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Exactly solvable Peierls models that contain typical continual models and the molecular limit as limiting cases 
are found. The interaction between the electrons and the lattice is taken into account via the exponential 
dependence of the electron hop-over integral on the distance between the nearest molecules. Also considered 
is the special case of interaction with intramolecular deformations. The thermodynamic functions, the 
distributions of the molecules and of the electron density, and the electron spectrum are obtained for the 
ground state. It is  shown that at any electron density p the spectrum is always single-band. There are no 
commensurability effects at allp #O, and the ground state has a zero mode. 

PACS numbers: 7 1.30. + h 

1. INTRODUCTION. FORMULATION OF THE 
MODELS. 

1. It has become clear recently that the Peierls-  
Frbhlich models admit of an exact Models 
with a linearized electron dispersion law near the 
Fermi l e ~ e l ' - ~ * ~ * ~  and the Frbhlich model with a quad- 
ratic dispersion law4 were investigated. An independ- 
ent study was made of the model of electron-phonon in- 
teraction on a discrete lattice. '-'' This model was in- 
vestigated numerically, either using variational calcu- 
l a t i o n ~ , ~ ' '  o r  by models of the dynamics equations. "'l 

We show in this paper that there exists also a class 
of exactly solvable discrete models. We shall investi- 
gate two models (I, 11) that include a s  limiting cases 
all the hitherto considered models of the Peierls  ef- 
fect, a s  well a s  the molecular limit. In Model I the 
interaction i s  taken into account only via dependence of 
the electron hop-over integral on the distance between 
the molecules. In model 11, account is taken also of 
the interaction of the electron with the intramolecular 
vibrations. 

The investigation reported in this paper i s  based on a 

2 .  We consider a one-dimensional chain of molecules 
located a t  the points x,. Each group of N  molecules 
has N , c  2N electrons. We shall assume that the elec- 
tron spectrum i s  determined by the typical tight-bind- 
ing Hamiltonian 

where c, a r e  the integrals for the electron hopping be- 
tween the nearest molecules and v, i s  a local potential 
produced by the possible intramolecular deformation 
(it differs f rom zero only in model 11). The ground 
state of the system i s  determined from the extremum 
condition on the energy functional of the system1' 

where the electron energy levels E =E{c, .  7*,) a re  de- 
termined from (1.1), p is the chemical potential, and 
U  = ~ { x , ,  I & )  i s  the energy of the potential interaction 
between the molecules and the intramolecular strains.  

Greatest interest attaches to the case of rigid lat- 
tices: 

special mathematical formalism whose description can when the strains v, and the displacements u, of the 
be a reader interested Only the physical molecules under the influence of the electrons are 
deductions. We have therefore reported the results of 

small enough. We can confine ourselves here to a 
the research in Chaps. 2  and 3, and their derivation i s  

quadratic expansion of U in u, and v,, and to a linear 
expounded in Chaps. 4 and 5. 

expansion of c, in (1.1) in terms of u,,, -u,: 
In Chap. 1 below we formulate the exactly solvable z,=na+u,, cn=co[ I-u(u,-,-u,,) 1, 

Peierls  model. In Chaps. 2  and 3 we present the r e -  
sults of the exact solution, consider i t s  physical con- u=-c 1 [K(u,+,-u,)'+kun2]. 
sequences, and investigate various limiting cases. In 
Chap. 4 we present the necessary results of the spec- 
tral  theory of difference operators, prove the exact 
solvability of the presented models, derive a complete 
system of self -consistency equations, and obtain ex- 
pressions for the thermodynamic parameters. In 
Cahp. 5 we present a partial solution of the equations 
of Chap. 4 in terms of elliptic functions, and obtain 
general expressions for the electron wave functions, 
for the electron-density distribution, and for  the equil- 
ibrium arrangement of the molecules. Individual 
mathematical questions a r e  relegated to the Appendix. 

The linearized Peierls  lattice model, defined by Eqs. 
( l . l b ( 1 . 3 )  a t  u , = 0 ,  was formulated, e.g. ,  in Refs. 
7-11 and 13, and was investigated in Refs. 7-11. 

In this paper we propose the following relations for 
c and U: 

We shall show that the models defined by Eqs. (1.1) 
and (1.2) with the relations (1.4) can be solved exactly 
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in two cases, hereafter called models I and 11. In Em 
model I it i s  assumed that there is  no strain potential, 
v, 5 0, an assumption corresponding to the limit k - m. 

The problem with 11, # 0 can be solved only at a special 
value of the parameter k, namely at k =  K. This case 
will be called model 11. 

The energy functional W should be varied a t  constant 
particle numbers N and N,  and a t  a constant length L 
=Nu of the system. It i s  more convenient to vary the 
functional of the adjoint thermodynamic potential 

a t  constant P. At equilibrium, 

W=.Vlu, (p, a ) ,  W = N p ,  (p. P )  , p=N,/hr, 

where y,(p,P) is the chemical potential of the molecule. 
It will be shown below that i t  i s  natural to express the 
variational functional iir in form 

and E =E{c,, u,) a r e  the eigenvalues of (1.1). (For 
model I we must put zl, = 0 in (1.6)). The mean dis-  
tance a between the molecules in the ground state i s  
determined from the condition 

I ,  {c,, v,) =-L/.V=-(1. 

at  the equilibrium values of c, and v,. 

From the form of the functional (1. I ) ,  (1.5), (1.6) 
we can establish the connection between our problem 
and that of integrating vector differential-difference 
 equation^,'^*'^ viz. , Langmuir chains or the difference 
Korteweg-de Vries equation for model I and the Toda 
chain for model 11. The Hamiltonian (1.1) assumes 
here the role of the L-operator and its eigenvalues E 
and the functionals (1.6) are the integrals of motion of 
the equations of the dynamics of the corresponding 
chains. It i s  precisely this circumstance which points 
to the existence of an exact solution for the models 
considered. 

At small a the models I and I1 reduce to the linear- 
ized discrete model (1.1)-(1.3). Smallness of CY is 
equivalent to large P, when 

(we shall use throughout energy units C, and lengths 
CY 'l such that c, = 1 and a = 1. ) A transition to continu- 
a l  models i s  possible in this same limit. At p(2  - p )  
<< 1 we obtain for both models I and I1 a continual prob- 
lem with a quadratic dispersion law. At I p  - 1 1 << 1 
we obtain a continual p r ~ b l e m ' ' ~ * ~ * ~  with a linearized 
dispersion law for electrons in an off -diagonal field 
A(%). In this case there i s  a fundamental difference 
between models I and 11. Model I corresponds to one 
real field A(x) = A,(%). Its ground state a t  p = 1 has 
only twofold degeneracy A- -A. Model I1 corresponds 
to a theory with a complex field ~ ( x )  = A, +iA,. The 

FIG. 1. 

special choice k =  in model 11 leads to the chiral in- 
variance A- hexp(ix), which i s  equivalent to the Frbh- 
lich limit. 

