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We develop a new and more lucid method of finding dynamic solitons in quasi-one-dimensional 
metals in the Peierls limits. The method yields, in addition to the known soliton and polaron 
solutions, also breather-type solutions and solutions that are not related at all to changes of the 
electron spectrum. 

We investigate here a nonstationary continual model of 
a Peierls dielectric (PD) .  By using a unified approach1 we 
not only account for the heretofore known solutions (soli- 
ton, polaron, bipolaron), but also obtain a new solution that 
has no stationary analog. A remarkable feature of the pro- 
posed method is that it avoids the algebraic-geometric ap- 
proach to the spectral theory of periodic operators2 

The determination of finite-gap potentials of a number 
of equations is the subject of an extensive literature (as ap- 
plied to continual PD models see, e.g., Ref. 2) .  The periodic 
(Bloch) wave functions and potentials are fully determined 
by specifying the beginnings E l ,  ..., E ,, + , and the ends E,, 
..., E,,  + , of the band gaps. The band boundaries define a 
Riemann surface that is equivalent to a sphere with q "han- 
dles'' (where the number of handles corresponds to the num- 
ber of solitons1). It was shown earlier in Ref. 2 that to solve 
the problem of spin excitations it is necessary to use doubly- 
periodic solutions (q = 2) superimposed on a periodic 
structure. The second period I, appears in the lattice defor- 
mation as a result of the onset of a spin moment m in the 
system. The formation of the new period I, is due to splitting 
off of a pair of additional bands in the electron spectrum. 
They appear in the forbidden bands E- < IE I < E,,  one of 
them being empty and all the states of the other Y-fold filled 
by particles with polarized spin. The excittion spectrum was 
investigated in the limit m-0 corresponding to I,--0 (i.e., 
the order q of the Riemann surface r decreases as a result of 
the collapse of the additional bands). The method proposed 
by us permits, in contrast, e.g., to Refs. 2 and 3, a complete 
analysis of the nonstationary continual model of a PD with- 
out resorting to the finite-gap integration formalism. 

We proceed now to an exposition of our model. Assum- 
ing the electron spectrum to be linear near the Fermi surface, 
we can express the Lagrangian of the nonstationary Peierls 
model in the adiabatic approximation in the form 

A,, A,, A,, p are constants whose values are determined from 
experiment; d T  = vLdp/27.r($+ $), is the density of states, 
Y the multiplicity ofelectron-band filling, L the length of the 
system, dp the differential of the quasimomentum, and (... ), 
denotes averaging over x. 

Varying ( 1 ) with respect to $+ we obtain the equations 

Varying ( 1 ) with respect to A* we obtain the self-consisten- 
cy equations 

To find the soliton solution of Eqs. (2)  with the self-consis- 
tency conditions (3) ,  we use a generalization of the method 
proposed in Ref. 1. The integrable potentials of Eqs. (2)  are 
taken to mean such A(x, t )  for which Eqs. (2)  have solution 
of the form (see Ref. 1 ) 

N 

where /x,I2= 1 , z +  = 1 / 2 ( t + x )  ( r m  isdefinedbelow). 
To construct integrable potentials, we specify a set of 

different complex numbers x , ,  x,, ..., x,, cij (i, j = 1, ..., N )  
that play the role of the construction parameters. Given the 
parameters, it is possible to determine the function (4 )  of k, 
stipulating that its residues with respect to k satisfy the fol- 
lowing conditions: 

N 

Note that (5)  corresponds to the conditions for the collapse 
of the additional bands in the finite-band approach.2 

We denote by $(x, t ,  k )  a function having the form (4) ,  
satisfying the condition ( 5 ) ,  and so normalized that r, = 1, 
$, (0)  = 0: 

$i (x, t ,  k )  
N 

(1)  }exp[i(kz++?)]. 

where the terms in the curly brackets constitute the energy of 
the electron subsystem, and the remaining terms the energy ( 6 )  

of the lattice subsystem; $+ = ($?, $:) is a two-component We normalize similarly $,(x, t, k )  by the condition r m  = 0, 
Dirac spinor; a+ = 1/2(0, +_ ia,), a, are Pauli matrices; A, q2(0)  = 1: 
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Since the functions (6)  and ( 7 )  must satisfy (2),  we obtain 
for the potentials A(x, t )  and A* (x, t)  

We formulate now without proof the necessary and suf- 
ficient conditions under which the function (4)  has no sin- 
gularities.' Let the construction parameters x,, ..., x,, cU, 
which specify together with the conditions (5 )  the functions 
$(x, t, k),  meet the following requirements. 

