
We have considered a concrete differential operator in order to simplify the exposi- 
tion. A similar proof of Proposition 3 can be given for an operator L generated by a dif- 
ferential expression with constant coefficients and arbitrary uncoupled boundary conditions 
when 1 2 l - . n 1 ~ 5 .  This proposition also holds for convolution operators provided n - - m - -  
2n÷ ~ 5 (n_ ~ n÷~. 

We also note that inequalities of type (46) in the statement of Lemma 3 are exact, so 
that it follows from Proposition 2 that the bound for the order of summability in Theorems 
i, 2 is also exact. 
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HOLOMORPHIC BUNDLES OVER RIEMANN SURFACES AND THE KADOMTSEV-- 
PETVIASHVILI EQUATION. I 

I. M. Krichever and S. P. Novikov UDC 513.015.7+517.944 

Introduction 

The Kadomtsev--Petviashvili (KP) equation was first derived in [5] as a physically natu- 
ral two-dimensional analog of the well-known KdV equation; it arises in the study of sili- 
tons and other KdV solutions which are subject to slow perturbations in the direction trans- 
verse to that of the main wave. As a physical model, the KP equation has the same degree of 

universality as the KdV. 

The KP equation has a Lax commutator representation (see 3, 4]) 

0_ i 0 - - A , ~  = ~-=[A,Z] ;  £ = y y - - L ,  (1) 

O~ 03 3 W(x,y't) which after elimination of W(x, y, t) leads where L~-~-~x.~+U(x,y,t), A=~-~x~-{--~Uq- 

to 
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a o w  , o~r ~ (6U or" + o.e ~ .  
(2) 

This is a special one of the Zakharov-Shabat equations (i). There is no comprehensive theory 
of these equations. One knows a whole series of finite-dimensional classes of exactsolu- 
tions with remarkable mathematical properties (see [i, 4, 6-8]). However, during discus- 
sions of [4], S. P. Novikov and V. E. Zakharov conjectured that the KP equation has "alge- 
brogeometric" exact solutions which generalize the known finite-gap or multisoliton solu- 
tions of KdV (see [2]) in that they depend on several arbitrary functions of one variable. 
This conjecture originated as follows: paper [4] presented particular, solitonlike solu- 
tions, which contained an arbitrary function as parameter. The present paper is concerned 
with the discovery of solutions depending on arbitrary functions. We use here techniques 
developed by Krichever in [9], which are devoted to commuting ordinary differential opera- 
tors of not necessarily relatively prime order. 

i. Matrix Analog of Multiparameter Baker--Akhiezer Fmnctions. Stable Bundles 
over Riemann Surfaces 

Recall that the scalar Baker--Akhiezer function ~(x, P; xo) is defined on a Riemann sur- 
face F of genus g, P ~ I ~ with distinguished point Po = = and local parameter z = k -I near 

Po; it has the following characterization. 

a) ~ is meromorphic F \ P0 and has g poles y~ .... 7g, which do not depend on x. 

) b) ' ~ = e x p  )~ ~ i ( z ~ - - x ~  1 +  ~ ~ ( x ) k  -~ h a s  t h e  a s y m p t o t i c  b e h a v i o r  k + ~ a s  P ~ P~ 
~ i  s~l 

(see [6, I0])~ 

We introduce a matrix (nonco~utative) analog of this function. Consider first of all 
an ~ x ~ matrix function ~0(x, ~; x~) where x = (x:, ., Xs), which satisfies: 

i) ~Fo (xo, k; Xo) ~ 1; 

0~, 2) the ~trix functions N~ = ~ ~'$~ = N~ (x, k) are independent of xo, depend polynomially 

on k, and satisfy 

This much is obvious: 

