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ALGEBRAS OF VIRASORO TYPE, ENERGY-MOMENTUM TENSOR, 

AND DECOMPOSITION OPERATORS ON RIEMANN SURYACES 

I. M. Krichever and S. P. Novikov UDC 517.9 

INTRODUCTION 

The present paper is the direct continuation of the authors' preceding papers [i, 2], in 
which the realization of the program of successive operator quantization of "multiloop dia- 
grams" in the theory of boson strings was started. 

At the base of all our constructions lies the following function theoretic construction 
on a nonsingular Riemann surface ~ of genus g < ~ with a pair of distinguished points P+. For 
any integer X, and any integer n + ½g a tensor f~(z), z e F, of weight i which is holomo~phic 
on ~ away from the points P±, where it may have poles, is defined uniquely up to a factor, 
and it has the following asymptotic behavior: 

~ = z'-~"-s(~)O (t)(dz±) ~, S (l) = S (~, g) = ~ 2  - -  t (g - -  t),  ( 0 . 1 )  

z± a r e  c o o r d i n a t e s  in  n e i g h b o r h o o d s  o f  t h e  p o i n t s  P±. 

S t r i c t l y  s p e a k i n g ,  t h i s  a s s e r t i o n  i s  t r u e  f o r  ~ = 0,  1 f o r  a l l  n ,  e x c e p t  a f i n i t e  
number  In I ~ g / 2 .  ~ o r  a l l  ~ ~ 0,  1 i t  i s  t r u e  f o r  a l l  g > 1, i f  t h e  t r i p l e  F, P+ i s  t y p i c a l ;  
and i f  g = 1, t h e n  t h i s  a s s e r t i o n  i s  t r u e  f o r  a l l  n # 1 / 2 .  The d e f i n i t i o n  o f  t h ~  t e n s o r s  f~ 
g i v e n  g e n e r a l i z e s  t o  h a l f - i n t e g r a l  £ ,  where  i t  d e p e n d s  in  a d d i t i o n  on t h e  s p i n o r  s t r u c t u r e .  

The c a s e s  ~ = - 1 ,  0,  1 / 2 ,  1, 2 ( o f  v e c t o r  f i e l d s ,  f u n c t i o n s ,  s p i n o r s ,  d i f f e r e n t i a l s ,  
q u a d r a t i c  d i f f e r e n t i a l s )  a r e  t h e  mos t  i m p o r t a n t .  For  them we u s e  t h e  s p e c i a l  n o t a t i o n  

A have  t h e  f o l l o w i n g  i m p o r t a n t  m u l t i p l i c a t i v e  p r o p e r t y  o f  " a l m o s t  g r a d e d -  The t e n s o r s  fn  
ness": 

~,i,o 
~ ~ /~, ~, };~+~ 

~n/m = ~ ~n, r~ In+m-k, 
~=-~/~ ( O. 2 ) 

~o 
~ ~ ,  ~ ;~ 

[e~, I~l = ~ ~. ~,~+~-~, go = ~gl ~. ( O. 3) 
~=-g,  

In particular, for X = 0, 1 we obtain a commutative almost-graded algebra ~r and an almost- 
graded Lie algebra ~r 
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go 

Y, 
~=-~. (O.a) 

Almost-graded central extensions of these algebras, the analogs of the Heisenberg and Vira- 
sore algebras on Riemann surfaces, play a fundamental role in the operator theory of an inter- 
aGting string. 

The triple (F, P±) uniquely determines an Abelian differential of the third kind dk such 
that: a) away from the points P± it is holomorphic and at these points it has simple poles 
with residues ±i; b) the periods of dk with respect to any cycle on r are purely imaginary. 
The function ~(z) = Re k(z) is called "time," its level lines are denoted by C~, the domain 
of z such that a 5 ~(z) 5 b is denoted by C[a ' hi" 

THEOREM. For any smooth tensor Fi(o) of weight ~ on the contour C~, o e C~, or tensor 
which is holomorphic in the domain C[a ' hi, there is a decomposition analogous to the Fourier- 
Laurent decomposition 

, 

F~" (~) = ~ " ( O. 5 ) 
~ ~ 

Tensors f~(z) also havea close connection with the theory of solitons. We recall that 
the Baker-Akhiezer function F~ in general position of a discrete argument N ~ Z is defined 

by the following analytic properties: 

a) as Q + P± it has asymptotics: 

k +N ~ F~ = z ~  O(t)(dz±) , z ± = z ±  (q); ( 0 . 6 )  

b) away f rom t h e  p o i n t s  P± i t  has  d i v i s o r  o f  p o l e s  D l i n d e p e n d e n t  o f  N o f  d e g r e e  deg D z = 
2s(x)  + k, k ~ 0; 

c)  i t  i s  u n i q u e l y  n o r m a l i z e d  w i t h  t h e  h e l p  o f  k l i n e a r l y  i n d e p e n d e n t  c o n d i t i o n s  ( f o r  ex -  
ample ,  as  in  [1 ,  3] o r  somewhat more g e n e r a l  o n e s ) .  

B a s i c a l l y  in  t h e  s o l i t o n  l i t e r a t u r e  t h e  c a s e  X = k = 0 has  been d i s c u s s e d .  For  a l l  l 
and k = 0 t h e  B a k e r - A k h i e z e r  t e n s o r  r e d u c e s  t o  a s c a l a r :  

= 

Hence in  t h i s  c a s e  a c c o r d i n g  t o  t h e  r e s u l t s  o f  [5 ,  6 ] ,  t h e  B a k e r - A k h i e z e r  t e n s o r  F~ i s  a s i -  
m u l t a n e o u s  e i g e n f u n c t i o n  o f  commuting d i f f e r e n c e s  o f  o p e r a t o r s  w i t h  r e s p e c t  t o  N whose c o e f -  
f i c i e n t s  can  be e x p r e s s e d  in  t e r m s  o f  t h e r e - f u n c t i o n s  and as  a c o n s e q u e n c e  a r e  q u a s i p e r i o d i c  
in  t h e  v a r i a b l e  N ( t h e  u se  o f  t h i s  f u n c t i o n  f o r  k # 0 in  t h e  t h e o r y  o f  s o l i t o n s  i s  d i s c u s s e d  
in [1, 3 ] ) .  

X The t e n s o r s  fn  a r e  s p e c i a l  l i m i t  c a s e s  o f  g e n e r a l  B a k e r - A k h i e z e r  t e n s o r s  when k = 0 and 
t h e  d i v i s o r  o f  p o l e s  t e n d s  t o  a l i n e a r  c o m b i n a t i o n  o f  t h e  p o i n t s  P+. For  even  g i t  i s  n e c e s -  

-X D l ~ S (X) (P+  + P _ ) ,  and f o r  odd g one s h o u l d  ~ e t  f t  = F l s a r y  t o  s e t  f n  = e n '  n n - ~ '  DX + 
(S(X) + 1 / 2 ) P +  + ( S ( l )  - 1 / 2 ) P _ .  O b v i o u s l y  t h e  a s y m p t o t i c s  ( 0 . 6 )  go i n t o  t h e  a s y m p t o t i c s  
( 0 . 1 ) .  I n  t h i s  c o n s t r u c t i o n  t h e  t e n s o r  w e i g h t  I p l a y s  an i m p o r t a n t  r o l e .  I n  r e c a l c u l a t i o n  f o r  
s c a l a r  c o n s t r u c t i o n s  we g e t  a c o u n t a b l e  s e t  o f  d i v i s o r s  o f  d e g r e e  g wh ich ,  f o r  I # 0,  l i e  
away f rom t h e  p o i n t s  P±. 