1. The matrix cU is Hermitian, cU = c:. 
2. We number the points x,, ..., x, such that Im xi > 0, 

i = 1, ..., p; Im xi < 0, i = p + 1, ..., N. We require that the 
Hermitian matrix cv, 1 (i, j<p be non-positive-definite, and 
the Hermitian matrix cv , p  + 1 (i, j<Nbe non-negative-defi- 
nite. The function (4)  with k +xi  has then a smooth depen- 
dence on x and t and is an eigenfunction for the operator (2)  
with a smooth potential and with a zero eigenvalue. 

The integrable potential A(x, t )  specified within the 
framework of our construction by the parameters x,, ..., x, 
together with the N X Nmatrix cU will be called the N-soliton 
potential. 

It is easy to note that the constructed function of form 
(4) has, besides the poles at the points k = xi ( i  = 1, ..., N), 
have also singularities at k = 0 and k = a,. In the vincinity 
of the point k = the functions $(x, t, k)  defined by (6)  
and (7)  can be represented in the form 

rn 

$1 (x, f, k) = {l + z5." (x, t) b8}exp (ikz+), 

The expansions at the point k = 0 have analogously the form 

For the quantities 6 :'(x, t )  we obtain with the aid of (8),  
(91, and (2)  

if?'=-A*(x, t), 8-fltl=i( lAlz-I), 
21 

ifa+l+d+f821=-A' (x, t) ES1', if 112=A (x, t) , 

where we have introduced the symbol a + = (a /at f a / 

ax).  Relations ( 10) serve as the basis for the construction of 
the solutions of (2)  with self-consistency equations ( 3 ) .  

Before proceeding with their derivation, we formulate a 
statement which we shall need hereafter. Let the parameters 
xi ,  xy, and cU satisfy the above conditions that guarantee 
non-singularity of A (x, t); then 

A. 

where 
dk ++ (x, t, k) =$* (x, t, k'), dQ= -(k-xo) (k-NO'). 
k2 

We consider now an integral along the contour a T  
drawn around the cut from A- to A+ in the k-plane: 

or 

Here E(k)  is a function equal to 

where y, y,, y,, and y, are constants. We apply the residue 
theorem to the above contour integral. The self-consistency 
conditions take then, with the aid of ( 11 ), the form 

A. 

E (xmt) -E ( x , )  =in(v,-no)6,,, (14) 

where v, are the occupation factors of the mth local level 
(OGV, (2),  and no is an arbitrary integer (the phase of the 
complex value logarithm). We have assumed in the deriva- 
tion of (14) that the electron band is completely filled 
(v  = 2). The quantities 6 ,k'(x, t )  are defined in ( 10) : 

~,'"+~,*"~i"=-a+A(x, t), ~z1z+~11zf1*z2=~-A(x,  t), 
~ , = ~ , ~ ~ + ~ , * ~ ~ , " + f l ~ 2 1 f 2 1 L = i ~ + z A + A ~ + ~ l "  

- i ~  ( ~ z b l l + ~ z l l ~ ~ i t l f t * l t ) .  

It is impossible in the general case to obtain for I, an expres- 
sion that depends only on A (x, t)  and its derivatives. Such an 
expression will be obtained later on, since its derivation calls 
for additional information on the solutions themselves. 