OA~ OA i 
o~ Ozi = [A~, AO]. (3) 

if the Ai(x, k), are given, subject to (3), then there is a 
unique matrix function To (x, k; x0) such that ~o -- i for x = xo with Ai ----~0~ i 0. Below we will 
always put xo = (0, . 0) and g0 (x, k; 0) --~F0 (x, k). Now let there be given an arbitrary 
(nonsingular) Riemann surface F of genus g with distinguished point Po, which we will often 
denote by ~ = Po. The local parameter on F near Po is written z = k -I. We pick an unor- 
dered collection (y) of distinct points (71 ..... ?~g) on F, and a collection (u) of complex 
(~ -- l)-vectors a I .... , a~ where a~ = (~,~ ..... ~i,~-0- 

Remark. There is a connection between such parameters and the theory of holomorphic 
bundles. The complete set of parameters will be called "A. N. Tyurin's parameters." Ac- 
cording to [Ii], they define a stable (in the sense of Mumford) ~-dimensional holomorphic 
vector bundle of degree ~g over F, together with an "equipment," i.e., a collection of holo- 
morphic sections N~,...~ ~]~ defined up to multiplication by a constant matrixA (NI,---,N~)-+ 
Oh .... , ~)~. The points ?i .... , ~ are the points at which the sections ~j are linearly 
dependent; at each Yi we have 

[--I 

N~ (W) ---- .~, ~ ,  ~Nj('?~). (4)  
J = l  

F o r  ~ = 1 ,  t h e s e  p a r a m e t e r s  l e a d  t o  t h e  g - t u p l e  (?x . . . .  , ? g ) ~  SgF ~ Y  (F). 

We next pose the following problem: to find a vector function (of dimension ~) ~(x, P) 
on the Riemann surface F, meromorphic except at Po = ~, with these properties: 

i. The poles of ~ have order i, do not depend on x and lie at ?~ ..... ?~ . It is re- 
quired that the residues ~, # (x) of the functions ~, ~ ~ (~I, • •., ~), at Yi be related by 

by Yi 
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¢~, ~ (x) = ~ ,  ~ ¢~, ~(x) ,  

where  ~he a i , j  a r e  c o n s t a n t s ,  i n d e p e n d e n t  o f  x .  

2. [n  t h e  n e i g h b o r h o o d  o£ ~o = ~o, t h e ~ v e c t o r  f u n c t i o n  ~ (x ,  P) 

, ix ,  
s~-O 

has a representation 

(5) 

(6) 

where  ~o ~ (1, O, . . . ,  0), k = k (P). 

Following the ideas of [9], which in turn relies on the method of Koppelman [13] (see 
also [14]), we can show the following: i) a vector function ~ with the desired properties 
(from now on we call it the Baker--Akhiezer vector function) always exists, and is uniquely 
determined by ~o(x, k) and the Tyurin parameters (y, a); 2) the determination of ~ is ef- 
fected by a Muskhelishvili-type [15] singular integral equation on the circle S z (a small 
circle on F, viz., the boundary of a neighborhood of Po) with a Cauchy-type kernel. The 
kernel may be computed explicitly from the surface F and the point Po. In the hyperelliptic 
case, the formulas become considerably simpler. The integral equation is solved separately 
for each x; condition i) on the poles and residues of ~ uniquely selects a solution and de- 
termines the dependence of ~ on x. 

Remark. One can construct a whole matrix ~ (x,P) with ~ being its first column ~, 
= ~. The other columns are obtained in the same way as ~ , except that the vector ~ = (i, 0, 
.... 0)=e, is replaced by e~ =(0 .... , i .... , 0) to get ~ (in formula (6)). As P ÷ Po, we 
have 

+ A 
Aside from the Tyur in  parameters (¥, a) ,  there is  a r b i t r a r i n e s s  of our cons t ruc t ion  also in  
the choice of ~o, or equ i va len t l y  in  the choice of the matr ices A i ( x ,  k)~ which depend po ly -  
nomia l ly  on k and s a t i s f y  the c o m p a t i b i l i t y  cond i t ions (3) ,  Let us look at some i n t e r e s t i n g  
cases involving three parameters x~ = x, x~ = y, x~ = t. The following examples will be im- 
portant for us. 