For  r e a l  h y p e r e l l i p t i e  c u r v e s ,  d e f i n e d  by an e q u a t i o n  
~ + ~  

- ( 0 . 7  ) 
i = l  

and p o i n t s  P+ = ( - ,  + ) ,  P_ = (®, - )  one o f  t h e  c o n t o u r s  Cr c o i n c i d e s ,  as  A. A. Gonchar  showed 
t h e  a u t h o r s ,  w i t h  t h e  c o l l e c t i o n  o f  a - c y c l e s  c o r r e s p o n d i n g  t o  s e g m e n t s  o f  t h e  r e a l  a x i s  
[x~i_  ~, x = i ] ,  i = 1 . . . .  , g .  I n  t h i s  s p e c i a l  c a s e  i t  i s  p o s s i b l e  t o  compare  ou r  c o n s t r u c t i o n s  
w i t h  some c o n s t r u c t i o n s  o f  c l a s s i c a l  a n a l y s i s .  For  example ,  t h e  g e n e r a l  f u n c t i o n s  FN(X) o c c u r  
in  c l a s s i c a l  a n a l y s i s  as  t h e  a n a l o g s  o f  o r t h o g o n a l  p o l y n o m i a l s  on t h i s  s y s t e m  o f  i n t e r v a l s ,  

i which  a r i s e  x e R ~. No c l a s s i c a l  a n a l o g s  o f  t h e  m u l t i p l i e a t i v e  p r o p e r t i e s  o f  t h e  t e n s o r s  f n  
u n d e r  s p e c i a l  c h o i c e  o f  t h e  p o l e s  o f  F N have  been  d i s c u s s e d  i n  c l a s s i c a l  a n a l y s i s .  
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i. Basic Concepts. Regularity of Vacuum 

According to the representations of [i, 2] the algebrogeometric model of a boson string 
is a nonsingular Riemann surface r of genus g with two distinguished points P±, which corre- 
spond to the conformal compactifications of the world surface of the string as t + ;~ in Min- 
kowsky space. The intermediate positions of the string are defined as the images of the con- 
tours C~ on F under the imbedding of F in Minkowsky space. 

Let XU(o) and P~(o), ~ = I, .... D be the coordinate and momentum operators of a boson 
string with the standard commutation relations. As was shown in [2], the coefficients of the 
decomposition of the differential 

~oX ~ (~) d~ + ~P~ (~) = ~, ~ d ~  = ~ (~) ( 1 .1  ) 

with respect to the basis differentials dahq(z) together with one operator are generators of 
the analog of the Heisenberg algebra 

[¢t~,a~]---~Ynm, ?nm=-~7"~ ~ AmdAn" (1 .2 )  

Here ~ is the Minkowsky metric with signature (-i, i, i, .... i). 

The Fock spaces of "in-" and "out-" states H~ n and H? ut are defined as the spaces gen- 

erated by the operators a~ from the vacuum vectors I0> and <01 respectively, which are defined 
by the relations 

~ I0>  = 0 ,  n > g/2, ~ = --g/2,  
<0 I =~ = O, n ~ --g/2. (1 .3)  

Remark. Here and l a t e r  in  the  paper  we cons ide r  on ly  t he  " a n a l y t i c "  p a r t  of  the  Fock 
space .  The a n a l y t i c  p a r t  i s  gene ra t ed  by o p e r a t o r s  a~nn which are  the  c o e f f i c i e n t s  of  the  de- 
composi t ion  of  the  d i f f e r e n t i a l  X~do - ~PV wi th  r e s p e c t  to  the  an t iho lomorph ic  d i f f e r e n t i a l s  
d~ n. As was proved in [2] ,  t he  o p e r a t o r s  a~ and ~ commute and hence the  a n a l y t i c  and a n t i -  
a n a l y t i c  p a r t s  of  the  complete  Fock space can be cons ide red  i ndependen t l y  and a b s o l u t e l y  in 
p a r a l l e l .  

We r e c a l l  t h a t  in  the  n o t a t i o n  f o r  the  f u n c t i o n s  An(z) wi th  i n d i c e s  n > g /2 ,  n = -~ /2  
used in [2] ,  t h e y  form a b a s i s  f o r  t he  subspace of  f u n c t i o n s  holomorphic away from P_ and 
those  wi th  i n d i c e s  n 5 -~g/2 form a b a s i s  f o r  the  subspac? of  f u n c t i o n s  holomorphic away from 
P+, A_g/~ ~ I. This lets us establish isomorphisms of H~ n and H~ ut with standard Fock spaces 

H~ n and H~ ut constructed on small contours about the points P+_ with the help of the "free" 

operators - ~'± N being an integer, satisfying the commutation relations "N ' 

[a~ ±, a~ ±] = ~avN~X+M, o. ( 1 .4  ) 

The right and left vacuum vectors are defined by the relations 

a~ '+ ]0> = 0 ,  N.::>0; <0 la~ ' - ' ~=0 ,  N..~<0. (1 .5 )  

We denote by z± the "free" local coordinates in small neighborhoods of the points P±, i.e., 
such that the differential dk in them has "free" form dk = ±z~±dz±. 

By definition the functions A n in neighborhoods of the points have the form 

A n ~- z~ =-g/~ ( ~ ~ (n) z~) ( 1.6 ) 
S=O 

for In[ > g/2 and are slightly changed for In[ 2 g/2 (cf. [i, 2] for more details). One can 
verify directly that then the operators 

~ ~ + '  ' a  ~'+ ~ a ~'- (I 7) ~ =  ~ n  s ~+~/~= ~ (n) ~ + ~ / ~ - s  - 
s-~--0 ,s==0 

for Inl > g/2 and analogously for In] 2 g/2 satisfy the commutation relations (1.2). Using 
(1.7), one can formally construct the Bogolyubov transformation between the "free" Fock spaces 
of in and out states. However the expressions one obtains here for the coefficients of the 
decomposition of a~ '+ in terms of a~'- are in the form of infinite series which apparently 
converge nowhere. 
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Both the free operators and the energy-momentum tensors T0±(z) defined in the s'tandard 
way with their help make sense only in neighbor]aoods of the points P± and diverge at points 
of bifurcation of the contours C~ (i.e., at the zeros of the differential dk). In [2] there 
was defined an energy-momentum tensor 

i i 
Z : d~,, (z) d~,,, (z), ( 1 .8  ) r (z) = -~- : ]~ (z) : = -5" : ~z,,a,,, 

which is holomorphic on r away from the points P± for any method of introduction of normal 
ordering considered there: ~n~m: of the operators ~. 

If d2flk(Z) is a basic collection of quadratic differentials, then one can define oper- 
ators L k which decompose the energy-momentum tensor with respect to this collection 

~ T (z)= Z Lr~d'f~ (z), L ~ - - - +  Z n'ra: ~nam:" (1 .9 )  
~ 'fat )r~ 

These operators satisfy the commutation relations 

~ 

[ L., Lr.] --- ~, c~.~L,~+m_~: + DX~,,,, ( 1.10 ) 
I¢=--g, 

where 

X t ~ . . . .  e' ' Xnm = ~ ((e~e m --- ene~ ) - -  2 ( u e  m - -  e n e m )  R x) dz ( 1 . 1 1  ) 

and R E = RE(z) is a projective connection on r depending on E, the method of normal ordering. 
Thus, the operators L k define a representation of a central extension of the algebra (0.4), 
which generalizes the Virasoro algebra to the case of Riemann surfaces. The central charge 
D is equal to the dimension of the Minkowsky space. 

