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MULTI-PHASE SOLUTIONS OF THE BENJAMIN-ONO EQUATION AND THEIR AVERAGING 

S. Yu. Dobrokhotov and I. M. Krichever 

The Benjamin-Ono equation [i] 

i -~ %,u~ ~u :~, (o.i) ut"-Buu~ - P 'V"  --T,~_~ u- - , ,  

which appears in a number of problems of mathematical physics is a non-local analogue of 
the Korteweg-de Vries equation. In particular, as shown in [2-3], it describes the propa- 
gation of wave packets in a boundary layer. These papers and our discussions with O. S. 
Ryzhovyi have prompted us to pursue the investigations described below. 

We can apply the general approach of the inverse problem method to Eq. (0.I), i.e., 
we can write it as a compatibility condition for an overdetermined system of supplementary 
linear problems [4, 5]. As a consequence, the direct and inverse scattering problems for 
the supplementary linear system can be used to solve the Cauchy problem with quickly de- 
creasing initial values. In the framework of this approach there naturally appear exact 
"multisoliton solutions" which are rational functions of their arguments (these questions 
are studied in a large number of papers; we do not claim completeness here, instead direct- 
ing the reader to [6-8], where even more detailed bibliographies may be found). 

One of the main goals of this article is to obtain a large class of quasiperiodic solu- 
tions of Eq. (0.i) by using the ideas and the methods of the theory of finite-zone integra- 
tion. 

Here we find it appropriate to make a few remarks. The general method of finite-zone 
integration allows us to construct periodic and quasiperiodic solutions of nonlinear equa- 
tions that admit various types of commutative representation. The corresponding solutions 
in general may be written in terms of theta functions of supplementary Riemann surfaces of 
finite genus (algebraic curves). As a limit case corresponding to the degeneration of alge- 
braic curves to rational ones with singularities, the finite-zone construction provides a 
rather simple and effective method for constructing multisoliton and rational solutions of 
the original nonlinear equations (see [9, i0]). The construction of such limit solutions 
can be described in a closed form, using only the simplest elements of linear algebra. The 
authors of [i0] have described a similar construction of integrable potentials of a non- 
stationary Schrodinger operator 

(lOt 4- 0~ -5 v (x, t)) 9 (x, t, k) = 0 ( 0 . 2 )  

and  s o l v e d  a n u m b e r  o f  r e l a t e d  n o n l i n e a r  e q u a t i o n s .  The l a t t e r  p a p e r  i s  e s p e c i a l l y  r e l e -  
v a n t  t o  u s  s i n c e ,  a s  i t  w i l l  become a p p a r e n t  l a t e r ,  f o r  a s p e c i a l  c h o i c e  o f  p a r a m e t e r s  t h e  
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integrated potentials (0.2) result in solutions of the Benjamin- Ono equation. The result- 
ing solutions from the point of view of the general algebrogeometric approach are completely 
analogous to multisoliton solutions of the nonlinear Schrodinger equation and a series of 
other non-linear equations (i.e., they correspond to rational curves with double singulari- 
ties). Equation (0~i) has a special property in that these solutions are quasi-periodic. 
Therefore, in the sequel we do not call them multi-soliton, preferring to use the term "mul- 
tiphase solutions." 

These solutions have form 

= ,~0 (K~ + Wt + m t L . . . . .  L~0, ( 0 . 3 )  

where  Uo (z~ . . . . .  Z n [ I )  i s  a f u n c t i o n  t h a t  i s  2 ~ - p e r i o d i c  in  e v e r y  one o f  t h e  v a r i a b l e s  
z i and depends on a set of parameters {Ik} like on parameters, vectors K(1) and W(1) also 
depend on the parameter I k, and vector ~ is arbitrary. 

Solutions of form (0.3) have been obtained using an analogue of Hirota's method in [8]. 
As noted before, in this article we use a different approach, which subsequently plays an 
important part in the averaging procedure. In particular, we use a method for parameteri- 
zation different than the one used in [8]. 

Equations having a sufficiently large supply of solutions of form (0.3) we can average 
with Whitham's averaging method (a non-linear WEB-method) (see [11-13]) by constructing 
asymptotic solutions of form 

~ (x. l) =: u0 (e-iS (X, T) -~ ~ (X. T) i I (X. T})-i- ~i ~- " �9 "' ( 0 . 4 )  

where the parameters I and ~ are now functions of "slow" variables X = Ex, T = r If a 
vector S(X, T) satisfies 

a ~ v =  K ( I ( X .  T)): OrS == W ( f ( X ,  ~')), (0 .5)  

t h e n  u ( x ,  t )  s a t i s f i e s  t h e  o r i g i n a l  n o n - l i n e a r  e q u a t i o n  w i t h  an a c c u r a c y  o f  0 (~)  [ ] 1 - 1 3 ] .  

Whi tham ' s  e q u a t i o n s  a r e  e q u a t i o n s  d e s c r i b i n g  t h e  d e p e n d e n c e  o f  I k (X, T) on s low v a r i -  
a b l e s .  I n  t h e  s econd  p a r a g r a p h  o f  t h i s  a r t i c l e  we d e r i v e  W h i t h a m ' s  e q u a t i o n s  f o r  p a r a m e t e r s  
of multiphase solutions of the Benjamin-Ono equation using an approach described in [14]. 
They are the necessary conditions for the existence of an asymptotic solution of form (0.4) 
with a uniformly bounded (with respect to x and t) first term u I (x, t). 