2. RESULTS OF SOLUTION OF MODEL I 

The investigation expounded in Chap. 4 leads to the 
following general conclusions for the model I. The 
spectrum of the electron states for all p#  0,1,2 con- 
s is ts  of three allowed bands2' 

a s  shown in Fig. 1. The electron chemical potential /.I 
i s  always located in one of the forbidden bands: 

At all p+ O,1, 2  the ground state i s  continuously degen- 
erate in some parameter t ,  i . e . ,  besides the homo- 
geneous shift there i s  also one zero mode. As p- 1 
this mode corresponds to an arbitrary shift of the soliton 
superlattice, and a t  l p  - 11 5 1 it  corresponds to the 
FrBhlich phase of the complex order parameter. 

The entire analysis was carried out for an integer 
number of electrons N ,  on the lattice, i.e., a t  rational 
p =N,/N. In the thermodynamic limit N- m and N, - m, where p can be regarded a s  an arbitrary albeit 
generally speaking rational number, all the physical 
quantities were found to be continuous analytic functions 
of p everywhere except a t  the points p= 0,1,2. Thus, 
in this model there i s  no difference between rational 
and irrational values of p. Consequently all the com- 
mensurability effects except the special case of the 
doubling of the period a t  p = 1 a r e  absent. 

The foregoing conclusions show that the properties of 
the considered discrete model agree qualitatively with 
the properties of the continual models. Moreover, inana- 
logy withthe continual models, al l  the physical quantities 
a r e  expressed in t e rms  of elliptic functions. The relation 
between the physical quantities of model I a r e  express- 
ed in Chap. 5 in terms of the Weierstrass elliptic func- 
tions 5 ,  and a. For numerical calculations it i s  
more convenient to use the standard tabulated Jacobi 
functions and Legendre integrals. We shall give here 
the results of Chap. 5 expressed in terms of Jacobi 
functions, using verbatim the notation of the Bateman- 
Erdelyi tables. lB 
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The Weierstrass functions g(z)  etc. depend on two 
periods w and w'. The Jacobi functions B, (v )  depend on 
one parameter 7 :  

T=-w/oI', Irn(o'/o) >O; 0,(u) =0,(v, r) ,  0,(0) =0, 

The Jacobi functions snu,  cnu, . . . depend on an ellip- 
tic modulus k such that 

where K(k) is a complete elliptic integral of the f i rs t  
kind. The se t  of variables z,  v ,  u is related here by 

Chapter 5 gives all the relations in the parametriza- 
tions w,, W; and w,, wi. We shall use the Jacobi func- 
tions only for the first  parametrization, i. e, r = wJw; 
etc. We shall use the symbol r for the elliptic modulus 
k: in the second parametrizations, and for the elliptic 
integrals in the second parametrization we shall indi- 
cate explicitly the value of the modulus K,'=K(y), etc. 

Equations (5.18) and (5.20) yield expressions for the 
band boundaries 

K dnu 
Em2=-- u-Klp-41, 

0,' sn u cn u ' 

E+lE,=sn u; E-/E+=kl/dn u. 

From (5.18) we obtain the connections between the two 
parametrizations 

E,z-E+2 , P ( r )  K cnu 
+- -=dnzu ,  -- 

Emx-E-" --c__( 

1021 '  0,' sn udn u 

The period w, i s  known from (5.20): w, = nu/2, and 
the ratio K/w; can be explicitly expressed in terms of 
the mean distance a between the ions by using (5.21): 

where, in accord with the definitions 

u=%lp-11. (2.3) 

Substituting this in (2.2) we obtain an equation for the 
elliptic modulus k in terms of the parameters u, a, and 
p of the problem: 

where F is the average hop-over integral 

For Em we have then the formula 

Em=2E@a (u) 0, (v)lB,e,, 

and I?+ and E _  a r e  obtained from (2.1) knowing k and Em.  

The thermodynamic relations a r e  obtained by substi- 
tuting the value of k =  k(a,p) determined from (2.4) in 
the formulas for the pressure P and the ground-state 
energy w,. From (5.20b) we obtain 

From (5.22) we get 

n2x 

the molecule displacements u, can be obtained from 
(5.24) 

We emphasize that no i s  an arbitrary number, not 
necessarily an integer. The continuous ground-state 
degeneracy parameter no constitutes the zero mode, 
mentioned a t  the beginning of this chapter, of the ground 
state of the system. 

The distribution of the electron density p,, 

i s  given by Eq. (5.25). Comparing (5.24) and (5.25) we 

where a = 3  at n =  2 m + l  and a,=4 a t n = 2 m .  

As seen from (2.4), the ground state of the system is 
determined by the parameters p and W. We consider 
now the most important limit corresponding to the lin- 
earized model (1.1 ), (1.3). As indicated in Chap 1,  
this limit corresponds to small n or,  in dimensionless 
variables, to the inequalities 

From Eq. (2.4) a t  uC >> 1 we find that r - 1 for all p. It 
is convenient to use in place of (2.5) the interpolation 
formula 

which i s  valid both a t  I p  - 1 1 >> e"lk and a t  l p  - 1 1 << e-ll'. 
The quantityh/cos(n)p - 1 1 /2) in (2.11) corresponds to 
the usual definition of the dimensionless electron -phonon 
interaction constant. Linearization of our model corre- 
sponds thus also to the weak-binding model. This is 
due to the presence of only one constant H. in the func- 
tional (1.5). 

Substituting (2.11 ) in (2.1) we obtain a t  I p - 1 1 >> e-l'A 

Expressions (2.12) go over a t  I p  - 1 I < <  1 into the rela- 
tions of the continual mode13*%ith a linearized disper- 
sion law. The additional dependences on p in (2.12) a r e  
reflections of the curvature of the electron spectrum 
and of the finite width of the electron band. 

At lp-1 l<<e-'lA we have from (2.1) and (2.5) 

E,=2E, E+=8?e~''~;  E-/E+=4 exp(-4e-'"/l p-I I ). 

This region corresponds to the limit of a widely spaced 
soliton lattice. From (2.8) we obtain the lattice de- 
formation in the absence of a soliton: 
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and the electron-density distribution 

Equations (2.13) and (2.14) correspond to the single- 
soliton solutions of the Toda-chain equations. 14*15 

3. RESULTS OF SOLUTION OF MODEL II 

The qualitative conclusions of the investigation of 
model I1 agree in general with the results given a t  the 
beginning of Chap. 2 for model I. What distinguishes 
model I1 i s  that it has no singularities of the physical 
quantities at p =  1. The electronic-state spectrum con- 
tains now only two allowed bands, (E,, E,) and (E,, 
E,). The chemical potential p l i e s  in the forbidden 
band ( 4 ,  E, )  

In contrast to model I, the gap in the state density lies 
only on the Fermi surface, i. e . ,  the spectrum has no 
electron-hole symmetry (see Fig. 2). 