The admissible methods of normal ordering are those for which from (1.3) follow the 
"regularity relations of the vacuum" 

a) L ~ ] O > = O , n > g o - - I ;  b ) < O I L . - - - - - O , n ~ - - g o + t .  (1 .12)  

In these cases thecorresponding projective connections R E are holomorphic everywhere on r 
including the points P±. Among such admissible methods are all the methods described by 
(2.26) and (2.27) of [2] in which O±g = ±g/2, o±(g-l) = ±(g/2 - i). 

One should stress particularly that the conditions of (1.12) are necessary for the con- 
struction of an arbitrary conformal field theory on Riemann surfaces. They follow from the 
requirement of "regularity" of the vacuum, which means that for any primary field ¢(z) which 
one has in the theory, the states ¢(z)10> and <01¢(z) should be holomorphic in neighborhoods 
of the points P+ and P_ r~spectively. We note that (1.3) is a consequence of this principle 
if ¢(z) = J(z). 

In order to follow the whole process of interaction of the string it is necessary not 
only to define the global objects (of the type of the energy-momentum tensor) on the surface 
r with distinguished points P±, but also to introduce a bilinear scalar product between the 
spaces H in and H °ut. In [2] a scalar product was introduced between certain right and left 
(in and out) Verma modules. Briefly we give the corresponding construction in a form which 
is equivalent to the original one of [2], but is better adapted for what follows. 

We denote by H~(p) the space generated by the basis consisting of semiinfinite forms, 
"exterior products," of the form 

t~ AI~, A . - .  A I ~  A tL~÷~ A ~-,÷=÷~ A . . . .  s =  ~ (x), (1.13) 

where the indices of the basic fields f~ starting from some number run through all values in 
succession to +~. 

Remark. The more general case of tensor fields holomorphic away from the line joining 
the points P+ on which they satisfy specific boundary conditions was considered in [i, 2]. 
This generalization lets one define the modules H~(p) for any, not just intergral, p. We 
shall dwell on this question in more detail in the next section for the case ~ = 1/2. 

As was shown in [i], the action of the vector fields e k on the basic fields f~ in- 
duces a representation of the algebra (i.i0) with central charge 
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D = --2 (6k~--6k 4- i). ( 1 . 1 4 )  

The "generating" vector of the right Verma module 

~÷ oo I ~ . p > = ~ - ~ A I ~ - p + , A . ,  ~=s(~) ,  (1.15) 

s a t i s f i e s  the  r e l a t i o n s  

+ 0 ~, p> =h~'~l ~'Z ~>. ( I  ~6) L ~ [ ~ x , ~ > =  , a > g 0 = 3 g / 2 ;  L a , [ ~  + . 

One de~Lnes th~ space H~(p) o~ " l e ~ t "  semLLnfLnLte ~o~ms, generated by ~ o ~ s  o~ the form 
~ ~ ~ k 

• .. A l-s+~-~-~ A l-s+~-~ A I~_~+, A . . .  A I~;, ( ~. ~ ~) 

X go ~rom ~ to  some i n t e g e r  i n  success ion .  ana logous l y ,  where the  i n d i c e s  o~ ~n 

The " g e n e r a t i n g "  v e c t o r  o~ the  ~e f t  V~ma module 

<wL ~1 . . . .  Al}s+~-~ A l}s+~-, Al~s+~, 8 =,s (g) ( ~. ~8) 

sa ts i~£es  the  ~eZat ions 
, 

<V~.~ IL .=0 ,  ~<- -~0,  <~L~IL-~.=<~;,~I h2~" ( ] .~9)  

We d e f i n e  a s c a l a r  p roduc t  between the  spaces H~ and H~ o~ a l1  ~ i g h t  and l e ~ t  " s e m i i n f i n i t e "  
~orms 

~ } =  ~ ~}(~), ~ z ,  (z.20) 
~ 

as ~o l lows.  For any two bas~c s e m i i n ~ i n i t e  f o m s  ~! ~ H~ ue de~Lne a b i l a t e r a l l y  i n f i n i t e  
form by "placing" '1 and ,~ next to one another. I~ after permutation of the factors f~ in 
it we obtain the standard form 

• "" A / , -~  A/ , -~  A / ,  A/e+,  A . . . .  ( 1.21 ) 

i n  which  a l l  t h e  ~ n d i c e s  ~o in  s u c c e s s i o n  ~rom ~ t o  ~ t h e n  ue  s e t  < ~ >  = ~1 where  t h e  
s i g n  i s  equa1 t o  t h e  s i g n  o~ t h e  c o r ~ e s p o n d i n ~  p e m u t a t i o n .  I n  a11 o t h e r  c a s e s  we s e t  
<~ll~> = 0 and we extend the scalar product of basis elements on H~ and ~ so defined by 
linearity. We note that the product of the "generating" vectors (1.15) and (1.17) is equal to 

<~[. p- [ ~, p+> = ~++p_, ~s(x)-~. ( i. 22) 

As established in [2], the operators L n are self-adjoint with respect to the scalar prod- 
uct so defined, i.e., for any two elements ~, ~ we have 

<Y~ I L~V;> = <~L~ I ~) = <V~ I L~ ~ Vb. ( ~. 23) 

Now we discuss the requirement of "regularity" of the vacu~ (1.12). As is clear from 
(1.13) and (1.19), the generating vectors [~,p+> and <Y~,p_[ satisfy (1.12) if: 

a) h~ = 0, 

b) L~.-~I YL~+> =0, <~Z ~_i 5-~.+~=0. (~.24) 

LE~ i.i ~e vector [~+ - . %,p+> or <~%,p_l satisfies (l.12a) or (l.12b) respectively (the 

vacu~ regularity conditions) if the corresponding semiinfinite form coincides with the ex- 
terior product of all negative powers of the local par~eter z+ or z_. This holds if 

P+ = p_ = 0 (1.25) 

(it is ass~ed here that g # I). 

Proof. The basis tensors f~ in neighborhoods of the points P~ have the form 

/~ = ~.~ xz~ n-s(x) (i + O (z~)) (dz~) ~., ( i. 26 ) 

where T ~,~ are constants depending on ~, e~. The action of e i on f~ has the form (0.3). 

It follows from this that the equations 

~' = 0, S = S (%) (1.27) ~(g,-~), ~8~p 
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are necessary conditions for (1.24) to hold. From [2, (3.8)], we get (1.25). The lemma is 
proved. 

The tensors f~ holomorphic on F away from the points P+, are determined by their form 
(1.25) in neighborhoods of the points P+ uniquely up to pro{ortionality. It follows from 
(1.25) that the "generating" vector l~:p+>_ for p+ = 0 coincides with the usual "free" vacuum 

vector of the "in-string," i.e., as t ~-~ 

I V to>  = . . . .  1o > ( 1 . 2 8 )  

for the choice of "in-normalization" + ~ 1 
~n,~ " 

Correspondingly the left "generating" vector <?A,pll for p_ = 0 coincides with the left 
"free" vacuum 

<oLI . . . .  Az[Az AzIAi ( 1 . 2 9 )  

(we recall that in the case of the ordinary complex plane z_ = z~ z) for the choice of "out- 
normalization" ~ ~ ~ = i. In order not to complicate the notation, we shall in what follows 

~,A 
use only the "in-normalization." Under this normalization the left generating vector does 
not coincide with the left vacuum, but is only proportional to it: 

-~0.) 
H 

~ t = - - ~  

Remark. As will be clear in what follows from the structure of the explicit formulas 
for ~ ~ ~ the product in (1.30) is divergent and needs suitable regularization. We shall 
return ~o this question below, interpreting this product formally for now. 