Remarkably, in the initial parameters of the construction these equations split, be- 
coming Riemann-Hopf equations 

OTI~ = Oxl~. (0 .6)  

Consequently, solutions of Whitham's equations are defined implicitly by relations 

[~ ( x ,  T) = ]~ (X  + I~:T), ( 0 . 7 )  

where  t h e  f u n c t i o n s  f k ( x )  a r e  e q u a l  t o  t h e  i n i t i a l  v a l u e s  f o r  t h e  Cauchy p r o b l e m ,  i . e . ,  
f k  (X) = I k (X, 0 ) .  

I .  C o n s t r u c t i o n  o f  M u l t i p h a s e  S o l u t i o n s  o f  t h e  Benjamin- i )no  E q u a t i o n .  The B e n j a m i n -  
Ono e q u a t i o n  i s  e q u i v a l e n t  t o  t h e  c o m p a t i b i l i t y  c o n d i t i o n  f o r  a s y s t e m  o f  l i n e a r  e q u a t i o n s  

(lOt -4- a~ - -  2Ui, x ) ~ j - -  O, / = t ,  2, ( 1 . 1 )  

assuming that U l (x, t) and U 2 (x, t) can be analytically extended to the upper and lower ~ 
half-planes of the variable x, respectively [4, 5]. Indeed, from (i.i) we obtain 

iu = U 1 - -  U s § c (t), ( 1 . 2 )  

ut + 2 u u x +  ( U I , =  + Uf,==) = 0. ( 1 . 3 )  

S i n c e  U1 and U 2 can  be a n a l y t i c a l l y  e x t e n d e d  t o  t h e  u p p e r  and l ower  h a l f - p l a n e s ,  f rom ( 1 . 2 )  
we s e e  t h a t  t h e  c o r r e s p o n d i n g  p i e c e w i s e  a n a l y t i c  f u n c t i o n  can  be  w r i t t e n  in  t e r m s  o f  u ( x ,  
t )  by u s i n g  an i n t e g r a l  o f  Cauchy t y p e .  Us ing  P l e m e n ' - S o k h o t s k i i  e q u a t i o n s ,  we o b t a i n  
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Ul--=-2 - u ~  2a J x - - y  " ~ - u +  '-2-i- x - - y  dg. ( 1 . 4 )  

S u b s t i t u t i n g  ( 1 . 4 )  i n t o  ( 1 . 3 ) ,  we o b t a i n  ( 0 . 1 ) .  

U s i n g  t h e  m e n t i o n e d  r e p r e s e n t a t i o n  o f  t h e  B e n j a m i n - 0 n o  e q u a t i o n ,  we now p r o v e  t h e  ma in  
r e s u I t  o f  t h i s  p a r a g r a p h  a s  s t a t e d  b e l o w .  F i x  a s e t  o f  number s  a i ,  b i ,  c i ( i  = 1 . . . . .  n)  
and define a matrix 

�9 . 2 2 I 
Mj,,~ = c,,~e'(".c ~,,)~-'(~-,-b.,)t6 ~,,, bj - -  %, ( I .  5)  

and let 

THEOREM i.i. 

Then a formula 

Suppose that C, a m, bm are real numbers such that 

C < a l <  b , <  a 2 < b ~ < . . .  < a,, < b,,, ( 1 . 6 )  

[ c i  I ~ = - -  ( b i  - -  C)  1 - I j r  4 (a  i - -  ai) (b i - -  b j )  ( 1 . 7  ) 

(a i - -  C) 1-[] (b~ -- a )  (% -- b)  

u ( x , t )  = C +  ~ ( a ~ - - b , ~ ) - - 2 I m S x l n d e t M ( x , t )  ( 1 . 8 )  

d e f i n e s  a r e a l  n o n - s i n g u l a r  q u a s i - p e r i o d i c  s o l u t i o n  o f  t h e  B e n j a m i n - O n o  e q u a t i o n .  

Remark .  S o l u t i o n s  ( 1 . 8 )  can  be  w r i t t e n  a s  

It = :6)(K~ @ W t @  ~ lai ,  b~, C), ( 1 . 9 )  

where the n-periodic function u 0 and vectors K and W are determined by the values a i, bi, 
C and the components of the vector ~ are equal to 

(!' = a r g c .  (I.i0) 

P r o o f :  C o n s i d e r  a f u n c t i o n  r ( x ,  t ,  k )  

r ( x , t )  
r  ~ = ~  )e '"~-''"', ( 1 . 1 1 )  

�9 &[~=, m : = 1  

such that 

c., res!~=%l h = % (x, t, bin). (1.12) 

Linear conditions (1.12) are equivalent to the following non-homogeneous system of linear 
equations in quantities rm: 

~"  .u j,. (x, t) r,,~ (x, t) = 1. 

LEMMA 1 . 1 .  The m a t r i x  M i s  n o n d e g e n e r a t e  f o r  I m x  _> O. 

