. (4.26) for the  c o r r e s p o n ~ n g  vector Z .  T h a t  is why below we consider the  components  
of Z as free p a t t e r e r s  ins tead  of ~dmissible divisors. 
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I m p o r t a n t  r e m a r k .  The exact construction of the covering F over the initial curve F0 and the 
explicit formulas for normalized odd differentials and the Prim theta function were presented for the case 
in which F0 is a hyperelliptic curve. Nevertheless, formula (4.29) below is valid in the general case. 

T h e o r e m  4.1 [9]. The Baker-Akhiezer function defined in §2 can be represented in the form 

Opr(A°d(Q) + U+x+ + U - x -  - Z)Op~(A°d(z)) ei(p+(Q)~++~-(e)~_ ) (4.29) 
¢ = Op~(A°d(Q) -- Z)Oe~(U+x+ + U - x -  - Z) 

Here p+(Q) are Abelian integrals of the second-kind normalized differential dp+ on F that have poles of 
the second order at the points P=t:, respectively; the vectors 2rcU + are the vectors of b-periods of these 
differentials. 

In our case F0 is a hyperelliptic curve, 
E+ have the form 

d p ± =  

and the differentials alp± with second-order poles at the points 

h ± dE 

(E - ~±)  ~/~(~-~ 
+ ~:~y~. (4.~0) 

The constants a} k are determined by normalization conditions 

~E2i ~ . 
dp ± 0 

J E~_ ~ 
(4.31) 

Hence i ~E2~-i 
- dp +. (4.32) 

Uk~= ~ JE_ 

There are two points on F0 over E = oo. We denote them by 4-oo. At one ofthem~ say Q~ -- +~ the 
function p(Q~) > 0. According to the results of the previous seetions~ the values of the Baker-A~hiezer 
function at the points QI~ Q[ and Q2~ Q[ that cover the points Q01 and Q~ = -~ define solutions of 
the string equations in (2 + l)-de Sitter space-time. So let 

Ai = A°d(Qi), p~ = /~E ~_ dp +, j = 1,2,  (4.33) 

and 
r~ = H ( Q j ) / H ( E _ ) ,  (4.34) 

2 where H(Q) is given by (4.2S). (The constants rj are the residues of the differential (3.5), where da  is 
given by (4.27).) 

T h e o r e m  4.2. Any set (4.2) of real points Es, an n-dimensional real vector Z ,  and real constants 
h + define real smooth solutions of the string equations (3.24) in (2 + 1)-de Sitter space-time with the help 
of formulas (1.13) and (1.17) (where the vectors U =k, Aj ,  the constants p~ and rj ,  j = 1 ,2 ,  are defined 
by (4.32), (4.33), and (4.34)). 

In general, since 
~mp~ ¢ 0, 

the components ql ~ q2 of the corresponding solutions axe unbounded or tend to zero as r ,  a --~ :hoo. The 
constants p~ axe real. Hence, the functions qa, q~ are almost periodic functions of the variables ~- and a.  

Coro l l a ry .  If  for given Es the constants h ± are chosen in such a way that 

pl + - p~- = 0, (4..~5) 

then the corresponding solutions of the string equations are almost periodic functions of the variable ~. 
The additional conditions (1.21) specify a 2n + 1-parametric family of solutions which are 2co-periodic 
in o'. 
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