COROLLARY. a) For all integral ~ 

<0~ I0x> = 0. (1.31) 

b) The unique value of ~ for which for the numbers p+ = O, p_ = 0 the condition 2S(~) = 
p+ + p_ + I (necessary for the nontriviality of the scalar product defined above between the 
generating vectors) holds is ~ = I/2. One has 

_I/~ 

< 0 v , 1 0 v ) = (  H ~ , v , )  -1. (1 .B2)  
~ 

Remark. As s h o ~  t o  t he  a u t h o r s  by R. I engo ,  t he  formal  p roduc t  on t he  r i g h t  s~de of  ~ / ~  
( 1 . 3 2 )  a r i s e s  in  c a l c u l a t i n g ,  w i th  t h e  h~lp of  t he  b a s i s  "n  ' t h e  c o n t i n u o u s  i n t e g r a l  w i th  
r e s p e c t  t o  s p i n o r  f i e l d s ,  equa l  t o  t he  d a t e r m i n a n t  o f  t h e  Di rac  o p e r a t o r ,  and hence t he  problem 
of  r e g u l a r i z a t i o n  o f  ( 1 . 3 2 )  ~s t he  o r d i n a r y  problem of  r e g u l a r i z a t i o n  of  such a d e t e ~ i n a n t .  

2. Spinor Structures and Operator Realization 
of a Boson String 

We fix an arbitrary representation p: ~I(F) + C* of the fundamental group of the surface 
P in the nonzero complex numbers and a contour o on r joining the distinguished points P±. 
The collection (F, P±, 0, a) will be called a normalized diagram. We denote by ~ zi2(~, p) 
the space of half differentials 0 on r which are holomorphic away from the contour o, on which 
the limiting values of these differentials must satisfy the condition 

~+ = e ~  -. (2.1) 

Moreover, upon circuit about any cycle ~ these differentials are multiplied by the number 
@(¥). To representations ~0 such that P0(~) = ±I correspond ordinary spinor structures on F. 

LEMMA 2.1. For representations 0 in general position for any half-integral v - p there 
exists a unique half differential O~(z; ~) e ~I~(@, p) such that in neighborhoods of the 
points P± it has the form 

~ ~± _±v-v.~4 + ~ v--vv,,/,~± ~. + O(z±))(dz:v.)v,, ~ ,  ~ , =  t, ( 2 . 2 )  

where the  c o n s t a n t s  ~ , ¼  depend on F, P±, O, a.  
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Remark. For p = 0 the spinor structures 00 are representations for which the a~sertion 
of the theorem is valid if there do not exist holomorphic sections of the corresponding bun- 
dles. Hence these spinor structures will necessarily be even. 

We note further that for integral p, or what is the same, half-integral ~, the half dif- 
ferentials ~ do not depend on o. 

All assertions of the preceding section automatically carry over after introduction of 
a basis of half differentials ~v(z; p) to the case I = 1/2. In particular, the spaces of 
right and left semiinfinite forms H,/=.p(p) constructed from ~v(z, ~), v - 1/2 - p e Z, are 
modules over the algebra (i. I0) with central charge D = i. The "generating" vectora (1.15) 
and (1.18) for I = 1/2, p± = 0 satisfy the vacuum "regularity" conditions (1.12), and formulas 
(1.30) and (1.32) in which now all quantities depend in addition on @ hold for them. In 
what follows the vacuum vectors //~/,.~(0) will be denoted for brevity by I0~> and <0~I. 

We consider the standard Fock spaces ~± of Dirac fermions, generated by the operators 
~9 and ~ with half-integral indices v, satisfying the anticommutation relations 

+ 0 [~,  ~]+----- o, [~ ,  ~]+ = , [~,  ~ ]  : ~+, , ,  o ,  ( 2 . 2 )  

from the "vacuum vectors" [OF> and <Of[ such that 

~vlOF>=~$]O¢>----O, ~ 0 ;  <O~l~v~<O~l~$=O, v ~ O .  ( 2 . 3 )  

+ 
I f  to  t he  o p e r a t o r s  ~v and ~v we a s c r i b e  " c h a r g e s "  equa l  to  1 and -1 r e s p e c t i v e l y ,  then  

t he  spaces  $£± decompose i n t o  t he  d i r e c t  sum of  subspaces  wi th  f i x e d  charge  p ( i n t e g r a l )  

~*= ~ ..~'~. (2.4) 
~--~ 

The correspondence under which the operator+~v corresponds to the exterior product of the 
semiinfinite forms on ~v and the operator ~ corresponds to the differentiation 8/8~-9 
establishes an isomorphism between the spaces $~$~(p). For fermion vacuums one has 

--~/~ 

I0~>--10~>, <0~ I -- ( ~ ~, ~ (e)) <0of. (2.5) 
¥~--~ 

Besides the basis ~v(z; 0) we introduce the basis of "dual" half differentials by set- 
ting, by definition, 

~$ = ~$.(z; @) = ~v (z; ~-~). (2.6) 

For indices 9, ~ such that 9 + ~ is integral, the product ~ is a single-valued holomorphic 
differential on F which is holomorphic away from the points P±. It follows from (2.1) that 

i 
~ ~ v ~  = 8~+v, o. ( 2 .7  ) 2~ 

We d e f i n e  " f e r m i o n "  f i e l d s  , ( z ;  0) and ~+(z;  O) on the  s u r f a c e  r by fo rmulas  in  which 
t he  summation i s  over  a l l  h a l f - i n t e g r a l  9: 

~ ~ + +  
~ (z; 9) E ~,,~_~ (z; ~)~ ~÷ (~; ~) = E ~ _ , ,  (z; p). (2 .8)  

~ V 

The " t ime"  f u n c t i o n  ~(z)  on F i n t r o d u c e d  wi th  t he  he lp  of  t he  d i f f e r e n t i a l  dk l e t s  one 
d e f i n e  t he  " c h r o n o l o g i c a l l y "  o r d e r e d  p r o d u c t  of  o p e r a t o r s .  

THEOREH 2 .1 .  The c h r o n o l o g i c a l l y  o r d e r e d  p r o d u c t  of  o p e r a t o r s  ~ (z ;  0)~+(w; ~),  where 
• ( z )  > ~ ( w ) , i s  w e l l - d e f i n e d .  As z + w one has the  o p e r a t o r  decompos i t i on  

~ (~; p) ~÷ (w; ~) # ~  a~ - -  ~ - ~  + ~ ( z , ~ ) + o ( z - w ) .  ( 2 . 9 )  

The c o e f f i c i e n t s  o f  t h e  d e c o m p o s i t i o n  of  t he  o p e r a t o r - v a l u e d  1-form J ( z ,  0) d e f i n e d  from 
( 2 . 9 ) ,  

~ (~, ~) = Y~ ~ (~) d ~  (~), 

s a t i s f y  t he  commutat ion r e l a t i o n s  of  t he  ana log  of  t he  He i senberg  a l g e b r a  

[=~ (~), =~ (e)l = V~- (2 .10 )  
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Proof. That the operator ~(z; p)~+(w; p) is well-defined means that its action on any 
~V, element of ~ is a well-defined element of ~{±.~.~/'~ .... Here the coefficient of each 

basis element of ~{± contains only a finite number of products ~(z; ~)~(w; ~). We repre- 
sent the operator ~(z; p)~+(w; O) in the form 

~ (z; p) ~+ (w; 9) = ~ : ~al~ : ¢5~ (z, 9) ~ ,  (w, p) ÷ ~ Cv (z; 9) ~ v  (w, p), ( 2 .11 ) 
%', ~ V<O 

where : : is the ordinary Dirac normal product of fermion operators in which the death opera- 
tors of the right vacuum stand to the right of all birth operators. By virtue of this defini- 
tion the first summand in (2.11) correctly defines an operator which is holomorphic away from 
the points. We consider the second summand. 