P r o o f :  Assume t h a t  M (x  0, t o ) i s  d e g e n e r a t e  f o r  some r e a l  x o and  t o . 
there exists a fucntion ~0 of form 

rm eikx _ik,%, V 1  r~ 0 

% (k)  = ~, , V - - -  

sat is fy ing relations (!.12). Define a differential 

df~ ---- % (k) ~-0 (k) dk I12= I k -- a i 

(1.13) 

This means that 

(1.14) 

(1.15) 

This differential is meromorphic in k and has a zero residue at infinity 

res~ d~ = O. 
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On the other hand, from (i.12), (i.6), and (1.7) we see that 

where 

b m - -  C 

a T : e ) > o ,  ( 1 . 1 6 )  

R m  .o _ za,,to). = 1,, exp (iamx 0 . 2 

T h e r e f o r e ,  t h e  sum o f  a l l  r e s i d u e s  o f  d~ i s  p o s i t i v e ,  w h i c h  i s  i m p o s s i b l e .  T h i s  c o n t r a d i c -  
t i o n  p r o v e s  t h e  n o n d e g e n e r a c y  o f  M(x, t )  f o r  r e a l  x and  t .  

D e f i n e  a f u n c t i o n  

u,  = ,  2 1 ~  (~,,~ - -  < 0 - -  ~ 1~ d~t M (x, t). ( 1 . 1 7 )  

The definition of M implies that 

U 1 (x, t) = 0 (e-~Imx), ~ = rain (bm - -  an,). ( 1 . 1 8 )  
~n 

I f  a l l  d i f f e r e n c e s  a m - b m c a n  be  w r i t t e n  a s  

2a 
{a,~, - - b r ~  ) == - 7  s .... sn, a r e  i n t e g e r s ,  ( 1 . 1 9 )  

t h e n  t h e  m a t r i x  M(x, t )  i s  a p e r i o d i c  f u n c t i o n  i n  t h e  v a r i a b l e  x .  The n u m b e r  o f  z e r o s  o f  
t h e  f u n c t i o n  d e t M  i n  a r e g i o n :  I m x  > O, 0 < R e x  <_ T i s  e q u a l  t o  

! 1 ~ N == 2~ U 1 (x, t) d:c. 
~ 0  

T h i s  n u m b e r  does  n o t  c h a n g e  i f  we c h a n g e  t h e  p a r a m e t e r s  a -  a nd  b- c o n t i n u o u s l y  w h i l e  p r e -  1 1 
serving relations (1.19). It is easy to see that as ]a i -ajl ~ ~ we have N = 0. There- 
fore, we have proved the lemma for an everywhere dense subset of parameters corresponding 
to periodic matrices M. The function U I is analytic with respect to parameters. Therefore, 
it is in general regular for Imx -> 0. Q.E.D. 

It is known that the function ~i (x, t, k) satisfies an equation 

(~o~ - - -  ~,;~ - -  2U~ ,: (~:, 0 ) %  (x, t. k) - -  O, ( 1 . 2 0 )  

whe re  U~ = iX m rm(X, t )  i s  e q u a l  t o  ( 1 . 1 7 )  ( f o r  more  d e t a i l s  s e e  [ 1 1 ] ) .  F u r t h e r m o r e ,  u s i n g  
( 1 . 5 )  we o b t a i n  e s t i m a t e s  ( 1 . 1 8 )  and  ( 1 . 2 1 ) :  

% = e ~;'~-~t (l -:- O (e-~- ! ~ , ) ) .  ( 1 . 2 1 )  

D e f i n e  a f u n c t i o n  ~2 ( x ,  t ,  k )  by  l e t t i n g  

% = ( '  + .a--j:,1 /c-- b~. @~*-~J% ( 1 . 2 2 )  

which is normalized by conditions 

ej res~=:b~l:.~ = ~ (x, t, ai), 

w h e r e  e j  i s  an  a r b i t r a r y  s e t  o f  c o n s t a n t s .  P r o c e e d i n g  a s  b e f o r e ,  we o b t a i n  

(mr + 01 - 2Uo ~ (x, t ))r  (x, t, k) = O, 

U= = i ~':'~=1 ( b . , - -  a,~) - -  Ox In det ~7 (x, t), 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

where the matrix M consists of elements 

�9 Z 2 
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In addition, U=(x, t) and r t, k) are analytic on the lower half-plane Imx ~ 0. Fur- 
thermore, 

U~. (x. t) = O (e~ ~'~), 

% = r~'~-~" (1 + O (e~ ~ ~)). 
( 1 . 2 7 )  

( 1 . 2 8 )  

Let 

- 1  (k  ai)  
( 1 . 2 9 )  

LEMMA 1.2. If constants c i and ci are related by 

a i - -  c 1-[j (b i - -  a]) (b I - -  ai)  

t h e n  t h e  f u n c t i o n s  @z(x,  t ,  k )  and  r  t ,  k )  s a t i s f y  

( 1 . 3 0 )  

where 

ia~l;~ 4- u. (x, 0 %  - -  ~. (k)g'2 (x. t, k) --- O. ( 1 . 3 1 )  

u = ~z-=l (r~ - -  ri) -F "C - -  N~=~ (a~ - -  b 0 = C - -  2.3~=.1 (ai - -  b.i) -!-- i (U s (~', l) - -  U~ (,r, t)). ( 1 . 3 2 )  

Proof. The definition of %(k) and relations (1.30) immediately imply that the function 

X(k)r t, k) satisfies relations (1.12). Let ~(x, t, k) be the function defined by the 
left-hand side of (1.31). From (1.32) we see that it has from 

~ 7 "  r i (.r, t) 
(z, t, A') = e ~"~-4~r't "/!-j=1 i~ .-- ~i " ( i .  33 ) 

Since it satisfies relations (i.12), rm are solutions of a homogeneous system of equations 

The matrix M is nondegenerate. Therefore, all rm are equal to zero. Q.E.D. 