The physical quantities in model I1 a re  determined 
with the aid of the elliptic parametrization described in 
Chap. 5. Just a s  for model I, i t  is convenient to ex- 
press the results in terms of Jacobi elliptic functions 
and theta functions. We introduce again the parameters 
T and k: 

where w and w' a re  the half-periods of the elliptic func- 
tions shown in Fig. 5 below. From (5. l o ) ,  taking (5.5) 
and (5.6) into account, we obtain an equation for the pa- 
rameter 7: 

The positions of the band boundaries a re  determined 
from (5.2a). Transforming i t  in analogy with the form- 
ulas for the model I, we obtain for the widths D of the 
total band, E, of the filled band, and E, of the forbidden 
band the expressions 

FIG. 2 .  

In the weak-coupling limit Wsin(rp/2) >> 1 i t  follows 
from (3.2) that 

1 
k=4 oxp ( - - 1 

i n )  ; = -  )<I. 
nxE ' (3 .6)  

Equations (3.3 )-(3.5) take the form 
8, nP D=4E, -=sin2-, 
D 2 

5 D = 4 s i n ~ L P e x p ( - ~ s i n ? )  2 
2 . 

The equilibrium coordinates x, of the molecules a r e  
defined in (5.13a). From this equation we obtain by 
simple transformation 

We note that v is an arbitrary number, not necessarily 
an integer, a reflection of the continuous degeneracy 
of the ground state. 

Comparing (5.13a) and (5.13b1, we obtain for the in- 
tramolecular strains vn 

4 1 ~ 1  au, 
u,=--. 

nxp an (3.8) 

Equation (3.8) determines also the distribution of the 
electron density 

The relation p,= nu, i s  obtained by explicit variation 
of the functional (1.5) with respect to v,. In the weak- 
coupling limit we obtain 

nP -nxE sin - sin[np(n-Y) 1, 
2 1 (3.9) 

Equations (3.9) and (3.10) yield the amplitude of the 
lattice deformations and the charge -density waves in 
the Peierls  state. 

4. DETERMINATION OF THE GROUND STATES FOR 
MODELS I AND II ,  AND ELEMENTS OF THE SPECTRAL 
THEORY OF THE SCHRODINGER DIFFERENCE 
OPERATOR 

1. The solutions of the problems formulated in 
Chap. 1 a re  based on an investigation of the spectral 
differences of the SchrCidinger difference operator H. 
The operators (I .  1) with the periodic coefficients c, 
- - c,, , v, = v,, were actively investigated in the last 
few  year^'^*'^''^ in connection with the problem of in- 
tegrating the Toda-chain equations. Later in this 
chapter, a s  well as in the Appendices, we shall derive 
the needed results of this theory, mainly on the basis 
of papers by one of us.'8*19 Included among them will 
be certain important formulas, not found in the math- 
ematical literature, for the eigenfunctions of the oper- 
ator H, fo r  the state density, and for the variational 
derivatives with respect to c, and v,. 

The exposition in the present paper is sufficiently 
self-contained, so  that reference to the mathematical 
literature is not obligatory. It will be easier, how- 
ever,  to read the chapters that follow by first  becoming 
acquainted with Chap. 11 of Ref. 15. 
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The modern approach to spectral problems for peri- 
odic operators i s  based on an investigation of the anal- 
ytic properties of the solutions of Eq. (1.1) for all val- 
ues of the parameter E ,  including complex ones. 

For any E ,  the space of the solutions of (1.1) is two- 
dimensional. By specifying arbitrary values of $, and 
$,, all the remaining values of I), can be obtained from 
(1.1) by recurrence. The standard basis cp,@) and 
9,(E) is specified by the normalization conditions 

It follows from the recurrence procedure for calculating 
cp, and 9, that cp,@) and 6,(E) a r e  polynomials in E.  

Any solution y, of Eq. (1.1) is of the form 

We shall consider the operators (1.1) with periodic co- 
efficients 

with an aim at  going eventually to the limit a s  N--  m. 

Since H is periodic, a displacement by the period N 
transforms the solutions of Eq. (1.1) into solutions of 
the very same equation 

Y ~ + N = ~ ' ' + ' ~ +  b'0.. 

The new coordinates a' and b' of the vector y, in the 
basis cp,, 6, is expressed in terms of the old ones with 
the aid of the matrix T: 

For any two solutions of (1.11, particularly for 6 ,  and 
On, the expression (the analog of the Wronskians in dif- 
ferential equations) 

does not depend on n. Since c, = c,, we have 

det T = ~ ~ N ~ N + I - ' + ' N + ~ ~ N = @ L - ' + ' I ~ O = ~ .  

The eigenvalues A of the matrix T a r e  determined 
from the equation 

A'-2Q(E)A+I=O, Q ( E ) = ' / ,  [q.v(E) +ON+$  ( E ) ]  . (4.1) 

The polynomial Q(E) is of degree N, and i t s  leading 
terms a r e  of the form 

For the periodic problem $, = I),, i. e . ,  for A =  1, there 
a r e  N energy levels E"' determined from the equation 
Q(E '+'I = 1. There a r e  also N real  eigenvalues E"' of 
the antiperiodic problem I)*, - I),, i. e . ,  A = -1. They 
a r e  determined from the equation Q(E'-') = -1. 

Since E"' and El-' a r e  real  and since the degree of 
the polynomial Q is N, i t  follows that the inequality 
I Q(E) 1 >> 1 holds a t  the extrema dQ/dE = 0. A typical 
plot of Q(E) is shown in Fig. 3. 

FIG. 3. 

The allowed bands a r e  segments of the E axis a t  
which I Q(E) 1 c 1 (singled out in Fig. 3). On these seg- 
ments we have as a result of (4.1) 

IA(E)  1 = I ;  A ( E )  =eiPN, p=p ( E ) ,  

where + ( E )  a re  the quasimomenta corresponding to the 
eigenstates of the operator (1.1) with energy E. For 
arbitrary values of c, and v,, all the points E"' and E'-' 
a r e  generally speaking different and there a re  N + 1 al-  
lowed bands. If the plot of the polynomial Q(E) is tang- 
ent to the lines Q = *I, so  that some closest values'of 
E"' and E"' merge, the neighboring allowed bands also 
merge and the number q of different bands will be less 
t h a n N + l .  

Let E, <E2 <. . . <E,+, be simple roots of the equa- 
tion Q2(E) = l, q <N. The segments (E ,,_,, E,,), l c j 
G q + 1 are  then allowed bands of the operator H, which 
will be called a q-band operator. 