Example i. Let Z = 2, and seek the matrices Ai(x, k) in the form 

where  u, 9, ~, ~ 
f i n d s :  

(0 
A~= k + u  

(° 
depend a priori on x, y, t, and ~, ~, ? are 2 x 2 matrices. 

(7) 

From (3) one 

TI~ ---- 7~I = Pin ~-- 0, Tn ~- T~.~, Pu : P~, 

u = u ( x ,  t), P n = P , ~ ( t ) ,  P2~ = P ~ ( z ,  t), ~ , ~ = q ~ ( z ,  t), 

qn,~ =qzz , ,  = ? n , ~ ,  ~u = ~ n ( Y ,  t), pz,.= = q ~ - - ~ ,  =q,~,~,  

( g n + q ~ ) = O ,  - - q n , ~  = q m  - - u ~ ,  

U t - -  qzi, x = u ( q n - -  qz2), Pzl  = q l 2  + u. (8) 

These relations easily imply: 

~z ~ ~3 
0~ qll  = - ~  - g ~  qr,., qn  = a (z ,  t) + b (y, t) + c (t), 

q2z = - - a ( x ,  t ) + b ( y ,  t), 2qm~ = - - u ~ .  

By imposing some supplementary conditions on ~o, we can remove the "inessential" functional 
parameters: one may assume that ~O, Pn-------O. 

In all cases, one gets from (8): 
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~ i 
- - q r ~  = - - ~  - + ~ ( t ) '  u t = q ' ~ , ' ~ i u q ~ , ~ = ( u q n - - q n , ~ ) ~ i u q ~ , ~ = - - T ( u ~ i 6 u u ~ i ~ ( t ) u ~ ) .  (9) 

I n  t h e  s p e c 2 a Y  c a s e  ¢ ( t ) ~  0 we h a v e  a a  ~ m p o r t a n t  c o r o l l a r y :  2 f  ~ = P n  = 0 ~he  m a t r Y x  
To  (x, k) i s  d e t e r m i n e d  b y  o n e  f u n c ~ $ o n  u ( x ~  C) w h i c h  s a t $ s f ~ e s  ~ h e  KdV ( K o r t e w e ~ e V r ~ e s )  
e q u a ~ $ o n  

u~ = -- T(6uu= + u~) .  (i0) 

The function u0(x) = u(x, O) determines u(x, t). It is this 
to construct solutions of the KP equation, so we take ~ (t)--= 

Example 2._ Let ~ = 3 and seek the Ai(x, k) in the form 

l: i 0~ = ~ +  
Ai = 0 .~ 0 , 

\k÷, v u v 

A~ = 0 q- ~ = ~ @ ~, Aa = k = xa, 
~ 0 

w h e r e  a ( x )  i s  a 3 x 3 m a t r i x ,  u ( x )  a n d  v ( x )  a r e  f u n c t i o n s  x = ( x ,  y ,  t ) .  
t h e  s e t  o f  e q u a t i o n s  

diz = dla = d2s = 0 ,  dli,  x = u - -  41 ,  ~=,x  = v - -  d2= + dil = 0, 

~ dz~,x  = dsx ,  ~ e , x  = dzx ~ dze ,  d ~ . x =  d z 3 ~ d m =  O, u u ~ dzl, x =  
= u ( d u  - -  da~) + v d z .  v~ - -  d , z ,  ~ = v ( ~ z  - -  da~) - -  ds~ = - -  d ~ ,  

~ d 3 a ,  x = ~ ~ d 3 z .  

special case which we will use 
0 in the future. 

From (3) one finds 

(ll) 

These equations lead to 

Thus, we find 

da2 = u  , ~ - - ~ ,  

2 
t ] l l ~  X = -- "~ UX~ 

2 
d 3 a - - d n  = v, d31 : :  - -  u + ~ - v x )  x = - -  d21 ,x, 

2 
d.,~ : u + "T" v.~,. T r  ~ :  3 d n  ~ 2v = q~ (y). 