LEMMA 1.3. Suppose that cj, as defined by Eq. (1.30), are such that 

Then 

u ,  (z. t) = U~ (r, t )  

(1.34) 

( 1 . 3 5 )  

Proof. Define functions 

~ P ~ = ~ P 2 ( ~ , t , k ) ,  ~ P ~ = ~ p l ( : ~ , t , k ) .  ( 1 . 3 6 )  

A f u n c t i o n  @z ( x ,  t ,  k)@i § ( x ,  t ,  k )  i s  a r a t i o n a l  f u n c t i o n  w i t h  p o l e s  a t  p o i n t s  am,  bm. 
The d e f i n i n g  r e l a t i o n s  ( 1 . 1 2 )  and  ( 1 . 2 3 )  and  c o n d i t i o n  ( 1 . 3 4 )  i m p l y  t h a t  f o r  e v e r y  m t h e  
sum o f  r e s i d u e s  o f  t h i s  f u n c t i o n  a t  p o i n t s  a m and  b m i s  e q u a l  t o  z e r o .  T h e r e f o r e ,  t h e  r e s i d u e  
a t  i n f i n i t y  i s  a l s o  e q u a l  t o  z e r o :  

0 = res~ ~ h ~  = ~m r~ (x, t) + ~ (~, t) = i (O~ (~, t) - -  U~ (x, t)). ( 1 . 3 7 )  

T h i s  p r o v e s  t h e  lemma and  t h e r e f o r e  t h e  t h e o r e m .  

Lemma 1 . 3  i m p l i e s  t h a t  f u n c t i o n s  Cz + and  @2 + s a t i s f y  t h e  f o l l o w i n g  e q u a t i o n s ,  w h i c h  
a r e  c o n j u g a t e  t o  ( 1 . 1 ) :  

(--lOt + O~ - -  2U,.~)~- = 0, ( 1 . 3 8 )  
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We conclude this paragraph by remarking that functions Cj and Oj+ (j = i, 2) can be 
written as 

~pl = R] (Kx + Wt + O, k)e i~x-i~'t, 

~ + = B~. (gx  -~- Wt + (1), k)e -~+{~'t, 
( 1 . 3 9 )  

where the fucntions Rj(z I ..... Zn, k), Rj+(zl ..... Zn, k) are periodic functions of vari- 
ables z i . 

2. Averaging and Whitham's Equations. We now construct asymptotic solutions of form 
(0.4) and derive equations that relate phases S l (X, T) .... S n (X, T) and the slowly chang- 
ing parameters. 

We first show that if relations (0.5) are satisfied then a function u = u 0 (S(X, T)/e+ 
(X, T), I (X, T)) satisfies Eq. (0.i) with accuracy O(e). We find it convenient to rewrite 

the integrodifferential operator in (0.i) as a pseudodifferential operator. After some 
straightforward calculations (see [6-8]) we obtain 

~ u u(y) = L ( - -  i L(p) nip[p[.  P" " i - ~  7 ~7 dy ~-~x )U, - - -  

Thus,  u s i n g  v a r i a b l e s  X = ~x and T = ~t  we can r e w r i t e  Eq. ( 0 . 1 )  as  f o l l o w s :  

Ou Ou ( O \ 
e - y f  i - 2 e u T u - ~ L  -- ie-TX-xju=O. (2.1) 

We s u b s t i t u t e  t h e  f u n c t i o n  G i n t o  ( 2 . 1 )  and compute t h e  e x p a n s i o n  o f  L ( - i r  8 /SX)u,  u s i n g  

a method described in [15]. Namely, we write u as g = e(iS'~)/eu0(z + ~, l)[z=0, ~ = i8/8z, 

z = (z I ..... Zn), zj e [0, 2~]. Using the formula for the commutation of a pseudo-differ- 
ential operator with the exponential cited in [16], we obtain 

L ( - -  8 , ' o~ . . . .  o �9 88 ~)__ / 8L /8S  ^', 

+ _ ~ _ ~ _ s  ) ~ O(~2). ( 2 . 2 )  

Thus,  making t h e  s u b s t i t u t i o n  i n t o  Eq. ( 2 . 1 )  and r e t a i n i n g  t h e  summands o f  z e r o t h  o r d e r  in  
r  we o b t a i n  

ST, x'818z = SIT, x~lazl + ... + SnT, xSlSzn �9 We show that Q = 0 if u is of the form (!.9) 

and S and I satisfy relations (0.5). Indeed, we replace coordinates z = (zi, ..., z n) with 
coordinates t, x, Yl, .... Yn-2 using formulas z = Kx + Wt + U1y I + ... + Un_2Yn_ 2, where 

the vectors K, W, and Uj are linearly independent. Using (0.5) we then obtain 

8o i (  , ( 2 . 3 )  
Q - - j T - +  2u-oT--k - - i  ,z / ~=sl~ 

where u = u 0 (Kx + Wt + r  I ) ,  ~ '  = U~y z + . . .  + Un-~Yn- : + r T) ,  I = I (X ,  T) .  S i n c e  