We shall be interested below in operators H with a 
finite number of bands in the limit when the chain length 
is infinite 

In this limit the levels E fill densely the allowed bands 
and i t  is possible to change from summation over the 
states to integrals with respect to E :  

(Expression (4.3) take into account the double degener - 
acy of the energy with respect to the momentum, p - -p. ) From (4.1) and from the definition of p i t  fol- 
lows that 

where F(E) is a polynomial of degree q .  The las t  equa- 
tion in (4.4) follows from the fact that a t  the double 
roots of the polynomial Q' - 1, i. e. , when the bands 
merge, the zeros of the numerator and denominator in 
(4.4) cancel out. The sign in front of the square root 
in (4.4) should be chosen such that dp > 0. 

Since the operator H has no eigenvalues inside the 
forbidden bands, we have 
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XZj+L 

~ ~ Q z = o ,  j . .  .q. 

This system enables us  to find, in quadratures, the co- 
efficients of the polynomial F(E). It must be added that 
the integrals of C@ over the allowed bands a r e  of the 
form 

where m, a re  integers equal to the number of merging 
bands. 

It follows from (4.4) that the differential dp i s  single- 
valued on the Riemann surface r of the function R'/~(E).  
We shall represent such a surface a s  two glued-together 
E planes with cuts along the allowed bands, such that 
the upper edge of the cut on one of the sheets is glued to 
the lower edge of the cut on the second sheet. The up- 
per sheet of r will be designated a s  the sheet on which 
we choose, in the vicinity of infinity, E - .o, the follow- 
ing R'/'(E) branch: 

R'$ ( E )  =Eq+' tO (E') 

It follows from (4.4) that dp > 0 on the upper edges of 
the cuts on the lower sheet. To obviate the need for 
stipulating each time the sign of the square root in (4.4) 
and in the equations that follow, we integrate on the r 
surface along cycles a, that close the allowed bands 
(E ,,-,, E,, 1, i = 1, . . . , q + 1, see Fig. 4 here and Figs. 
6-9 of Ref. 15. 

For the variation of the quasimomentum with respect 
to c, and vn we have the formula 

which i s  derived in Appendix 1. The coefficients 1, in 
(4.7) contain the differentials 6cn and To find these 
coefficients we use the following device. 

Consider the expansion of p(E) in the vicinity of in- 
finity on the upper sheet 

From the definition of A and from (4.2) i t  follows that 

I ,  i s  a polynomial of degree k in c, and u,.  We note that 
the notation introduced here for I,, and I, matches that 
of Eqs. (1.6). Expanding (4.7) in powers of E-', we ob- 
tain 

where G,  a r e  symmetric functions of E, raised to the 
degree m ,  and a r e  the coefficients of the expansion of 
the function E"'R-~/~(E) in powers of E". From this 
equation we get 

lo=-610, L,=-61~+'lz~,SIo, 
~ , = - 6 I ~ + ~ / ~ s , 6 I , - ( ~ / g ~ 1 2 - ' / ~ ~ ~ ) 6 ~ 0 ;  

The general expression for I ,  is 

It follows from (4.9) that not more than q + 1 of the 
differentials 61, a r e  linearly independent. In fact, 61, 
a r e  linear combinations of I,. Since the latter a r e  lin- 
ea r  functions of 6I,, i s q + 1, i t  follows that 61, a r e  al- 
s o  linear combinations of 61,. An important statement 
of the theory of "finite-band operators" H (see Appen- 
dix 1)  is that 6I,, i < q  + 1 a r e  linearly independent for 
q-band operators. 

2. We now apply the results  above to the problem of 
the ground states of the models I and 11. We begin with 
model 11, which is technically somewhat simpler. Var- 
iation of (1.5) yields in the limit as N - .o 

We recognize that the variation is over a fixed number 
of electron (constant p) :  

In addition, we confine ourselves for the time being 
to variation a t  fixed band boundaries E,, . . . , E,,,. 
If p is in allowed bands, the condition that p be constant 
calls for variation of p .  We have 

We use this relation in the calculation of the variation 
of the electric energy: 

The f i rs t  two terms cancel out here, and the variation 
of the total energy @ takes the form 

Obviously, the equation does not change if p is in a 
forbidden band. In this case i t  is necessary to replace 
p in the upper limit by the boundary of the upper allow- 
ed band. In Appendix 3 the variation was carried out 
also with respect to the band boundaries. It shows that 
p i s  in fact always located in a forbidden band. 

Using now 69 from (4.7) and (4.9), we express the 
variation 66' in the form3) FIG. 4.  
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By the same token the problem of finding the extremals, 
which i s  generally speaking functional, reduces to 
solution of a finite number of algebraic relations. This 
is due to two factors: the finite-band character of the 
spectrum of the operator H for  any extremal, and the 
special choice of the deformation energy in the form of 
a linear combination of the integrals I, and I,. The 
finite-band character of the spectrum of H under the 
condition that the deformation energy i s  a linear com- 
bination of a finite number of integrals I, is proved in 
Appendix 2. In particular, for our choice of the de- 
formation energy there is only one forbidden band. 

The condition (4.10) yields q + 2  algebraic relations: 

(The equality of the integrals with respect to E > p and 
E < p in (4.11) can be easily proved by considering the 
integral over the cycle a,  shown in Fig. 4.) We shall 
show that Eqs. (4.11) have no solutions a t  q > 2. Bear 
ing in mind the two forms of Eq. (4.11 ), we can as - 
sume that the region E < p contains not less  than [q/2] 
forbidden bands ([q/2] =q/2 if q is even, and [q/2] 
= (q - 1)/2 if q is odd). 

Let ps < p be arbitrary points located one in  each 
forbidden band to the left of p .  The auxiliary function 

has then the same sign in all the allowed bands to the 
left of p.  (It is easy to verify that ~R'/'(E) reverses  
sign on going from band to band. According to the 
choice of p,, the numerator also changes sign in this 
transition. 

Thus, 

which contradicts (4.11) if the degree [q/2] of the poly- 
nomial 

is less  than o r  equal to q - 2. Consequently q 2 2. We 
have proved that the spectrum of the Hamiltonian H has 
not more than two forbidden bands. 

At q = 2 only one of the equations in (4.11 ) is left: 

I R-'h(E) dE= R-"(E)dE=O. 
ECP r>e 

It can be satisfied only if p l ies strictly inside the cen- 

tral  forbidden band: E, < IJ. <Ed. Otherwise one of the 
integrands is of fixed sign. It will be shown in Appen- 
dix 3, however, that the chemical potential IJ. is always 
in a forbidden band. We a re  left therefore with the only 
possibility q = 1. We have thus shown that the operator 
H, which corresponds to the extremals of fi, always 
have one and only one forbidden band (E,, E,) situated 
between two allowed bands (El, E,) and (E,,  E,), and 
the lower band (El, E,)  is completely filled. 