We denote by Sp(z, w; Q) the analogs of the Szeg~ kernels which are uniquely determined 
by the following analytic properties. With respect to the variables z and w the kernel Sp 
is a half differential which is transformed upon circuit about any cycle according to the 
representations ~ and ~-~ respectively. For fixed w the kernel Sp is holomorphic in the 
variable z away from the points P±, z = w, and the contour o on which for the boundary values 
of Sp (2.1) holds (S~ ~ = exp (2~ip)S~). In neighborhoods of the points P± one has the decom- 
positions 

Sp = z~ ° 0 (i) (dz±)'/,, w = const. ( 2 . 1 2 )  

In the variable w the kernal S satisfies the same conditions as in the variable z, but with 
p replaced by -~. Finally, th~ last condition which determines Sp uniquely: in a neighbor- 
hood of z = w the kernel Sp has the form 

~ ' ~ - ' ~  ' d s , ,  (z; O) + 0 (z - -  w). ( 2 . 1 3  ) S~ , ( z ,w;p )~  ~ - ~  : 

The differential dsp(Z, p) defined from (2.13) is~holomorphic away from the points P+ where 
it has simple poles with residues ±p (i.e., the differential ds 0 is holomorphic everywhere 
on r ) .  

LEMMA 2 . 2 .  For  ~ ( z )  > T(w) t h e  s e r i e s  ( 2 . 1 4 )  c o n v e r g e s  and i s  e q u a l  t o  
p__l ,'~ 

s~ (z, w; p) = Y, ~v  (z; p) ~ (w; 0). ( 2 . 1 4 )  
% - ~  

For  ~ (z )  < z(w) t h e  s e r i e s  ( 2 . 1 5 )  c o n v e r g e s  

S v (z, w; p) = - -  ~ Cv (z; p) ~ (w; p) ( 2 .15 ) 
p+,l~ 

( t h e  summation in  ( 2 . 1 4 )  and ( 2 . 1 5 )  i s  ove r  v such  t h a t  v - 1/2 - p e Z) .  

The p r o o f  o f  t h e  lemma i s  c o m p l e t e l y  a n a l o g o u s  t o  t h e  p r o o f  o f  Lemma 2 .2  o f  [ 2 ] .  I t s  
a s s e r t i o n  f o r  p = 0 p roves  t h a t  t h e  c h r o n o l o g i c a l  p r o d u c t  o f  o p e r a t o r s  i s  w e l l  d e f i n e d  and 
p r o v e s  ( 2 . 9 ) ,  where 

• ÷ .  o J (z, p) = ~. : ~ .  ~_,  (z, p) ~ (z, p) -]- ds o (z, p). ( 2 . 1 6 )  
~ ~ 

Decomposing ( 2 . 1 6 )  w i t h  r e s p e c t  t o  t h e  b a s i s  d i f f e r e n t i a l s  d~n(Z) we g e t  

a . (o )  ---- Y~ a~, ~, :¢~¢~ : + a . ,  ( 2 . 1 7 )  
u~ ~t 

where t h e  c o n s t a n t s  a~,, and a= which  depend on ~, P±, O a r e  e q u a l  t o  

. t ~ + I ~ a~,~=-~7-~ (A=~_~_~); a= = ~.~ A .  dso. (2 .18 )  

For Inl > g /2  we have by v i r t u e  of  ( 1 . 6 )  and ( 2 . 2 )  that  

a ~ , ~ = 0 ,  ! n - - v - - ~ l > g / 2 .  ( 2 .19 )  

For Inl E g/2 the width of the strip in the ~, p plane for which a~,~=O is somewhat larger, 
but remains finite as before. Since the differential ds 0 is holomorphic, one has 

a,,=a,~(p)~O, In l>g/2 ,  n=--~/2. (2.20) 
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We omit the proof of (2.10) since it goes analogously to the proof of (I.ii) in Theorem 

2.1 of [2]. The theorem is proved. 

In what follows, for any operator H, by <H> 0 we shall for brevity denote its vacuum 

mean, i.e., 

<o01Hlo0> 
<H>o= %1oo> 

COROLLARY 1. The vacuum mean o f  t h e  o p e r a t o r s  ~ ( z ;  0 ) , + ( w ;  0) i s  e q u a l  t o  

<~(z; 9)~ + (w; 9)>o = So (z, w; 9). ( 2 . 2 1 )  

This equation follows from (2.11) and (2.14) and also the fact that by definition of 
normal products of fermion operators we have <:~v~:>0 = 0. 

Remark. (2.21) for the case of spinor structures P0 coincides with the well-known ex- 
pression for the "fermion propagator," However in the absence of an operator realization for 
g > 0 it appears in the physical literature rather as the definition of the left side of the 

equation. 

(2.17) generalizes the formulas of "ferminization" of the birth and death operators of 
a free boson string to the case g > O. The appearance of the anomalous term a n in these 
formulas is a consequence of a definition of ~n which would preserve the operator decomposi- 
tion (2.9) on arbitrary Riemann surfaces. 

COROLLARY 2. One has 

<=n (P)>~ = an = a ~  (p). ( 2 . 2 2 )  

For representations 00 corresponding to fixations of a spinor structure on F it follows 
from (2.14) and (2.15) that 

S o (z, w; Po) = - -So (w, z; Po)- ( 2 . 2 3 )  

It follows from (2.23) that ds0(z, P0) = 0. From this we get 

COROLLARY 3. For spinor structures ~0 we have for all n 

<~ (Po)>o. = O. (2.24) 

(We recall that ~0 is an even spinor structure). 

It is clear from the proof of Theorem 2.1 that the chronological product of any number 
of "fermion" operators is well-defined, and for this product, just as in the case g = 0, one 
has Vick's theorem: 

• (z~; p ) . . .  • (zm p) = Y, __+ I-[ <~ (z,; p) v %; p)>~: II  • (z~; p) : (2 .25 )  
i i, ] ~ I  ~ I  

Here V(z, ~) is either ~(z; 0) or ~+(z, 0). The suramation in (2.25) is over all even subsets 
of the collection of indices (i, ..., N) and over all methods of partition of these collec- 
tions into pairs (i, j). The sign in front of the product is the sign of the corresponding 
permutation. In order to be able to use (2.25) for calculating vacuum means, it is necessary 
to mention some other equations 

<~ (z; p)~  (w; P)>0 = 0; <~+ (z; p)~+ (w; p)>~ = 0. ( 2 . 2 6 )  

Now we c o n s i d e r  n o t  o n l y  vacuum b u t  a l s o  o t h e r  g e n e r a t i n g  v e c t o r s  d e f i n e d  by ( 1 . 1 5 )  and 
( 1 . 1 8 )  f o r  ~ = 1 /2  (and  which  depend on p and f o r  n o n i n t e g r a l  p on ~ a l s o ) .  As an a b b r e v i a -  
t i o n  we write them as 

I v,~, o, ~> = I po>, (2.27) 

p__l/._ 

<vr~.. 0, ,, t =  ( II  ~;, ,,,(0)) <po I. (2.28) 
~;~--o~ 

The appearance of the normalizing factor in (2.28) is connected with the use of the "in"- 
normalization (~$~I). The asymptotic vectors Ipp> and <Ppl coincide in neighborhoods of 
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points P_+ with the corresponding vectors of the free string. 