We confine ourselves in the present paper to solutions 
of Eqs. (2)  with condition (3) ,  constructed with the aid of a 
2 X 2 matrix cU (i.e., N<2), with the aid of the parameters 
x i ,  x: ( i  = 1, 2). Leaving out the straightforward but cum- 
bersome manipulations, we present directly the final expres- 
sion: 

in which the following notation is introduced: 
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icl1 I X I  1 '  exp[i(o,'-ol) I icZz I x21 exp[i(oz'-02) I 
Ail = 1 A22= 

(x,.-x1) (3~1'-xo) (xi-xo') (Xz.-~z) (~2.--Xo) (xz-%ow) ' 
exp[i(02'--w,) ] ~ c , ~ x ~ ' x ~  exp [ i (mi'-a,) ] 

, 
(x2.-~.1) (X2'-xo) (xl-xo-) (Xl.--~2) (xlm-xo) (X1-3~0.) ' 

As the first example, we consider a solution of the kink Using the connnection between the derivatives of A(x, t )  
type. Such a solution is obtained in the framework of our with respect to a+ and a&, we obtain for I, 
construction with the aid of the parameters x , ,  x:, and c , ,  

us-I 
[where x ,  is of the form x ,  = p exp(iq,) 1. To  be specific, we ~ , = i a + z ~  (x, t )  -tiA - a - t l i l - i ~  (gyl - l - ~ 2 " + ~ 1 1 1 ~ ; 1 1 ) ,  
assume that Im x ,  > 0, and then c, , < 0. Without loss of gen- u.+ l  

. . 
erality, we choosk q, in the interval (0, 77-/2). After some 

where us is the soliton velocity. 
calculations, expression ( 15) for A(x, t )  takes the form 

i\ (z. t )=- iAo  cos cp+A, sin cp th[a, (z-Z-v,t) I. ( 17) ~ ( 1 -  I A 1 ' )  +a( l+I , )=i  [F(xi)--F(xI*) I$I(XI.)$I*(X~').  
Here i , j  

- 
2 = -  

1 clip l a  sin cp 
-In a,  = -- 
?a, 1 2 a n  cp(p2+i+2p cos cp) I 

j2 is an arbitrary parameter that describes the center of the 
soliton, and A, is the solution of (2 )  in the case of homoge- 
neous PD (it corresponds to the limit q, = 0 ) .  The soliton 
velocity v ,  is connected with the modulus of the parameter 
x ,  by the relation u, = (p2 - 1 ) / (p2 + 1 ) . 

The self-consistency equations ( 14) reduce to the fol- 
lowing: 

cp+(yz/p-ylp)sin cp-y3p2 sin 2rp=x(vl-no)/?, (18) 

where Y, is the occupation factor of the local level ( Y ,  = 1,2, 
3) ,  and n, is an arbitrary integer. 

Equation ( 18) does not have solutions for arbitrary val- 
ues of no. The admissible values of n, are simplest to deter- 
mine if the constants y,, y,, and y, are set equal to zero. It 
follows then from ( 18) that for a solution q, [ ~ E ( O ,  ~ / 2 )  ] to 
exist, no must take on values - 1, 0, and 1 for Y ,  = 0, 1, 2, 
respectively. (We have discarded the value q, = 0, since it 
corresponds to the homogeneous case. ) 

To determine I, = {T" + 6:' + 5 ; I f  7" we use the 
following procedure. We specify a function F = a k  + fl /k 
(a and fl are arbitrary constants) and consider the expres- 
sion for F,$, $: dR With the aid of the residue theorem, we 

get 
We require now satisfaction of the equality F ( x ,  ) = F(x,*) 
(i, j = 1, 2 ) ,  which makes it possible to determine the con- 
stants a andfl. For a solution in the form ( 17) we have, after 
simple calculations 

or ultimately for I,: 

Having determined I,, we can write the self-consistency 
equation ( 13 ) in the form 

We consider now Eq. ( 18). We denote y ,  p - y,/p by 
y4. We have then, depending on the values of y, p 2  and y,, Note that this equation determines the connection between 

the following possibilities: the constants y, y, ,  y,, y, and the constants A, R ,, R2, R3 ,p  in 