2 ~ ~ 
~;f, = - -  uxx  - -  - T  v~x~ 6-  - - 3  vv.~, v~, = 2u~ + v =  = (2u + v~). (12) 

Introduce w(x, y), where wx = u, w~ = 2u+~. From (12) we obtain 

For v = Wx, 

0 
3w,,., = -g7 (- m~= + 2w~). 

this is the Boussinesq equation: 

0 3v~ = ~ (-- v=~ + 4vv~). 

(13) 

(14) 

Equation (14) can be integrated completely by inverse scattering, and is known to have a 
large number of explicit exact solutions. This equation has order two in y, and y is a time- 
like parameter. There are then two arbitrary functions w(x, 0), Wy(X, 0), which completely 
determine ~o, if ~ = Tr d=O. Thus, in the present case the matrix ~o is defined by solu- 
tions of Eq. (13). 

>xample 3. Let ~ > 3. The matrices Ai(x, k), where x = (x, y, t), which are of in- 
terest to us will be sought in the form 

i Io) 
A ~ = ~ +  6 

~'/0~ 

0 4 , A= , (15) 
o o 

~:~ . . . .  '~l-~ 0 \ k  J . 0 

A~ = ~ 2  + ~, A~ _.:~a + ~, 

^ ^ 
where y, p are (~ x ~) matrices, and the functions u0,... , ut_ ~ depend on x, y, t. Note that 
the matrix ~ has the property ~ z = k-~. For Z > 3 neither of the matrices i= and ~a are 
scalars (the cases ~ = 2, 3 are singular in this respect). To construct ~o it is necessary 
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to find a class of solutions of the compatibility equations (3). We will look at this in 
more detail in the next paper. Here we note only that the "trivial" case ~= = ~ = ~ = 0 
leads us to nontrivial solutions of the KP equation, which depend on a finite number of pa- 
rameters: the Riemann surface F, the point~ P,~F and the Tyurin parameters (y, ~), defin- 
ing the holomorphic bundle over P. 

Remark. For ~ = 1 we have ~ = ~ and the functional parameters are inessential. In 
this case we recover the scalar Baker--Akhiezer function; for the corresponding solutions of 
the Kadomtsev-Petviashvili equation see [6, 7]. 

2. Solutions of the KP Equation 

We will be especially interested in the case where the Baker-Akhiezer vector function 
~, P) is annihilated by a linear partial differential operator with coefficients that do 
not depend on the point of the Riemann surface r. It turns out that this property depends 
only on the choice of the matrix ~0(x,~) but not on F, Po or the parameters (y, ~). Ap- 

0~,, 
patently, our construction, by permitting a choice of different classes of matrices A~ = ~ 

• ~ , makes it possible to find a broad class of such matrices ~o; these lead, in general, 
to matrix linear differential operators Tq, q = i, . .., s, such that Tq~ = 0 (or T~# = 

~ v ~  ~ 
~ ( P ) ~ } , T ~ = ~  ~ ,  w i t h  v~  (x) b e i n g  ~ × ~ m a t r i c e s ,  and ~q(~)  an  a l g e b r a i c  f u n c t i o n  o f  

k~ ~ 

P ~ F .  

The p r o b l e m  o~ f i n d i n g  s o l u t i o n s  o f  t h e  KP e q u a t i o n  r e q u i r e s  i s o l a t i o n  o f  t h e  c a s e  
whe re  f o r  x = (x ,  y ,  t )  one  h a s  two s c a l a r . o p e r a t o r s  T ~  T~ o f  a f o r m  i n d e p e n d e n t  o f  $ and 
~o, 

0 ! 
o, a u ( x , y , t ) _ ~ v ~ _ W l ( x , y , t ) ,  0 0 

Tt ---- -~F -- A = -~ 0~ 2 

0 0 0 ~ 
r ~ = -~y - -  L = oy  o~ - U ( x '  y ' t ) 

s u c h  t h a t  T~¢ = T ~  ~ 0 ,  t n  t h i s  s i t u a t i o n ,  t h e  e q u a t i o n  i t s ,  Tu]¢-----0 
plies that the coefficients of T~, Tz satisfy the KP equation~ 

its, T~] = 0 

or, after elimination of W, 

for all P~F ira- 

(16) 

÷( ~ • ~u ~ ~3 ~0.~ ~ °  0~ + 6u_~_+_w~)t=o" 
We now have the follow~ng result. 