Let p be an integer. Then the operators an(p) defined by (2.17) act on the vectors 
Ipp> and <pp as follows: 

~, IPo> = O, n>g/2; ~-g/llPo =plp.o>, (2.29) 

<p, la~----0, n<--g/2; <P~ l ~-g/~ ~- P<P~ I. (2.30) 

These formulas follow from the assertion of the following lemma. 

LEMMA 2.3. The operator J(z; p) defined from the decomposition (2.9) and having the form 
(2.16) can be represented in the form 

J (z; p) ----- ~.~ : ~ ' ~  : ¢b_v (z; p) ~_+~ (z; p) ~- ds,, (z; p), ( 2 31 ) 
% ' , b ~  " 

where  : :p i s  t h e  no rma l  o r d e r i n g  o f  f e r m i o n  o p e r a t o r s  in  r e l a t i o n  t o  t h e  v e c t o r  Ipp> f o r  
which  i t s  d e a t h  o p e r a t o r s  s t a n d  t o  t h e  r i g h t  o f  i t s  b i r t h  o p e r a t o r s .  

The p r o o f  o f  t h e  lemma f o l l o w s  f rom ( 2 . 1 ~ ) .  

For any p (not just integers) we define the action of the operators a n in the space + 
H,l,,o (q-p) with the help of the formula 

a.,~(9)=~a~,~ :~'.¢~:v + a,,,~; v - - p : - - ~ / ~ Z ,  ~ + v ~ Z ,  ( 2 . 3 2 )  

where  t h e  c o n s t a n t s  a~,~ a r e  g i v e n  by ( 2 . 1 8 )  and t h e  c o n s t a n t  a,,,, i s  a l s o  g i v e n  by ( 2 . 1 8 )  
b u t  a f t e r  r e p l a c i n g  ds 0 by dsp  in  t h e  l a t t e r .  

B e f o r e  f o r m u l a t i n g  t h e  a s s e r t i o n  o f  t h e  f o l l o w i n g  l e n a  we n o t e  t h a t  t h e  o p e r a t o r s  an ,  p 
d e f i n e d  by ( 2 . 3 2 )  f o r  any p a c t  in  t h e  s p a c e s  ~ , - p '  H,/,,o ( ~ p ' )  p = k b e i n g  an i n t e g e r .  

L ~  2 . ~ .  The o p e r a t o r s  a n , .  d e f i n e d  by ( 2 ; 3 2 )  f o r  p and p '  such  t h a t  p - p '  = k i s  
an i n t e g e r  c o i n c i d e .  ( 2 . 2 9 )  and [ 2 . 3 0 )  a r e  v a l i d  f o r  t h e s e  o p e r a t o r s .  

The v e c t o r s  ~p0> and <po~ as  w e l l  as  any g e n e r a t i n g  v e c t o r s  a r e  a n n i h i l a t e d  by t h e  
o p e r a t o r s  L n w i t h  n > g0 and n < -g0 r e s p e c t i v e l y .  H o r e o v e r ,  

p* p~ 
L=.lp.>=~[ p.>; <p.[L_g.=~2g._l. ~ <P0[ (2 .33)  

(we r e c a l l  t h a t  t h e  o p e r a t o r  L_g ° c o r r e s p o n d s  t o  t h e  v e c t o r  f i e l d  e_g ° wh ich ,  in  a n e i g h b o r -  
hood o f  t h e  p o i n t  P_ ,  has  t h~  fo rm ~5,,,_a.z_(1 + O ( z _ ) 8 / ~ z _ ) .  

( 2 . 3 3 )  means t h a t  t h e  v e c t o r s  [po> and <P0] h a v e ,  as  one  s a y s ,  c o n f o r m a l  d i m e n s i o n  p~ ]2 .  
T h i s  a g r e e s  w i t h  t h e  t e n s o r  w e i g h t  o f  

<-- Po [ Po > 
~(P;P+,P-,F, 9)= <0o]0o > , ( 2 . 3 4 )  

which  we c o n s i d e r  f i r s t  f o r  t h e  c a s e  o f  i n t e g r a l  p.  Both  i n f i n i t e  p r o d u c t s  ( 1 . 3 0 )  and ( 2 . 2 8 )  
a r e  d i v e r g e n t  and in  need  o f  r e g u l a r i z a t i o n .  At t h e  same t i m e ,  f o r  t h e  c a s e  o f  i n t e g r a l  p 
t h e i r  r a t i o  i s  w e l l - d e f i n e d .  We have  

~p~/~ 
~ ( ~  p; p+, p_, r ,  p) = I I  (~,~, ,~, (p))±~, p ~ o. (2 .35)  

~V~ 

The normalizing constants ~.,/2 depend even for their definition not only on F, P±, p but 
also on the choice of local coordinates in neighborhoods of the points P±. Thus, they are 
tensors of weight v in the variables P±. In addition ~(p, P+, P_) is a tensor of weight 
lp = p2/2. 

We only give expressions for ~,V,(P) for the cases of representations O0 corresponding 
to even spinor structures. (The general case differs from this by insignificant changes). 
For this we fix on F a basis of cycles ai, bj with canonical intersection matrix. Fixing 
this basis lets us introduce: a basis of normalized holomorphic differentials mi on r, a 
matrix of b-periods, the Jacobian J(F) of the curve F, the Abel map A: F ~ J(F) and the Rie- 
mann theta function 8(v), v = (vl, ..., vg). Analogously to the way formulas for the solu- 
tions of the equations of a Toda lattice are constructed in [5, 7] one can obtain the follow- 
ing expression: 
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~,  ,/, ---- E (P+, P_)-m o [Oo1 ((~ - '/~) (A (P+) --  A (P_))) 
O [ p o ] ( ( v  +l/~)(A(P+)-  A(P_))) ' (2.36) 

where O[~o](v) i s  a t h e t a - f u n c t i o n  wi th  even c h a r a c t e r i s t i c  0o, and E(P+, P_) i s  a s o - c a l l e d  
Prym-form (cf. [8, 9 ] ) :  

E2(p+,p_)= OI[m](A(P,)-  A(P_)) 
(E o, (~+) o, [~] (o)) (~ ~, (~_) o, [~  (o)) (2 .3  7 } 

By choice of the local coordinates z± one can make the value of the Prym-form equal to I at 
the points P±. For such a choice of z± it is natural to set the infinite product in (1.32) 
equal to 

<oo ]oo> = 0 [po](0). (2 .38)  

In these same local coordinates we have 

~ (p,p+,p ,F,p)=O[po](p(A(P+)--A(P_)) (2 .39)  
- o[oo](o) 

One can also arrive at the expression (2.39) for nonintegral p if first one regularizes 
the product in (2.28) similarly to (2.38) and afterwards takes the ratio of the corresponding 
expression and (2.38). It is true that for nonintegral p the quantity obtained depends on the 
contour o through the difference vector A(P+) - A(P_) with coordinates 

A~(p+)__A~(p_)=So~. (2 .40)  
o 

Averaging ~(p, P+, P-, r, 00) over all homology classes of the cycle o, we get for rational 
p = r/n the expression 

[ o [00] (p (A+ -- A_)) + N + BM)) 3 ]~'-~, 
~-----<~m<P+'P-))i~'" H L ~ + ~ ~ 7 ~  (2.41) ~ [~0] (0) N , ~  

a~ = ~ (~ ) ;  ~ (~+, ~_) = (~ ~ (~+) e~ [~](0)) (~ ~ (m_) ~ [~] (0~), 

where t he  p~oduct  i s  taken  ove~ a l l  i n tegma l  v e c t o r s  N = (N~, . . . ,  Ng) ,  M = (M~, . . . ,  Mg), 
I ~ 1 ,  IM~I ~ n,  ~n~ m ~s ~he m ~ t ~  o~ b-periods o~ holo~o~ph~c d i f f e r e n t i a l s  on F~ * 