1. y,>O, y,>O. This case is special, inasmuch as for any the Lagrangian ( 1 ). I t  follows hence that no soliton solution 

value of the constants there exists only the solution g, = ~ / 2  of Eqs. (2 )  is possible in the case of arbitrary constants. It 

[the real A(x, t ) ,  which coincides with the solution obtained follows from the expressions above that are related by a 

by Brazovskii and Kirova3 in the weak-binding limit 1 .  In the strictly defined relation: 
- 

remaining cases listed below, except q, = ~ / 2 ,  there can exist 
also other solutions of Eq. ( 18). 

2. y, < 0, y4 < 0 or y, > 0, y, < 0. For given signs of the 
constants there exists always a solution of Eq. (18),  in the 
limit of both weak and tight binding. 

3. y, < 0, y4 > 0. A solution exists only for 1 y,12p > .rr/ 
4 + y 4 / d  (i.e., the tight-binding limit). 

The self-consistency equation ( 13) takes the form 

dQ yla,+=-iA (x. t )  (y+yl) -yld+A+y2a-A+y,13. 

i.e., a soliton cannot be immobile at finitep and A. Our next 
task is to calculate the physical characteristics of a soliton 
moving with velocity u,  . It is known that the charge is deter- 
mined with the aid of the equation 

so that we must obtain explicit expressions for the wave 
functions. We use for this purpose expressions (6 )  and ( 7 )  
for the $functions. We calculate first the wave functions of 
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the continuous spectrum. In the case of physical interest i I m k  

p = 72/2 (i.e., x ,  = ip ) ,  the expressions for @, (x, t, k )  and 
@,(x, t, k)  take the form 

$1 (2, 4 k) = ipk { th[a.(x-d-v.t) 1- I \ 
P (k-xo) (k-ip) I 

x exp [ i ( kz, +- F ) I .  
For the discrete-spectrum wave functions (recall that 
w, = 0) we have for p = 7~/2 

Note that the wave functions are normalized by the condi- 
tion 

Let the local electron density in the valence band be 
equal to 1 / 2 ~  in the homogeneous state. In the presence of 
an inhomogeneous deformation (a kink), the change of the 
local charge density can then be written in the form 

where q,(x, t)  is the contribution of the state with an occu- 
pation number v , ,  and p, (x, t )  is the contribution of the 
continuum states. The total charge is equal to 

q - J  ~ s A ~ ( E ) .  

With the aid of (20) we obtain for the total charge of the 
soliton 

i.e., the soliton can carry a non-integer electric charge. 
As the next example, we consider a polaron (bipolaron) 

solution of Eqs. (2)  with the self-consistency condition (3) .  
To obtain such a solution within the framework of our con- 
struction, we must consider already a two-soliton case, i.e., 
N = 2 in (15). Let the matrices cij (c,, = c,, = 0 )  and two 
complex numbers x ,  and x, be given. We choose both 
numbers with positive imaginary part, and then c, , < 0, 
c,,<O so that x ,  =pexp( ip) ,  x, = p e x p [ i ( r - p ) ]  (see 
Fig. la) .  With this choice of the parameters, the general 
expression for A (x, t )  goes over after some calculations into 
the known equation 

Here k, = A, sin p (the definitions of A, and p are similar to 

FIG. 1. Choice of the construction parameters K ,  and x,: a-for a po- 
laron-type solution (21 ), b--for solution (24),  c-for solution (27) .  

those for the case of the soliton). The parameter x, is deter- 
mined from the equation k, = A, tanh(2k+,). In the deri- 
vation of (21) we have subjected c,,, for simplicity, to the 
additional condition X = 0 (i.e., the polaron has a center at 
the point X = O), where 

- I c22p ctg cp 
x=-ln 

a, 2(pZ+1+2psincp) ' 
A. sin cp 

a p  = ( 1 - ~ , ~ ) ~ ~  ' 

The parameter p is connected with the polaron velocity by 
the relation v, = (pZ - 1 )/(pZ + 1 ) . If x, 4 1 expression 
(2  1 ) describes a shallow polaron. If x, $1, the solution ( 2  1 ) 
takes the form of two domain walls spaced d z x ,  apart. 