~EO~ i. Let x = (x, y, t) and let the matrices Ai(x, k), depending pol~om~ally on 
k and satisfying (3) be chosen in the forms exhlbited in Examples 1-3 of Sec. i. Then the 
Bake~Akhiezer vector function ~ (x, P), is determined by the "inverse problem data": the 
~tr~x ~ (x, k), an algebraic curve r, a point Pa ~ ~ and the parameters (?~,..., ~, ~.~) 
(g =I .... , l~,] £I,..., l--l), and it satisfies the equation 

[0 
r ~ =  0~ ~ - -U(~ ,~ ,~ )  ~ = 0 ,  

[ O O~ . ~ . 0 ~ , 
at ~ - - W v ~ - -  ~' ~x' Y,9] ~ =0,  T~¢ 

where  g(x~ y~ t )  ~s some s c a l a r  f u n c t i o n  o f  x~ y~ C, ~ n s e q u e n t l y ~  t h i s  f u n c t i o n  s o l v e s  
t h e  ~ e q u a t i o n  

o,0  +( ~ ~ ~ +  6 u ~ . ~  =0.  

COROL~RY 1.  a )  Fo r  Z = 2 e v e r y  s t a b l e  h o l o ~ r p h ~ c  b u n d l e ,  i . e . ,  a s e l e c t i o n  o f  ~ u -  
r ~ a  p a t t e r e r s  ( y ,  a )  o v e r  t h e  c u r v e  r w i t h  d ~ s t ~ a g u ~ s h e d  p o i n t  Po = ~ t o g e t h e r  w ~ h  an  a r -  
b i t r a r y  s o l u t i o n  u(x~ t ) _ o f  t h e  KdY e q u a t i o n  g e n e r a t e s  a s o l u t i o ~  o f  t h e  ~ e q u a t i o n  ( s e e  
g x ~ p t e  1 o f  Sec .  t ) .  b)  Fo r  Z = 3~ e v e r y  s e t  o f  T ~ r ~ n  p a t t e r e r s  ($~ a )  o v e r  t h e  c u r v e  
r u i t h  d ~ s t ~ a g u ~ s h e d  p o i n t  Po = ~ ,  t o g e t h e r  w i t h  an a r b i t r a r y  s o l u t i o n  u ( x ,  y)  o f  t h e  g o u s -  
s ~ u e s q  e q u a t i o n  (14)  g e n e r a t e  a s o l u t i o n  o f  t h e  ~ e q u a t i o n  ( s e e  Example  2 o f  S e c .  1 ) .  
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Proof of the Theorem. We study the Baker--Akhiezer vector function ~ (x, y , t ,  P) and 
find operators T: and T~ which annihilate ~. By definition, near Po, where z = k-~(P) is 
the local parameter, ~ has the form 

where t0 ~ ( i ,  0 . . . .  , 0). For 

~t; i = 
@fl~;1 = 

~°t;i = 

~=~F; i = 

¢=~,$I = 

÷ 

0¢ .0~¢ 0~¢ 0¢ O¢'we have the expansions 
Ox ' Ox ~ ' Ox ~ ' Ot ' Og 

(~o + ~tk -~) A~ + 0 (k-t), 

(~o + ~-~) A~ + 0 (k-D, 
(~o + ~ - ~  + ~k-~) A~ + 0 (k-D, 
(~o + ~ k - ~ ) ( A ~ +  A[) ~ 2gl~k-tA~ ~ O(k-~), 