Fo~ i ~ a t i o n a l  p t he  ~esu~t  o f  ave rag ing  has t he  f o ~  

~ (p, P+, P_, F, ~0)~ ~ e [~0] (~ (P+~ - a (P-~ ~ (Z. 4Z) 
E (p+, ~_) e [~0] (0) J " 

The l a s t  e x p r e s s i o n  admi ts  a n a l y t i c  c o n t i n u a t i o n  to  complex va lues  o f  p wh ich  i s  neces-  
sa ry  fo~ d e f i n i n g  t he  t w o - p o i n t  ~ p l i t u d e  o f  s c a t t e r i n g  i n  t he  case o f  t he  Minkowsky m e t r i c .  
I n  f a c t ,  as i s  c l ea~  f rom the  mesu l ts  o f  t he  p~esent  s e c t i o n ,  t he  i n  and out  Fock spaces o f  
a boson s t ~ i n ~  i n  D -d imens iona l  Minkowsky space ame isomomphic to  t he  D - f o l d  t e n s o r  powe~ o f  
t he  spaces ~ H,~,~ (0) wh ich  a~e i somorph ic  t o  t he  subspaces w i t h  ~ero cha~ge o f  t he  Fock space 
o f  Di~ac fe~mions 

0 (o))eo ~ ( ~ ) e o .  ( 2 . 4 3 )  

Under t h i s  isomosphism the  o p e r a t o r s  a~ go i n t o  o p e r a t o r s  which a c t  on the  ~ - t h  f a c t o r  as the  
o p e r a t o r  ~ ( p )  i f  ~ > 1 and as the  o p e r a t o r  i%(O)  fo r  ~ = 1. On the  remaining f a c t o r s  the  
a~ a c t  as i d e n t i t y  o p e r a t o r s .  

Under t h i s  d e f i n i t i o n  the  s t a t e  wi th  moment~ [~>, ~ = (p~) c o i n c i d e s  wi th  the  t e n s o r  
p roduc t  of  t he  co r re spond ing  g e n e r a t i n g  v e c t o r s  

D 
~ > =  ~ IF~P~>,  n"~=n"6~ • (2.44) 

B=I 

D 

~(~,p÷,p_,r ,p)  = [ I  ~ ( l r~p~ ,P÷,P_ , r ,p ) .  (2.45) 
B = I  

Consequently, 

*Another version is averaging only over contours o = o(~) from P+ to P_ along which the 
"time" ~(~) increases monotonically. At the present time we do not know which version is 
right. 
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Another version of the construction in the case of the Minkowsky metric is the follow- 
Ing. Changing the definition of "vertex" operator carrying I0> into Ip> by changing the in- 
normalizations of basis fields to out-normalizations, we arrive at the expression (p being an 
integer) 

D 

,~ (?, P+, P_, F, p) --= 1-[ [~  (p", P+, P_, F, p)]n.. (2 .46)  
~=1 

The authors intend to return to the analysis of this possibility in later papers. Now 
we do not know which version is right. 

5" Energy-Momentum "Pseudotensor" 

The absence of a natural normal ordering of products of boson operators ~ when g > 0 
leads, as already said above, to the nonuniqueness of the definition (1.8) of the energy- 
momentum tensor. The basic goal of the p~esent section is the introduction in an invariant 
way of an energy-momentum "pseudotensor" T(z) depending only on the "diagram" F, P+, P_. 

THEOREM 3.1. The chronological product of operators J(z)J(w), J = (JB) is well-defined. 
As z ~ w one has the operator decomposition 

dzdw 
1 (z) l (w) = D (z - w)~ + 2~ (z) + 0 (z - -  w). ( 3 . 1  ) 

For any projecive connection R Z holomorphic away from the points P± the coefficients L k of 
decomposition of the operator-valued quadratic differential 

(3.2) 
~. 

satisfy the commutation relations (i.ii), (1.12) of the analog of the Virasoro algebra. 

Proof. We fix the following method of normal ordering: 

, :O~nO~ra: ~ O~mOSn, 

:O~n(~rn: ~ O~nO~m, otherwise. 

One can represent the operator J(z)J(w) in the form 

i f  n ~ g/2, m < . g / 2 ,  

I (z) ! (w) = ~, : a..am : d¢o. (z) &om (w) + D 

(3.3) 

m<-g/2 

Y~ .~,,,, &o, (z) do),~ (w). (3 .  ~ ) 
n>gl~ 

(If one changes the method of normal ordering, then (3.4) remains valid if one changes the 
limits of summation in the second summand of the right side of (3.4) correspondingly). 

The first stumnand in (3.4) well defines an operator which is holomorphic away from the 
points P±. We consider the second summand. Let fi(z, w) be a bidifferential on F which is 
uniquely determined by its analytic properties: with respect to each of the variables z and 
w it is a holomorphic differential away from the diagonal z = w, with respect to the variable 
z it has a zero of order g at the point P_ and with respect to the variable w, a zero of or- 
der g at the point P+. In a neighborhood of z = w it has the form 

dzdw 
~(z,w)= (z-w), + Ro (z) + O (z -- w). (3.5) 

The value of the regular part of ~(z, w) on the diagonal, R0(z), is a holomorphic projective 
connection. 

LEMMA 3.1. For T(z) > x(w) the series (3.6) converges and is equal to 

Proof. 

m<-g/, 

e (z, ~) = Y, ~.,,, d(o~ (~.) do~ (w). ( 3 . 6 )  
n>gl~ 

By definition of Xnmwe have that the right side of (3.6) is equal to 

1 
~ ~.dAa (%) A m (za) da~ a (z) d , ~  (w) ( 3.  7 ) 2a~ c.¢ 
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(here and in (3.8) the summation is as in (3.5) over n > g/2, m < -3~/2). The integral is 
taken over the contour ~(z~) = ~, where ~(z) > ~ > ~(w). By virtue of Lemma 2.2 of [2] 
the series under the integral sign in (3.7) converge. Using the expressions obtained we find 

where KN(Z, w)dw is the kernel of Cauchy type defined in [2]. The assertion of the lemma 
follows from (3.8) and the analytic properties of these kernels. 

Lemma 3.1 and (3.4) prove the first assertion of the theorem and (3.1), from which it 
follows that 

i 
T E:~n~m: don (%) e~m(z) + ~ ~o (z). (3.9) 

O P (z) 

It suffices to prove the last assertion of the theorem just for any one connection, for ex- 
ample, for the connection R0(z). In this case we have 

T ( z ) = ~ - - T R o = -  ~ :¢Znam:do)ndo,n, ( 3 . 1 0 )  

where  t h e  no rma l  o r d e r i n g  i s  g i v e n  by ( 3 . 3 ) .  For  t h e  c o c y c l e  ×n~m, c o r r e s p o n d i n g  t o  t h i s  
method o f  no rma l  o r d e r i n g ,  one  can o b t a i n  an e x p r e s s i o n  a n a l o g o u s  t o  [2 ,  ( 2 . 5 4 ) ] ,  which  was 
d e r i v e d  in  [2]  f o r  o t h e r  me thods  o f  no rma l  o r d e r i n g .  Compar i son  o f  t h e  e x p r e s s i o n  ob t a±ned  
w i t h  ( 3 . 8 )  p r o v e s  t h e  a s s e r t i o n  o f  t h e  t h e o r e m .  