The three self-consistency equations for the deter- 
mination of the four parameters E i  take the form (4.12) 
a t  q = 1. The fourth equation is the definition of the 
electron density p. It follows from (4.4) that a t  q = 1 
the expression for the state density takes the form 

where Q is determined from the condition (4.5): 
EX B, 1. 

J d p = ~ ,  Q=- ER-"'(E)dE /I R - % ( E ) ~ E .  (4.14) 
E, E, Ez 

With the aid of (4.13 ) we obtain 

Equations (4.12) a t  q = 1 together with (4.14) and (4.15) 
determine uniquely the parameters E, . 

To express the energy Nw, and the length Na of the 
system in terms of E, we must calculate the functionals 
I, and I, defined in (4.8a) o r  (1.6). To this end we ex- 
pand (4.13) and (4.15) in powers of E'l and compare the 
expansion coefficients with (4.8). We obtain 

The integral in (4.18 i s  over the upper sheet of the su r  - 
face I?. 

With the aid of (4.13) and (4.17 ), using (4.12a) and 
(4.12c), we obtain from (1.5) for the system ground- 
state energy Nw, 

3. To conclude this chapter, we summarize briefly 
the results for model I. At v,  = 0, each solution g,(E) 
of (1.1) corresponds to a solution 

Therefore the electron spectrum is symmetrical about 
the band center E = 0. It follows hence that in (4.8) all  
I,,,, = 0. Consequently Eq. (4.12) vanishes, and all that 
is left of the system (4.11) a r e  (q - 1)/2 equations with 
k = q - 2 m - 1 ,  where I s m s  (q-1)/2. Equations 
(4.12a) and ( 4 . 1 2 ~ )  a r e  preserved, but now s, = 0 in 
(4.12~).  By the same reasoning as used for model 11, 
we find that in model I the H spectrum has three allow- 
ed bands, as shown in  Fig. 1. The chemical potential 
is located in one of the two forbidden bands. 
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The self-consistency equations (4.12a) and ( 4 . 1 2 ~ )  
take the form 

2 "  
x = -  E[ R(EZ)]-"dE, , I  - (4.20) 

x, 

where 

As a consequence of (4.4), the state density is 

where the constant C is determined according to (4.5) 
from the condition 

~ ; E ~ + c )  [R(E') I - '~*~E=O.  (4.23) 
En 

For the electron density p we obtain from (4.22), tak- 
ing (4.23) into account 

In analogy with (4.191, the system length i s  expressed 
in terms of 

1,- lim [ln E - f(Ez+C) [R(E2) 1-*dE =-a. 1 (4.25) 
E+--  

El 

The five equations (4.20), (4.21), (4.23)-(4.25) de- 
termine the three parameters E, and the value of C, 
and yield the equation of state P = P ( a ,  p). The ground 
state energy i s  

(At s = 0 we obtain from (4.16) I, = -~ .s , /2 .  ) We note 
that Eqs. (4.20)-(4.26) in Chap. 2 a r e  written in the 
notation of the previously employed continual problem6: 

5. ELLIPTIC PARAMETRIZATION 

1. The investigations of the equations derived in 
Chap. 4 can be simplifiedby introducing elliptic param- 
etrization of the curve. In this parametrization i t  is 
possible also to obtain explicit equations for the dis- 
tributions of x,, c,, u,, p,, and $ , (E) .  Elliptic polar- 
ization is found to be particularly effective for model 
11, where i t  makes i t  possible in fact to solve the self- 
consistency equations (4.12). Just  a s  in Chap. 4, we 
consider this model f irst .  

For points on the Riemann surface r of the function 
R~/ , (E)  

we introduce the parameter z = z (E) 
I 

FIG. 5 .  

The half-periods of this elliptic integral a r e  equal to 

(The sign in front of the square root corresponds to the 
sheet containing the upper edge of the cut along which 
the integration is carried out. ) Equation (5.1) estab- 
lishes a one -to-one correspondence between the points 
of I' and the z -plane points, apar t  from displacements 
by 2w and 2 ~ ' .  Figure 5 shows for clarity the cell 
bounded by the half-periods w and w' .  

The elliptic function E(z)  defined by (5.1) has poles 
a t  the points i z , ,  where z, = z(--). The inversion of 
the integral (5.1) is given by4' 

E(2) =S (z+z,)-S (2-2,) +A,  

where g(z) is the Weierstrass zeta function. l6 The pa- 
rameters  w, w', z,, and A replace the parameters E,  
in accord with Fig. 5: 

E,=E (0) , EZ=E (o), 
E,=E(o+wl), EI=E(ol). (5.2a) 

We examine now the self -consistency equations ex- 
pressed in terms of the new parameters.  Equations 
(4.15) and (4.14) take the form 

Equation (4.12a) determines w: 

x=2iolx .  

To use Eqs. (4.12b) and ( 4 . 1 2 ~ )  we must obtain ex- 
pressions for s, and for  4.7, -s;. We use for this pur- 
pose the following device. I t  is easy to verify that as 
E - m we have 

[E2-i12~iE+1/2(~2-1/i~?) ]R-I" (E) =1+O(E-3). 

The function E ( z )  takes in the vicinity of z =z, the form 

Substituting these expressions in both halves of the pre- 
ceding equation and comparing the f i rs t  coefficients of 
the corresponding expansions, we get 
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where we have introduced for brevity the notation 

In addition, i t  follows from the same considerations 
that 

dE [Ez-'/,s,E+1/2s2-1/,s,2] R-'"(E) = [p (z -zo)  + '@ ( z f  z , )  - 2pJ  dz. 

Indeed, both halves of these equations of single poles 
a t  z = iz,, and have a t  these points the same values, 
accurate to O(z *zo). 

From (4.12b) we can obtain A: 

Equation (4.1212) takes the form 

It follows from (4.18) that 

zo=s/ 2 Z P  v o l n [ o ( p o ' ) l .  (5.10) 
Given x and p,  Eqs. (5.51, (5.61, and (5.8) yield 

simple expressions for w, z,, and A. The half -period 
w' parametrizes with the aid of (5.9) and (5.10) the 
equation of state of the system, be relating the pres-  
sure  P to the average length a =  -Io. 

From (4.19) follows an equation for the energy: 
~ o = P + ~ l , x  [ (qo'plo-q'-f (o 'p)  )' 
- 3 b ( o f p ) l  + ~ ( r l o ' ~ l o - r l ' - - b ( o ' ~ )  ). (5.11) 

Let us find the equilibrium values of x,, c,, v,, and 
$,(El. The Bloch eigenfunction (relative to the period 
N) $,,(z) of the operator H is a doubly periodic function 
that has according to Appendix 1 a pole of n-th order a t  
the point z =zo  and a zero of n-th order a t  the point z 
- - -2,. It has in addition a pole a t  the point z = (y. that 
corresponds to a certain point E = y in the forbidden 
band, and Ima,=w. 