Eq. ( 2 . 3 )  does  n o t  c o n t a i n  d e r i v a t i v e s  w i t h  r e s p e c t  t o  v a r i a b l e s  X, T, y~,  . ~ . ,  Yn-z and 
a f u n c t i o n  u 0 (Kx + Wt + r  I )  s a t i s f i e s  t h e  Benjamin-Ono e q u a t i o n  f o r  a l l  r  and K, W, 
and I t h a t  s a t i s f y  ( 0 . 6 ) ,  t h e  r e m a i n d e r  r e s u l t i n g  f rom a s u b s t i t u t i o n  o f  fi i n t o  ( 2 . 1 )  i s  
e q u a l  t o  O(e ) .  Us ing  Eq. ( 2 . 2 ) ,  we can e a s i l y  compute t h i s  r e m a i n d e r  F = e3fi/3T + 
2sfiSfi/SX + L ( - i c 8 / S X ) f i :  

Y = ~F + O(~D, 

8u o 
= zuo--U2--l---5~p -~U]-~-2- +-5-Opt\ -~-z)~X~" Oz ]lz=s/~" 

(2.4) 

We now derive relations supplementing (0.5) to a closed system of equations. These 
relations are obtained by studying the equations for corrections to the leading term of the 
asymptotics of u. Procedures for calculating corrections differ significantly for one- and 
multiphase cases. In the first case it is sufficiently well understood (see, for example, 
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[11]), and there exists an algorithm in the theory of perturbations that gives the asymp- 
totic solution as a series in powers of g: u = u0(S/g + @, l(x, t)) + Eu i (S/g, x, t) + 
g2y 2 (S/g, x, t) + .... Every term of the series has the same "one-phase" structure. In 
the case of two or more phases this representation for the asymptotic solution no longer 
holds, as dictated by the appearance of resonances, i.e., a set of points (Xp, Tp) at which 
the dimension of the cokernel of the inverted operator changes if we assume that the cor- 
rections to u have the same "n-phase" structure (see (2.5')). The appearance of resonance 
points filling a line that is everywhere dense in Rx for each fixed T significantly changes 
and complicates the perturbation theory. We derive results only in the two-phase case for 
the Korteweg-de Vries equation [17]. In this case even the construction of the first-order 
correction is already a highly nontrivial problem that requires, in particular, a study 
of an equation that in general is nonlinear. 

We do not engage here in a presentation of the theory of perturbations, and will only 
demonstrate a method for obtaining the necessary conditions for the smallness of the correc- 
tion to u, assuming that the smallness of this correction requires the smallness of a solu- 
tion ul of the following equation, which is a linearization of (nonhomogeneous) Eq. (0.i) 
in terms of u: 

80T ' 
(2.5) 

The linear operator on the left-hand side of (2.5) defines a family of operators $ on the 
torus T n = (z i ..... ZnlZ j e [0, 2~]), that depend on X and T as parameters and are obtained 
from (2.5) by substituting gS/Ot + St-8/Sz = W.8/az and gS/Sx + Sx-8/Sz = K.8/Sz: 

2 ~ ~ ' +> . L ( - - ~ , K  ~ \ - ~ ' = W ' ~ - - z  -}- K-o-S((zt(z~' q ' X ' T ) )  )+ Oz i" (2.5') 

Assume that a smooth function w(z, X, T) is 2~-periodic in every variable 
Zn, and belongs to the cokernel of an operator ~ for every (X, T) e ~, i.e., 

( ( ' 
- -  T % : "  ~ W .  az ! +uo (z +-+-, (i,', X ,  T )  K .  -DT . . . .  L - -  iK+ - ~ 7 - ,  

Z I , Z2, ..-~ 

We make the following assumption on the functions Sj(X, T) which generalizes to the case 
n > 2 "condition A" known in the theory of averaging (see, for example, [18, p. 175]. Name- 
ly, we assume that for X, T ~ ~ the following Wronskian is not equal to zero: 

i K1 K~ + " + Kn t 

Ir +..  E'+ I K7 > _  A (:u T) = ! " : + ~ O, ++z.,/:--. 
I . . . . . . . . . . . . . .  i '  

i s,: ('++-:o r-c?'-') ]r i 
t I z " " " , + 

LEHMA 2.1. Suppose that a solut ion u i ( x ,  t ,  ~) of Eq. (2.5) sa t i s f i es  G i 
E + 0. Then for  (X, T) m ~7 we hve an orthogonal i ty  condit ion 

( 2 . 6 )  

= o(i) for 

! z , ( z , X , T )  F ( z , X , l ' ) d z  = 0 .  ( 2 . 7 )  
~Tr 

S u p p o s e  t h a t  f o r  a l l  X, T e ~ t h e  a v e r a g e  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  x e x i s t s  and  
d e p e n d s  s m o o t h l y  on X: 

dcP,. i S L <wF> - -  um ~ w (Kx, X,  T) F (If:c, X,  T) dx. 

Then condition (2.7) is equivalent to 

<wF> = O. ( 2 . 8 )  

In the proof of this lemma and in the sequel we shall need the following useful supple- 
mentary result. 