The proof of the following operator decomposition of the product of energy-momentum ten- 
sors (more precisely, pseudotensors) which is fundamental in conformal field theory is anal- 
ogous to the proof of Theorems 2.1 and 3.1 and is hence omitted. 

THEOREM 3.2. The chronological product of operators ~(z)~(w) is well defined. As z ÷ 
w one has the decomposition 

p (z) ~Y (W) = O 2T (z) T. (z) 
2(,.-~,), + (~--~}: + ~._--=-~+o(i). (3 .11)  

The operator decompositions obtained above,~combined with Vick's theorem, let us easily 
find the mean of the products of operators J(zi)T(zj). We consider as an example the mean 
of the operator ~(z) corresponding to the conformal anomaly. It follows from Theorem 2.1 that 

<( )> <1 (z) ! (w)> o : ,,-ztim ,o,-~,lim ~ ( z )  ~[~+ (Z l )  g - -  z 1 W -- W~ O" (3 • 12) 

Using ( 2 . 2 4 )  for calculating the mean of the product of four fermion operators, we get 

<~ ( z ) ]  (w)> o = - -So (z, w; O)So (w, z;. t~). ( 3 . 1 3 )  

The decomposition of the bidifferential 

dzdw 
- -  S O (z,  w; O) So (w, z,  p) = (z - -  w) ~ + Ro (z) + 0 (z - -  w) ( 3 . 1 4 )  

on the diagonal z : w defines a projective connection Rp(z) depending on the representation 
~ but not on the points P±. Hence although our whole construction depends on fixing the pair 
of points P± the vacuum mean <~(z)>o does not depend on this choice. It follows from (3.1) 
and (3.13) that 

D 
<P (z)>o = - -  2- Ro (z). (3.15) 

Example. g = i. 

half-periods ms, e = i, 
form 

For the three spinor structures p~ corresponding to fixing three even 
2, 3, the elliptic curve F corresponding to the Szego kernel has the 

From this and (3.14) we get 

o(z--w-Fo=) e_~<:_~)" ( 3 . 1 6 )  
$0 (z, o, p~) = o (z -- w) o (w~) 

<f (z)>o~ = T ~ %=)' 
(3.17) 
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where o ,  ~ are the Weierstrass functions. This result coincides with the results of the cal- 
culations for the mean of the energy-momentum tensor on an elliptic curve obtained in [I0] 
with the help of a different approach based on using the Ward identities. 

4. Supplement and Remarks 

In the preceding sections as in [i, 2] only the "boson sector" in the theory of a closed 
string was considered. It is well known that the construction of a conformally invariant 
theory requires the introduction of supplementary "ghost" fields b(z) and c(z) having tensor 
weight 2 and -I respectively. Decomposing these fields with respect to the basis tensors 

b (z) = ~ b~d2~n (z), (4.1) 
?~ 

c (z) = E c,,e~ (z), ( 4 . 2 )  

we define operators b n and c n with the. usual anticommutation relations 

[bn, bm]+ = O, [ca, ca]+ = O, [bn, Ca]+ - -  5,,,m. ( 4 . 3 )  

As was shown in [Ii], the use of our constructions (in particular, the bases e n and d2~n ) 
lets one naturally generalize the definition of the energy-momentum tensor Tb,C(z) of the 
ghost fields and the definition of the operator BRST of charge Q to the case of a surface F 
of genus g > 0. Without dwelling on the details in these definitions we only make some com- 
ments about vacuum means in the "ghostly" sector. In correspondence with the principle of 
"regularity" the vacuum vectors lOgh> and <Oghl of the ghost sector should satisfy the rela- 
t ions 

bn ] ogh> = O, n >/ g o - -  t; <ogh ] bn = O, " n < --go + 1; (4 .4")  

c,~[og~>=O, n < g o - - i ;  < o a ~ ' ] c ~ = O  , n > - - g 0 + l .  

One can identify these vectors with the "vacuum" vectors ]02> and <02] defined in Sec. i 
(formulas (1.28), (1.30) for A = 2), if one gives a representation of the operators b n and 

for which the operator c n corresponds to exterior multiplication of semiinfinite 
forms cn in H~by f~ = d=~_n, and the operator b n to "inner" differentiation 8/~f~. As already noted 

above, the scalar product of such vectors is equal to zero: 

<02 I o,> = O. ( 4 . 5 )  

The simplest nonzero quantity which one can form with the help of scalar products has 
the form 

<o~ I c_~CoC, Io,> = ~, g = O, 
<o~lb_,/,c,/,IoD=/=O, g =  i ,  

-go+X ( 4 . 6 )  

H 
n = - - ~ o  

S i n c e  t h e  o p e r a t o r s  b n w i t h  In l  <. go -- 2 c o r r e s p o n d  f o r  g > 1 t o  h o l o m o r p h i c  q u a d r a t i c  d i f -  
f e r e n t i a l s  forming a basis in the cotangent bundle to the manifold of moduli of curves of 
genus g, the square of the modulus of (4.6) defines a measure on the manifold of moduli of 
curves of genus g with a pair of distinguished points. We shall return to the question of 
the expression in terms of these quantities and the norms of vacuum vectors of the boson sec- 
tor of the Polyakov measure on the manifold of moduli. 

We note in addition that the question of the definition of the mean <Tb,c>g h of the 
energy-momentum tensor of ghosts still remains open. The fact is that analogously to (4.5) 
we have 

<o, I rb' ~ (Z)I O~>= O. (4.7) 

Expressions of the type 

~o~ I ~ "  ~ (z)b~.+v • • ~o-~ I o ~  ~ 0 (~ .  8)  

are different from zero. Possibly the arbitrariness which one has here, connected with the 
fact that one can put the operator Tb, c to the right of the operators b n or between them, is 
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compensated for by the arbitrariness in the boson sector connected with fixing a spinor 
structure on F. 
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PRYMIANS OF REAL CURVES AND THEIR APPLICATIONS 

TO THE EFFECTIVIZATION OF SCHRODINGER OPERATORS 

S. M. Natanzon UDC 517.957 

In accord with the papers of A. P. Veselov and S. P. Novikov [I, 21, purely potential 
real two-dimensional Schrodinger operators that are two-dimensional finite-gap in relation to one 
level of the energy [3] are given by the following data: a Riemann surface P; commuting antiholo- 
morphic involutions TI, ~2: P ~ P such that the involution ~ = ~2 has exactly two fixed 
points Pl, P2 e p; a local parameter w1: W I + C, Pl E W l such that wit = -wl; a divisor D e P 
possessing some property of symmetry of a type [4] with respect to the involution ~i" An 
operator constructed according to such initial data has the form 

L = 0 ~ + 2 a ~ l n 0 ( z U l + z U 2 - - e  ] V)--~o.  

• An algorithm is presented in the paper, allowing one to find the elements of the Prymmatrix 
V of the curve (P, ~), the vectors UI, U= of the Prymian Pr = Pr (P, T) and E 0 e R in the form 
of convergent series of parameters defining the curve (P, ~i, T2) and the map w I. The selec- 
tion of nonsingular operators from the real algebraic ones leads to questions of independent 
interest of the theory of real algebraic curves. 

In Sec. 1 properties are analyzed of real abelian differentials on real algebraic curves 
(P*, ~*), that is, abelian differentials ~* on a compact Riemann surface P*, invariant with 
respect to the antiholomorphic involution T*: P* ~ P*. In a map symmetric with respect to 
T* the differential ~* assumes real values on the ovals. All the relations between the signs 
of these values are found. 
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