We proceed now to a discussion of the self-consistency 
equations (3) .  Expression (21 ) satisfies Eq. ( 13) (just as in 
the case of a kink). The matching conditions ( 14) are in the 
case of a polaron 

Here Y ,  and Y, are the occupation numbers of the upper and 
lower discrete levels, respectively. Equations (22) are equiv- 
alent to the following equation (with the above choice of the 
parameters x ,  and x,) 

( ~ = ~ / ~ n ( v ~ - v ~ + 2 )  +y3pZ sin 29. (23) 

The matching condition (23) is in a certain sense simpler 
than the condition ( 18) for a soliton (in the case of a polaron 
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there is no dependence on the constants y ,  and y, and on the 
variable no). In the two-soliton case, however, there are now 
two possibilities: 

1. v, - Y, = 1, polaron-type solution. 
2. v, - v, = 0, bipolaron-type solution. 
Before we proceed to anlayze Eq. (23), we note that in 

the limit yo = 0, i.e., p = a/4, we obtain the known expres- 
sion for a symmetric polaron.' 

We consider thus first Eq. (23) for a polaron. I t  has a 
solution for any sign of the constant y,. In the case y, p2)  1, 
i.e., as p-a/2,  the polaron is unstable to decay into two 
domain walls (see, e.g., Ref. 2) .  

Let v, = v, be a solution of the bipolaron type. It fol- 
lows from (23) that a solution exists only if y, p2 < 0, 
/ y, I f '  > 1 (i.e., only in the tight-binding limit). Note that for 
the discrete model of a PD this result was obtained in Ref. 4. 
For y ,p2< 1 (as p-+a/2), the bipolaron decays into two 
domain walls. 

We proceed now to consider the self-consistency equa- 
tion ( 13). In the derivation of the equation for I, in terms of 
A (x, t ) ,  a, A, A /A I', we proceed just as in the case of a soli- 
ton. Leaving out these simple calculations, we note that the 
equation for I, is the same as for a soliton (in which us must 
now be substituted by the polaron velocity up ). The restric- 
tions on the constants y , ,  y,, and y, are the same as in the 
case of the soliton. 

Our next task is to calculate the physical characteristics 
of a slowly moving polaron. Since we shall proceed exactly as 
in the soliton case, we present as a rule only the final result. 
In contrast to the soliton, we have now two local levels w, 
( a O  = A() cos p). For the wave functions of the discrete 
spectrum ( E  = w,) we have 

$z'"(x, t)=iNo exp[ie0(x, t ) ]  {(I-i)sech fi++(l+i)sech p-), 
p*=ap (x*xO-uYt). 

Here NO = b(k,,p) ' I 2  is a normalization constant. For the 
level E = - w,, we have 

( 0 )  $,(o' (x, t) =-i$z (z, t) , 9::' (x, t) =iSI (x, t )  . 
Before we write down the continuum wave functions, 

we note that in the direct calculation of the physical charac- 
teristics of the polaron it is more convenient to change to 
true momentum variables [ p = iA,,(k - l / k )  1. Since this 
cannot lead to misunderstanding, we use the symbol k for 
the momentum. The wave functions $, and $, of the contin- 
uum are equal to 

Qz(x, t ,  k )  =-iN, exp[iek(x, t ) ]  

Here 

We calculate now the local charge density corresponding to 
the contribution of the discrete level. Proceeding as in the 
soliton case, we have for p,(x, t )  

The contribution of the continuous spectrum is 

The change of the local charge density in the presence of the 
polaron deformation ( 2  1 ) is ultimately 

+ .  4v,2 sin2 cp [ 1 arctg(A ( I-vp2) "' ) 
n [ (I-upZ) sinZ c p - l ]  sin cp A, sin cp 

A - ( l - v p z ) ~  arctg(-)]). A~ sin cp 

In the physically interesting case of trans-(CH), 
(y, = 0 )  we obtain for A+ CO, up = 0, and v, = 2 the well- 
known result of the static theory2: 

Ap (x) ='/,v,ko(sech2[ko(x+xo)l +sechZ[ko(x-x,)]). 