The function $,(z), a s  any other elliptic function, can 
be expressed in terms of the Weierstrass o function1': 

In order for $,(z) to be doubly periodic, i t  is necessary 
and sufficient for the sum of the zeros (with allowance 
for the multiplicity) of the numerator and of the 
denominator to be equal. Consequently 

--nzo+ a,=nz,+a, a,=2nzo+a=2z,(n-no) f o ,  

where no a r e  arbitrary but not necessarily rational 
numbers . 

In the vicinity of the points z =e0 the function $,(z) 
takes the form 

b. a(&-a,) 
% ( z )  = -an (2zo)  - 

a ( z D - ~ )  
{ I f  (I-&) [nb (220) 
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On the other hand, according to Eq. (A1.4), 

Comparing the expansions of (5.12a) and (5.12b) we 
obtain 

Un=Ei ( n )  - E l  ( n + l )  =2f (2z , )+A 
+ 5 (  ( 2 n - l ) z o + a )  -5 ( ( 2 n + l ) z , f a ) .  (5.13b) 

2. Model I. Equations (4.20)-(4.26) of model I can 
also be written in terms of elliptic functions. In this 
case, however, it is necessary to use elliptic functions 
with different pairs of periods. 

We set  each point of the Rtemann surface of the func- 
tion R1I2(~')  

in correspondence with a pair of complex numbers 

We define the half -periods 

(The integration is over the lower sheet o r  along the 
upper edge of the cut of the lower sheet). 

The integrals (5.14) map the surface r on the basic 
cells of lattices with periods (2w1, 2w:), (2w,, 2w,'), 
see Figs. 6a and 6b. Both integrals in (5.14) can be 
reduced to elliptic by the substitution v =E2. We con- 
sider the first  of them: 

The inversion of such an integral was considered a t  the 
beginning of this chapter. We obtain 

The parameters w,, w: and zo replace ET. Since one 
of the branch points of the function ( y ~ ( y ) ) ' l ~  is zero, 
the corresponding mapping (see Fig. 6a) determines B: 

FIG. 6. 

~razovskijet a/. 220 



So far,  the Weierstrass 5 and dfunctions were de- 
termined by the half-periods w, and w:. We shall next 
use together with them also functions made up of the 
half-periods w, and wi. The differences between the 
corresponding functions will be identified by the sub- 
script of the argument. For example, 

and so forth. 

The inversion of the integral (5.14) 

z ,  (k) = kT I i - ! I t  (y) dy 
r,* 

is given by the formula16 

EZ ( ~ 2 )  = p  (z,-o,') +A,  

E2(0)=EtZ,  E 2 ( o z )  =E,2, E2 ( m 2 + 0 i )  -E:. 
(5.17) 

The connection between the two parametrizations 
(5.15) and (5.17), i . e . ,  between the three triplets of 
parameters w,, w:, z,, and w,, w:, and A can be ob- 
tained by equating the values of E 2 ( z , )  and E2(z,) in the 
corresponding half-periods. With allowance for (5.16) 
we have 

E I 2 = b ( o i ) + A = p '  ( z1 , ) / 2 [ '@ ( @ i f )  -b ( Z I O )  I ,  (5.18a) 
~ , ' - ~ , ~ = & a ( o i )  -b ( a 2 - @ ; )  = p f ( z c o ) / 2 [ ~  (o i ) -@(z ,o )  1, (5.18b) 
~Il-~,'=p(m/)-p(oz)=p'(~to)/2[~ ( a ~ + o t ' ) - t ? ( z ~ o )  1. ( 5 . 1 8 ~ )  

Since 

it follows that 

-sz=E?+E?+ E3'=3A. 

In analogy with (5.7a) we have 

-sz=2t, ( 2 ~ ~ ~ )  +4B. 

Using (3.161, we obtain 

Equations (4.20) and (4.21) take in the new param- 
etrization the form 

The differential of the quasimomentum is 

idp= (E2+C)dzr=L1/25(z ,+  z I o )  - ' / z5(zr-z10)  +B+CIdzi. 

The constant C is determined by the normalization con- 
dition 

Equation (4.25) yields 

zio=- 1 p-I 1 a,'. 

Equation (4.27) yields 

1 u(z,+z ) 
I o = l i m  [ l n ~ ( z , ) - - 1 n - -  

11-110 2  o b , - ~ $ 0 )  
(B+c) z..] 

1  --- z102 - 2  ln [2o ( -2z , , ) ]+q , ' - .  
0 1 '  

Substituting (5.20~1, we obtain ultimately 

a=-I,='/, ln [20 (2  1p-11 o , ' ) ]  - ( ~ - l ) ~ q , ' o , ' .  (5.21) 
Expression (4.26) for the energy of the ground state 

can now be written in the form 

The square of the Bloch (relative to the period N) 
function JIz is an even function on the Riemann surface 
r relative to the transformation E ,  A-- -E, ( - l ) N ~  or,  
equivalently, relative to the transformation E, R' I2 - -E, -R'/,. Consequently z#, is a function of only the 
coordinate 2,. The analytic properties of z#, yield lead, 
in analogy with (5.12), to the expression 

(5.23) 
where ff,=nz,,+ ff= ( p -  1 ((no -n)w:+w,. 

We recall once more that in the vicinity of z,= el, 
E 2 ( z , )  ==ti12 ( z f  z , , ) ,  

and the function 4 itself has the asymptotic form 

Comparing the last formula with the coefficients of the 
leading terms in the expansion (5.23) in the vicinity of 
z =el,,, we get 

o( z , ,+a )  
exp 2s .  =[2u(-Zz , , )  In------ 

o( z , , - a )  

x 1  
u  (z,, (1-11) - a ) &  (z , ,  ( i + n )  + a ) ,  n=2m, (5.24) 

o ( ~ , ~ ( l - n )  - a - o , ' ) a - ' ( z I o ( l + n )  + a + o , ' ) ,  11=2m+ 1 .  

From Eqs. (A1.6) and (A1.7) we obtain for the 
charge density 

APPENDIX 1 

In this Appendix we consider the analytic properties 
of the functions JIn(E), and obtain expressions for the 
variations 6p of the momentum and of the state density 
dp /dE . 