LEMMA 2.2. Suppose that condition (2.6) is satisfied and f(z, X, T) is a smooth func- 
tion that is 2~-periodic in variables zl, ..., z 2 and finite in a variable X e ~T = fl N 
{t = T}. Then 
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l ' (  / SiX, T) 

If in addition an average 

- -  X,T'](IX -- 1 f ~ / ( z , X , r )  d z d X  q-O(e~/,*). 
, / ( 2 a )  ~ _ ~  T n  

~L 

</> = l im=2Z-t  r / ( K x ' X ' T ) d ~ '  
[,-+cc -- �9 

( 2 . 9 )  

is a smooth function of X then 

'S </>-- , ,~ f ( z , X , T )  d:. ( 2 . 1 0 )  
(2:t) T~ " 

Proof. We estimate the derivatives of phases S-v. Denote the k-th derivative of S.v 

by Pvk Ivl, Ivl = s = + "'" + Vn 2" Then condition (2.6) implies that equations s(k).v = 

pvklVl (k = 1 ..... n) may be solved with respect to the vector vvlv } as follows: 

i \~'~ A,,~(X T)p<. (2.11) %,d v ] = , (><, r;-/--->_i ' 

where Amk (X, T) consist of sums of products of arbitrary S(k) (k = 1 ..... n), and there- 
fore are bounded in ~. From (2.11) we immediately obtain 

' - -  ~-~m=~] %'~1[ I%' /.~ C ([1) E k = l  C (Q) = c o n s t .  

-~n ~ 2 T h e r e f o r e ,  ~ = t  Ppk 2 -> , ; > 0 d o e s  n o t  depend  on v .  T hus ,  f o r  e v e r y  f i x e d  T and e v e r y  

point X we have the following estimate for at least one value of [ ( <- Z <- n): 

ISr !~6 Iv [, (2.12) 

where 6 = 6(9) > 0 is a constant. Since the vector vI~ [ belongs to the unit sphere, in the 
sequel without loss of generality we can assume that inequality (2.12) holds for a given 
k and for all X e [~T" Estimate (2.12) then also implies that a function K.v = SX.V has no 
more than n zeros for every T. Indeed, if we assume the opposite then since K (X, T)-v is 
smooth, the derivative K x (X, T).~ has at least (n - i) zeros, KXX (X, T)-v has at least 
(n - 2) zeros, and so on, and S (z).v has at least (n - I + i) zeros, which contradicts (2.12). 
This proves, in particular, that the set of points in faT for which at least one of the expres- 
sions K (X, T).m is equal to zero is no more than countable for v �9 Z n. 

We now study an integral ~ f (S(X, T)/e, X, T)dX. We expand the function f(z, X, 

T) as a multidimensional Fourier series in the variable z as follows: 
2 

.~zne /,(x,r). (2.13) 

Since f is smooth, the Fourier coefficients fv satisfy the following estimates for all X, 

T �9 ~, and all natural N: 

o 7,. I Q.~O (~, I) &U" , < I v IN ' Q~0 ([2,/) = tonal.  

Using these estimates, inequality (2.12), and known estimates for integrals of quickly oscil- 
lating exponentials cited in [19], we deduce that for all z > 0 we have 

o ~ q d X / ' ~ ( X ' r )  e e ] ' ~ '  ( 2 . 1 4 )  

where c< is a constant dependent on ~ and f. Writing the function f on the left-hand side 
of (2.9) in the form (2.12) and using (2.14), we immediately obtain Eq. (2.9). 

To prove Eq. (2.10) it suffices to note that the countability of the set of "resonance" 
points, i.e., points x �9 ~T, such that for some v �9 Z n we have K(X, T).~ = 0, implies the 
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existence of a set of points such that K(X, T).v ~ 0 for all v e Z n which is also every- 
where dense in ~T" For these points Eq. (2.10) holds because of known results in the theory 
of averaging (see, for example, [18]). At other points X it follows from the smoothness 
of the lelt- and right-hand sides of (2.10). 

Proof of Lemma 2.1. Let ~ (X, T) be a smooth function that is finite on ~. We multiply 
Eq. (2.5) by ~(X, T).w(S/g, X, T), integrate the resulting expression over X, T e fl, and 
transfer operators 8/8T, 8/3X and L(-ir over to ~w. Applying these operators to a 
function w, and using Eqs. (2.2) and ~+ w = 0, we obtain 

I !a  R (S/a, X, T, e)ffl dX dT = i f a  ~ a F  dX dT, 

where R (z, X, T, ~) is a smooth function 2v-periodic in zj. The limit as e + 0 of the left- 
hand side of this equation by our assumption ul = o(i) is equal to zero. Lemma 2.2 implies 
that the limit of the right-hand side is equal to 

u ; ( z , X ,  T) R ( z , X , T )  dz i d X  dT.  
.~ ~ ~ T ~ - 

33ae arbitrariness of ~ and the smoothness of the expression inside the square brackets imply 
that the above expression is equal to zero. Equation (2.8) follows from the second statement 
of I~_mma 2.2. 

Let us now consider the function ~i~2 +. Clearly, for real x and t it has the following 
~eructure: 

~ , ~  (x, t, K )  = w ( K x  ? W t  ~ W', K, I), 

~flaere w ( z ,  K, I )  i s  2 ~ - p e r i o d i c  i n  e v e r y  z x . . . . .  Zn, I ,  w h i c h  a r e  t h e  p a r a m e t e r s  o f  t h e  
solution (0.3). 