The total charge is equal to q = ev,. The case v ,  = 2 (doubly 
occupied level) corresponds to a soliton-antisoliton pair 
with large spacing between them. In the presence of one ad- 
ditional electron (or hole), the excitation carries a charge 
q = + e and a spin 1/2. In the general case (y,#O) it fol- 
lows from the equation for Aq that the charge can take on 
any value in the intervals 0 < q  < e  for the polaron and 
0 < q < 2e for the bipolaron. 

By way of a nontrivial example we consider the solution 
of Eqs. (2 )  in the case of an antidiagonal matrix c,, 
( c , ,  = c,, = 0, c,, = c,*, ). Note that the solution obtained 
below is not a true soliton, for at  the given choice of the 
matrix cU there is no contribution from the discrete spec- 
trum. It follows from (15) that the solution A(x, t )  will be 
nonsingular if the imaginary parts of x ,  and x, are different. 
For the sake of argument, we choose the parameters 
x I  = p  exp(ip),  x, = p  e x p [ i ( a +  p ) ]  (see Fig. l b ) .  After 
some calculations, the general expression for A (x, t )  takes 
the form 
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sin 2 ( ~  
+ i  .in 2m [(,)" I\} 

where v = (p2 f 1 - 1 ) is the polaron velocity 
(v2 - 1 > 0); the parameter q, is determined from the self- 
consistency equations ( 14); c,, is chosen such that A,, [see 
Eq. (16)] isequal toexp[i(wf -w,)]/cosq,(A,, = AT, ). 

The solution (24) has the same value (A,) as x-  + ao , 
i.e., is indeed a polaron. Note that if q, is zero or ~ / 2 ,  the 
solution (24) goes over into the homogeneous one [A(x, t )  
= Ao]. 

The self-consistency equation ( 13) remains the same as 
in the case of a diagonal matrix cu, and only the matching 
conditions ( 14) are changed. In our case they are equal to 

where the function E ( k )  is defined by Eq. ( 12). The equali- 
ties (25) are equivalent to the following conditions: 

(y,p+fi/p)cos 'p=O, 'p=-n/2+y8p2 sin 2cp. (26) 

For q, #n-/2 we obtain from the first equation of (26) the 
connection y, P2 = - y2 between the constants, and from 
the second we get the condition y, > 0 ( y, P2 > 3 ~ / 4 ) .  We 
put q, = ~ / 2  - S ( 6 4  1) and consider (24) in the vicinity of 
q, = ~ / 2 .  Then, using the second equation of (26), we have 
infirst order in S, 

It follows hence that such a solution exists for y, p s  1 (i.e., 
in the tight-binding limit). In this aproximation, the expres- 
sion for A(x, t)  (A = A,, + iA,, simplifies to: 

-- 2A 6 
A (("' - 1 - (6'-216) (1 + 6 ch [-A (vz-l) '12 (x-vt)]} -'. 

A0 

It follows from this expression for A (x, t)  that the exci- 
tation constitutes a shallow well incapable of trapping parti- 
cles. Taking into account the connection between the quanti- 
ties S,p, and v we obtain for the polaron width 5 the estimate 

from which it follows that the well is very wide, and in the 
limit v = 1 the solution (24) becomes homogeneous. In ad- 
dition, we see that for such a well to exist it is necessary that 
it move faster than with the Fermi velocity v, ( v, = 1 ) . This 
is in fact the difference (together with the aforementioned 
absence of a contribution from the discrete spectrum) from 
the usual polaron solution (2 1 ). 