To each pair (A, E )  satisfying Eq. (4.1) there corre- 
sponds a unique solution of Eq. (1. I ) ,  which is an 
eigensolution for the shift operator JI,, = AJIn and is 
normalized by the condition JI, = 1. We call this a 
Bloch solution (relative to the period N). The vector 
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(JIo, JI1)= (1, $,) i s  an eigenvector for the matrix T, 
hence 

Ipn=qtt ( E )  + [A-(PN ( E )  I ON-' ( E )  0, ( E ) .  (Al.l) 

At each value of E (other than those for which Q ~ ( E )  
= 1 ) there a r e  two Bloch functions corresponding to 
different solutions of Eq. (4.1). The Bloch function is 
single-valued on the algebraic curve r of the function 
[Q~(E)  - 1 1 ' ~ ~ .  AS E - o the Bloch function has two 
asymptotic forms $:'(E) on two sheets of the surface 

which correspond to the two roots of Eq. (4.1): 

It is easy to verify that 

i. e . ,  $,@) has a pole of order n on one sheet and a zero 
of order n on the other. 

Away from infinity, $,,(E) is analytic on r every- 
where except a t  the points E = y a t  which =0, 
where I),@) has poles. Since B , (~)  = 0, we have 

V N  (7 )  ON+, ( y )  =det T=l. 

Consequently 

i.e., the poles y of the function $,@) lie in forbidden 
bands. We note that $,(El has a pole only on one sheet 
above the point y. Indeed, since = 0, one of the 
roots of (4.1) equals cp,G). Corresponding to this root 
is a finite value $,, since the zeros of the numerator 
and denominator of the second term of (A1.2) cancel 
out. It is  easy to deduce from (A1.2) that $,(E) has 
no singularities a t  the band-merging points. Thus, for 
any operator H with periodic coefficients the Bloch 
function JI,, is a single-valued function on the Riemann 
surface r. It is analytic everywhere on this surface 
except a t  the points y,, 1 cs c N - 1, one over each for- 
bidden band. Substituting (A1.2) in (1.1) and (1.4) we 
easily find that 

6,'*'= exp(*x,), E!+' (n )  -EY ( n f l )  =us. (A1.4) 

The converse is also true. Any s e t  of E, and of the 
points y, determines uniquely the coefficients c, and v,, 
of the (generally speaking quasiperiodic) operator H. lg 
Explicit expressions for c, and v, in terms of E, and 
y,, in which Riemann theta functions a re  used, can be 
found inRef.  19. 

Let $, and JI: be the Bloch functions for the operators 
H and H' 

We multiply the first  equation by JI: and the second by 
JI,, and subtract one from the other. Summing the ob- 
tained expressions over n, we have 

Accurate to terms of f irst  order i t  can be assumed 
that J1: is the solution of the equation H $ J ~  = E $ i .  We use 
for JI: not JI,, but the value ij,, of I),, on the second sheet 
of the surface r. We note that T,, = JI: in the allowed 
band. With this choice of I): we have 

The coefficients of bv,, and bc,, in (A1.5) a r e  symmetric 
functions independent of interchange of the sheets. 
They a re  therefore rational functions of E and have 
poles a t  the points y,.  It follows from (A1.3) that a s  
E -- .J we have 

Thus, 

q 

$.+L$.++,+.+~=P ( E )  rl[ (E-y , )  - I .  

Here y,(n) a re  the projections of the zeros of I),, and P, 
is a polynomial of degree q + 1. 

The function c,_,@~JI,,,_, - I),$,-,) i s  odd with respect to 
interchange of the sheets, has poles over the points JI,, 
and tends on the upper sheet to -E a s  -E - m. This 
function is therefore equal to 

cn.-i($N+N-I-+,Y$p-l) = -R' /YE) ,  ( ~ - y ~ ) - l .  

3 - 1  

Substitution of the obtained expressions in (A1.5) 
yields expression (4.7) for 6p .  In analogy with the de- 
rivation of (A1.5) we obtain by varying the coefficients 
of H rather than of E 

For model 11, comparison of (A1.6) at q = 1 with 
(5.12) shows that y, = E(a,). For  model I, comparison 
of (A1.6) at q= 2 with (5.23) shows that y, =-y, = E2 
(a,). 

APPENDIX 2 

It will be proved below that there a r e  no more than 
three allowed bands for the operators H- that a r e  ex- 
tremal with respect to the functional (1.5 ). 

We consider the variation of the f i rs t  part  of the func- 
tional (1.5). Since the energy levels E in the allowed 
bands a r e  roots of the polynomial Q @ )  - 1, we have 

where res, denotes the residue a t  the point E.  We de- 
note by R ,  and Y, polynomials that vanish respectively 
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in the simple and doubly degenerate roots of the poly- 
nomials Q r  1, i .e. ,  

where a, a r e  constants. The edges of the allowed bands 
coincide with the simple roots of the polynomial Q'(E) 
- 1, i. e. , with the roots of the polynomial R(E ). We 
denote the degree of R by 29 + 2. We express the vari-  
ation 6p in analogy with the differential (4.4) and com- 
pare with (4.7) and (4.9). Taking (A2.2) into account 
we get 

S + l  

iV16Q=r+ (E) r -  ( E )  lhEq+l-k. (A2.3) 
b-I) 

With the aid of (A2.1) and (A2.3) we can express 
the equation for the extremals of the functional (1.5) in 
the form 

P+L 

0=bW=x612-P61, -x res .r - (E)r+-*(E)R+-' (E)  z lhEQ+l-k. 
E c u  h=O 

(A2.4) 
Since all three differentials 61, with s < q + 1 are  linear- 
ly independent, we obtain, equating to zero the coeffi- 
cients of 61, with 3 cs c q + 1, 

E"- ( E )  z resr R+ (E) r+  
= O, ~ < q - 2 .  

E<" 

Without loss of generality we can assume that there a re  
no less than [q/2] forbidden bands to the left of p. In 
the opposite case we can change over in (A2.5) to sum- 
mation over E > p, since the sum of all the residues of 
the function ~6.r:'~" i s  zero a t  k c  q - 2. 

Let ps  be arbitrary points each in one forbidden band 
to the left of Em. Then 

Let us prove the last statement. By definition, the 
polynomial R+r+ has simple roots. Consequently, in 
neighboring points the signs of the residues a re  oppo - 
site. From the definition of the allowed bands i t  is seen 
that a double root of the polynomial Q + 1, o r  a root r,, 
must be located between neighboring roots R+R+ located 
in the same band. Thus, in each of the allowed bands 
all the residues of the function r&;'r;' have the same 
sign that is reversed on going to the neighboring band. 
The sign of II,(E -p,) varies similarly, thereby proving 
(A2.6). 

Equation (A2.6) contradicts (A2.5) if [q/2] q- 2. 
It follows therefore that q < 2 (for otherwise the pre - 
ceding inequality will be satisfied). 

APPENDIX 3 

The end purpose of this Appendix is to prove that in 
the ground state of the system considered the chemical 
potential must be located in one of the forbidden bands. 
As already mentioned in Chap. 4, this means that the 
electron spectrum has in the ground state a single band. 