I ~  2.3. The function w(z, K, I(X, T)) belongs to the cokernel of the operator s 
if relations (0.5) are satisfied. 

Proof. Let p(z) be a smooth function on the torus T n = [0, 2v] n. Let 

We transfer the operator Z-to the function p(z) and write the operator f in coordinates 
x, t, Yl ..... Yn-2 (see (2.3)), using for the operator L(-iS/Sx) formulas Lp = Pl,xx + 
Pz,xx, ip = Pl - P2 (see (1.2)), where pl(x, t, I) and p2(x, t, I) are extended analytically 
to the upper and the lower half-planes of the variable x, respectively. Equations (i. I) 
and (1.37) directly imply 

u'2Ji; ~ q'l (Pc -+- 2uop.~ -+- 2Uo.~p -'.- p,,x.~ q- p2, ~.~-) q'_, 

8t (~hPq~2)-- Ox - -  , 

0 b 8 "d 0 0 0 
w h e r e  ~ / -  ---- W1 ~ + . . .  + W~ o-~- ~ := K1 ozl + "'" 4:- K~ ~ /  

The averages with respect to z of the expressions containing 8/8t, 3/8x, are clearly 

equal to zero. We compute the average with respect to x of the last two summands: 

2i<Plx~l~l+> - 2i<P2x~2~2+>. Shifting the contours of integration to the complex plane by 

shifting it to the upper half-plane for the first expression and to the lower one for the 
second expression, we see that they are equal to zero, since the expressions inside these 
integrals are exponentially small. Therefore, Lemma 2.2 implies that ~ (p) = 0 for all p. 
The smoothness of the function $+w now implies the lemma. 

Remark. Thus, Lemmas 2.1-2.3 imply that we can treat Eq. (2.5) as if its solution can 
be written in the "n-phase" form, i.e., in the form ul = ew (S/e, X, T). As noted before, 
such representation of the function u holds only in the one-phase case (see [I0, 17]). 

THEOREM 2.1. System of Eqs. (2.4) and (0.5) is equivalent to equations 

OTa, = - -  Oxen, Orb~ = - -  b~, o r e  ~- - -  OxC 2. ( 2 . 1 5  ) 
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Proof. Suppose we are given an arbitrary deformation of the parameters a i (~), bi(~) , 
C (~), of multiphase solutions of the Benjamin-Ono equation. Then the corresponding solutions 
u (x, t, ~) and functions ~i, ~0i+ are functions of the parameter z. 

A truncated derivative a~u is a function obtained by differentiating the corresponding 
formulas of the form (0.3) in which K and W are assumed to be constant. By this definition 
we have 

" % - 3  ~" a~ 
O~u : 0 ~  --  A..~=~ '~ (xO~K +, tO~W~) 0~ h " ( 2 . 1 6 )  

LEMMA 2.4. We have 

<~hO~u~:[> : a~X -- iO~K <~,j~]>, (2 .17 )  

(qh  au ., ~7~[> : , .  ( 2 . 1 8 )  

Let ~i (x, t, k I ~ ) ,  ~i + (x, t, klz) be the Baker-Akhiezer functions and the 
Then Eqs. 

Proof. 

conjugate functions corresponding to the different values of the parameter T. 
(i.i) and (1.3) imply that 

+ 
i O x ( ~ { ~ ) -  qh (u(x, t I ~ ) - -  u(x, t tT))a~2 : (2(~ I ~ ) - -  2(k ]T))~I'J!'; - ( 2 . 1 9 )  

D i f f e r e n t i a t i n g  ( 2 . 1 9 )  w i t h  r e s p e c t  t o  zz and l e t t i n g  ~z = <, we o b t a i n  

(O~K)6h~I'~) (~hO~u~Ĵ + == O~ (~hJ;J+ - Q. ( 2 . 2 0 )  

Here the remainder Q has form 

Q =  ~(a~ ~t%~ -YJO~%(K~ ~-W~ --(]~!, (2.21) 

where a s ,  ~s, 7s a r e  c o n s t a n t s  and Ws (z~ . . . . .  z n)  a r e  p e r i o d i c  f u n c t i o n s  o f  v a r i a b e s  z i .  

The v e c t o r s  K and W d e f i n e  r e c t a n g u l a r  w ind ing  son t h e  t o r u s  T n.  Le t  Tz(~)  be t h e  
c l o s u r e  o f  a w ind ing  Kx + Wt + ~. I t  i s  a s u b t o r u s  o f  T n.  For  e v e r y  f u n c t i o n  o f  form 

w(Kx + Wt + ~) we d e n o t e  i t s  a v e r a g e  o v e r  t h e  s u b t o r u s  Tz by <W>T . I t  i s  e q u a l  t o  t h e  

average with respect to x and t, i.e., <W>Tz = <w>. 

We average Eq. (2.20) over T~ (~) (note that we cannot take its average over x and t, 
since some of the terms in (2.21) linearly depend on x and t). Equation (2.21) implies 

that <Q>T~ = O. To obtain (2.17) for Eq. (2.20) averaged over T~, it remains to note that 

<~7 = <~> : i. (2.22) 

The latter equations are obtained by shifting the contour of integration to the complex 
region of the variable x. Equations (2.18) follow from (2.17) by considering the varia- 
tion of u with respect to 9 i for constant ai, bi C. Since I and K do not depend on ~i, 
the right-hand side of (2.17) in this case is equal to zero. 