We proceed now to consider one more nontrivial exam- 
ple. We construct in the most general form a solution A (x, t )  
that does not reduce to a moving stationary solution, using 

the same matrix cV as ip the preceding examples. We choose 
the parameters x ,  and x, in the form x,  = p ,  exp(ip, ), 
x2 = p2 exp(ip2 1, p ,  #p2 (see Fig. l c )  . The expression ob- 
tained for A(x, t )  in the case of differentp,,~,, q,,, and q,, is 
quite unwieldy. In addition, it is difficult to analyze the self- 
consistency equations ( 14) in this case. To simplify the sub- 
sequent calculations, we put therefore q,, = - p,  q,, = n-/ 

2 - q, (the parameter p takes on values in the interval from 
zero to n-/2 1. After straightforward but cumbersome calcu- 
lations, expression ( 15) takes the form 

where we have introduced the notation 

Im (o1+o2) = [ (pl+l/pi)  sin cp- (PZ+ llpz) cos cpl (x-ult), 
He (o,-ol)  = [ (llp~-pz) sin cp- (l/pl-pi) cos cpl (x-vzt), 

(p2--l/pz) cos cp- (p,-llpl)sin cp 
V, = - 

(p2+l/p2)cos cp- (pl+llpl)sin cp ' 
(p,+I/p,) sin 9- (p l+l /~ l )cos  cp. 

U D  = (pz-l/p,)sin cp- (pi- l /~l)cos ' 

This choice of the parameters x ,  and x, ensures non-singu- 
larity of A(x, t ) .  

The velocities v, and u, satisfy now the conditions 
1 - uf > 0, 1 - v: < 0, i.e., just as in the preceding example, 
the velocity v, exceeds the Fermi velocity v,. We obtain 
hence for the quantities Im (w, + w,) and Re (w, - w,) 

Im (02+o i )  =2Ao(1-ch E sin 2cp)"(x-vlt) (I-vi2)-'", 
Re (oz-o,) =2iAo(l-ch E sin 2'p)"3(x-v,t) (v,2-I)-'". 

To be specific, we consider hereafter only solutions for 
which 1 - cosh E sin 2v > 0. In view of the presence of the 
two velocities v, and v,, the self-consistency equation (13) 
cannot be solved in the general case of arbitrary constants y,, 
y,, and y,. We confine ourselves therefore to the case y, = y, 
and y, = 0 [see (12) 1 .  The matching conditions ( 14) are 
then 

In (p21pl) +yl(pl+llpl) cos cp-yl(p,+l/pz) sin cp=O, 
;1/4--rp+'/,y~( Up,-p,)cos cp+'lzyl(p,-llpl)sin cp=O. 

The equations reduce to the following: 

cp=n/4+B cos cp, 

where 

A graphic analysis of Eq. (28) yields the conditions for 
the existence of a solution. In the case B > 0, a solution exists 
in the interval (n-/4, 7~/2).  The points g, = n-/2 and n-/4 
must be excluded, for at g, = n-/2 the solution A(x, t )  be- 
comes A, = const. Note that in the vicinity of the point 
g, = n-/4 the conditions 1 - vf > 0, 1 - v: < 0 are no longer 
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valid, i.e., there is no longer a solution in the form (27).  For Fiz. 81,2279 ( 1981 ) [Sov. Phys. JETP 54, 1209 ( 1981 ) 1 .  
'S. A. BrazovskiI and N. N. Kirova, Pis'rna Zh. Eksp. Teor. Fiz. 33, 14 B<0,  thesolution (28) existsonly if IB I <7r/4. Thequantity (1982) [JETP Lett. 33, ( 1982)1 .  

q, itself lies in the interval (0, 7r/4). For q, = 0 the solution 4J. Chronek, Zh. E k s ~ .  Teor. Fiz. 92, 1822 (1987) [Sov. Phvs. JETP 65, 
A(X, t )  is equal to A, (becomes homogeneous). 1021 ( 1 9 8 i ) l .  

'I. M. Krichever, Funktsion. analiz i ego pril. 20, 42 ( 1986). 
*S. A. Brazovskii, I. E. Dzyaloshinskii, and N. N. Kirova, Zh. Eksp. Teor. Translated by J. G. Adashko 
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