The derivation of the self-consistency equations (4.11) 
and (4.12) for the functional (1.5) was quite general and 
can be readily extended to the case when the system en- 
ergy depends not only on the first  integrals lo and I,, 

but also on some number of higher integrals, e.g., 

Since the upper bound on the number of bands increases 
in this case, q c 2 r  -2,  we shall discuss hereafter the 
system (4. ll), (4.12) for the general case, without 
using the condition q c 2. 

Equations (4.11) and (4.12) (or their analogs) a r e  the 
necessary and sufficient conditions for the functional @ 
to be extremal in the considered class of the periodic 
operators H. The number of these equations is q + 2. 
The periodicity of the operator H i s  equivalent to q + 1 
equations (4.6), we have therefore a total of 29 + 3 
equations for the 29 + 3 unknowns El, . . ., E,,,,, p. 
The equations (4.11) and (4.12) a r e  thus the conditions 
that w be extremal a t  a fixed se t  of numbers p,=m,/N, 
which can assume arbitrary rational values a s  N--  m. 

To compare the values of for different se ts  of p,, 
we proceed a s  if we had to minimize a function specified 
only on a se t  of rational points. The minimum of such 
a function can be easily obtained if it is possible to con- 
struct  a smooth function that coincides with the consid- 
ered one at the rational points. In our case such a 
smooth function was in fact already constructed. Let 
us formulate this more distinctly. 

For any se t  El < . . . <Em+, there exists a unique 
differential dp given by 

and normalized by the conditions (4.5). We define 
I,(E,) by Eq. (4.8). 

Since we have i t  in mind to vary subsequently the 
numbers p,, i t  i s  natural to admit also of variation of 
the total number of electrons 

and use the functional 

1 
Q (E , )  = - Edp+x12 ( E , )  -PI, ( E , )  -pN, 

El 

a t  fixed p. This functional can be considered a t  all, 
not necessarily "rational," se ts  of E,. The variations 
6p a r e  then no longer single -valued on r. A variation 
becomes single-valued i f  r is cut also along the cycles 
above the forbidden band. Each integral with respect 
to E from El to p, which we used above, must be 
understood here not as a sum of integrals over the al- 
lowed bands, but as half the value of the integral over 
a cycle that begins a t  p on the lower edge of the cut 
and returns to p around E l  along the upper edge. Var- 
iations for which 

=; = const, 
=*-I 

a r e  called variations that conserve the group of periods 
of the differential dp. With respect to these variations, 
the differential d(6p) has null periods over all the cy- 
cles. Consequently the function 6p = Jdp is single- 
valued on the surface r. Since i t  is odd with respect 
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to interchange of the sheets, i t  must be of the form 
(4.7). Equations (4.12) and (4.11) coincide with the 
extremum equations with respect to variations that 
preserve the group of periods. 

For general variations of the se t  (E,} the function 6p 
is no longer unique on r. It becomes unique if is 
cut along the cycles above the forbidden bands. The 
function 6p has poles a t  the edges of the bands, and 
undergoes on the cuts along the k-th forbidden bands a 
discontinuity equal to 

*¶A 

6pr = j d6p. .I 
If r were to be an ordinary complex plane, the function 
having a specified discontinuity on some arbitrary con- 
tour would be expressed in standard fashion with the 
aid of a Cauchy integral. The general problem of con- 
structing a piecewise meromorphic function of arbitrary 
algebraic curves is called the Riemann problem and is 
the subject of an extensive literature (see the reviego) .  
Without going into details of this theory, we can in our 
case write down directly an answer that lends itself to 
simple verification 

It is easily seen that this function has poles only a t  the 
edges of the bands. Since the integrand tends a s  E - t 
to the Cauchy kernel (E - t)-'dt i t  follows that i6p has 
the required discontinuities on the cuts. Expanding 
(A3.1) in the vicinity of E=.o and comparing with the 
expansion (4.8), we find that 61, a re  linear combinations 
of 1, and 6pk. In turn, l i  and 6p, a r e  linearly expressed 
in terms of 61, with 0 c k c 29, and Eqs. (4.9) hold for 
1,. The independent differentials with respect to all  the 
variations of the band edges a r e  61, with 0 < k c 29. It 
is more convenient to choose as the independent differ- 
entials combinations that coincide with 6p,, as well as 
the differentials 61, with 0 c s c q  + 1. Then, varying S2, 
we obtain in analogy with (4.10) 

Setting the coefficients A, equal to zero we get (4.11) 
and (4.12). It is necessary to add to them the equations 
Bk=O, o r  

j R - o ~  ( 6 )  dEE j + i E - l )  -1R3h(t) dtto. (A3.2) 
E, =* 

As proved in Chap. 4, i t  follows even f rom (4.11) and 
(4.12) that for the extremals we always have q c 2 ,  and 
q = 2 can occur only if p lies in the central allowed 
band. We consider the case q =  1 and assume that p 
does not lie in the forbidden band (E,, E,). In this case 
there is one additional condition (A3.2) at k = 1. This 
equation, obviously, has no solutions. If C( <E,, the in- 
tegrand has a constant sign on the interval (El, p). If 
p > E,, we must consider the equivalent equation with 
an integral over the region E > p. Consequently, a t  q 
= 1 the chemical potential p is located in the forbidden 
band, E, < p <E, .  Equations (A3.2) determine the 
chemical potential in the case when the latter is in the 
forbidden band. At q = 1 we have 

Recalling the given definition of the integral with r e -  
spect to E as an integral over the cycle (p,E,), we r e -  
write this equation in the form 

dE Rb ( t )  dt 
Jr J + n i ( p - - ~ ~ )  =o. 

E ,  ( E )  E, 

It is easily verified that this equation has a root pre- 
cisely a t  E, < p <E,. We note for this purpose that the 
integral with respect to E in (A3.2), taken over the full 
cycle from El  to E,, is zero. The imaginary part  of 
the integral increases (decreases) with increasing dis- 
tance from p to El and decreases (increases) with in- 
creasing distance from p to E, along one of the edges of 
the cut. 

We ultimately have 

 or a verification of the self-consistent-field method and a 
discussion of the extremum conditions see Refs. 6 and 12. 
We note that the eigenvalue equation (1.1) is  the condition for 
the extremum of the energy functional with respect to the 
wave functions JI,. 
The designations E, and E.. for the band boundaries cor- 
respond to the designations of the previously investigated6 
continual model. The upper limit Em of the electron spec- 
trum was treated in Ref. 6 a s  the cutoff energy of the linear 
spectrum. 

3 ' ~ e r e  and elsewhere, where the limits of the integrals with 
respect to E a re  not explicitly indicated, it is  assumed that 
the integration is over all the allowed bands contained in the 
indicated region ( E  < u or E > p )  . 

4 ' ~ o r  the rules for expressing an arbitrary elliptic function in 
terms of standard Weierstrass functions see Ref. 16. 
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