LEMMA 2.5. We have 

I = I + 2 (~t (0~ (U~, x 7 U2, ~) + u0~)~l~> 2kO~ ~ iO~W <qh~b>. ( 2 . 2 3 )  

P r o o f .  Eqs.  ( 1 . 1 )  and ( 1 . 3 7 )  imply  t h a t  

' 1  ~ + , lot ( ~ )  + 0x (~1V2 --~') = 2 (6U~, ~#~2) ~ 2i (ux~h~),  ( 2 . 2 4 )  

where 6U I = U l (x, t, ~l) - UI (x, t, ~) (in the sequel we use similar notations 6X, 6u 
for increments of the corresponding functions). 

Furthermore, these equations also imply that 

u (~d'2)~  + ~u~1~,2~ - -  (%~,x  + ~ l x ~ )  - -  6~ ( ~ , ~ )  : ( 2 . 2 5 )  
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Using (2.16) and an equation i~2x + = -u~ + + ~@~+, we obtain from (2.25) the following 
equation: 

(25U~, ~ 4- 2~)uu) ~p~$ - -  2 5 u E ~  - -  2i5L ($.~;$~) 

= ~o~ ( ~ h ~ i )  - -  ~ (~;~'~$ + ~ ) ~ - -  ~ (~;~).~-- 2~,~. ( , ~ ; ~  + ~'~.~r 
( 2 . 2 6 )  

We differentiate this equation with respect to ~z, let ~ = ~, and then average the result- 
ing equation, obtaining 

( 2 . 2 7 )  

(it is easy to see by shifting the contours of integration to the complex region of x that 
the contributions to the average by the summands on the right-hand side of (2.26) are all 
equal to zero except the first one). 

We now rewrite the second-to-last summand on the left-hand side of (2.27) as follows: 

--2L < 0 ~ u ~ >  = 2iE < ~  (0TU~ - -  0~U2)~ > - -  2gEA = --2i~ <0~U~h~p~ > - -  25~A = 2iE <0~U2 (~2~r - -  ~r 

--2ikA = - - 2  <O~U2 + U + ~ i~ )~>  - -  2lEA = 2 <0~ z,~lh~2>--2ikA , 

where  A = 8T(C + E (b  i - a i ) ) ,  

We d e r i v e d  ( 2 . 2 8 )  u s i n g  e q u a t i o n s  

<0~u~b = <o~u~> = o ,  

which can also be obtained by shifting to the complex region of x. 
(2.27), we obtain the desired Eq. (2.23) (since <#2~2x+> = -ik). 

Letting �9 = T and ~ = X in Eqs. (2.17) and (2.23), respectively, we obtain 

Thus, Eqs. 

( 2 . 2 8 )  

( 2 . 2 9 )  

S u b s t i t u t i n g  ( 2 . 2 8 )  i n t o  

,',~hF [u0] ~ >  == 2kOxL - - i  (OTK - -  OxW) < ~ 2 >  + 2kOx (C ~ E~ (b.,-- a~)). 

( 2 . 4 )  and ( 0 . 5 )  i m p l y  an e q u a t i o n  

t �9 OT In }~ -5 2kOx In ). + 2 (C ~- ~ i  (b~-  ai))x := I), 

(2.30) 

( 2 . 3 1 )  

which holds for all k. Substituting Eq. (1.29), which defines l(k), into (2.31), we obtain 
(after equating to zero the residues at points a i, bi, C) Eqs. (2.6). An application of 
(2.10) concludes the proof of the theorem. 

Remarks. i. To completely describe the leading term of the asymptotic solution 
(0.4) we have to derive the equations for the corrections ~j(X, T) to phases. In the one- 

phase case the derivation requires a study of equations for ul = O(e) and a correction 
u2 = O(e) and is well understood (see [ii, 20]). Equations for ~j(X, T) have not been found 
in the multiphase case. As noted before, this is related to the complicated structure of 
the spectrum of the operator ~ (2.5), since the dimension of its kernel and cokernel depend 
on slow variables X and T (compare with [21]). 

2. Clearly, we can replace "parameters" ai, bi, C with others, but the corresponding 
equations then become linked, even though they are possibly useful in the analysis of con- 
crete physical problems. For example, in the one-phase case we can use "parameters" K = 
K(X, T) = 8S/8X, 

M M ( X , T )  ~ 12~ : = ~ dz, 
- 2 ~ 0  

i 
! ~ (~ - -  M)* D : D ( X , T ) : - - f - ~  o dz. 

The c o r r e s p o n d i n g  e q u a t i o n s  h a v e  fo rm 

0 K t +  ~ - ~ ( K ( 2 M - - K ) + D ) = 0 ;  M t ~  -~-z-(M~<-D)=0; 

Dt + 2 o~  (D2/K + (M - -  K) D) + 2DOM/OX = O. 
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3. Condition (2.6) can be weakened. For example, we can replace (2.6) by a condition 

that for some N e n the matrix IISJKi/SXJll (i = 1 ..... n; j = 1 ..... N) has a complete rank 

at every point (X, T) e ~. 

We would like to thank O. S. Ryzhov for his discussion of the statement of this problem. 
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