(~o + ~ k  -~ ~ g=k -~) (A~ + 2A~A1 ~ A~A~ + A ~ )  + 

3g~A~k -~ + 3g~=k-'A1 + O (~-9- 

(17) 

Formulas (17) and the explicit 
calculation, that 

form of the matrices Ai, i -- i, 

0z~ . Ox~ ] 'F$~ 

2, 3, show, after a little 

have the representations 

( ~.~y 0~¢ 
0~  ) ~F~ = U ¢ ~ F ~  ÷ 0 (k-~), 

0~ ~ =  (~_ ~. ~ + ~¢)  ~ 1 +  o (~-~), 

w h e r e  U = U ( x ,  y ,  t ) ,  ~ : ~ ( x ,  y ,  ~) a r e  s c a l a r  f u n c t i o n s .  

The f u n c t i o n s  

) (Pl(~:' P) = (0~ Ox2 U ¢, q~.~(x, p) = o t  ~ ~ ~ - -  ,~ 

h a v e  t h e  same p o l e s  ~ , .  • . ,  ~t~, a s  ~ ; t h e  r e s i d u e s  o f  ~ h e £ r  c o m p o n e a ~ s  T~ a~ t h e s e  p o ~ e s  
s a t i s f y  (5 )  w ~ h  t h e  same c o n s t a n t s  a ~ , j .  A s ~ p t o c ~ c a ~ l y ,  ~q(q  = i , 2 )  b e h a v e  a s  k + ~ j u s t  
a s  ~n (6 )~  b u t  w i t h  ~ = 0 .  F rom t h i s  ~ f o l l o w s  t h a C  ~ 0  a n d  T ~ 0 ,  by  a n a ~ o ~ y  w~ th  
[ 7 ] .  T h i s  p r o v e s  t h e  t h e o r e m .  

For the potential U(x, y, t) one has the formulas: 

oe(~)~ l = 2 :  U ( x ,  y, t) = - - ( u + ~ g ~ ,  ~ = ( ~ ) ,  ~:)), 

l 3: U(x ,  y, t) ~(~) ~ ~ ) ,  = - - ~ ,  ~ ~i~)), - = (~ . ) ,  ( ~ S )  
1 > 3 :  U ( x ,  g, t) 9~(z) ~ = '~(~)  = - - ~ ,  ~¢~ . . . . .  ~ ) ) .  

3y  no m e a n s  aXY ~he p a r a m e t e r s  - -  t h e  a r b i t r a r y  f u n c ~ £ o n s  wh£ch e n t e r  Yn~o ~0 (x, k), - -  a r e  
" e s s e n ~ $ a l "  £n a h e  s e n s e  ~ h a t  c h a n g i n g  ~hem w~XX c h a ~ g e  ~he p o ~ e n t ~ a ~  U ( x ,  y ,  a ) .  ~ Ss  
~ $ v Y a ~  t o  s e e ,  a t  Y e a s t ,  ~ha,~ a$$  ~he  p a r a m e t e r s  ~ $ s t e d  Sn C o r o l l a r y  Sa  a n d  b ,  a r e  " e s s e n -  
t £ a $ . "  

~ e  p o s t p o n e  ~o ~he n e x ~  p a p e r  t h e  g e n e r a X  q u e s ~ $ o n  a b o u ~  t h e  a n a ~ y t ~ c a ~  f o r m  o f  ou~ s o -  
Y u t ~ o n s  f o r  ~ > ~.  H e r e  we c o n s £ d e r  o n l y  t h e  s i m p Y e s ~  c a s e ,  ~n wh£ch F d e g e n e r a t e s  Yu~o a 
r a t i o n a ~  c u r v e  w$~h s i n g u l a r i t i e s ,  and  e v e r y t h i n g  may b e  c o m p u t e d  ~ h r o u g h  ~o ~he f ~ n a ~  f o r -  
m u ~ a s .  

E x a m p l e  $~ Ra~$ona~  c u r v e  w i ~ h  d o u b l e  p o S n ~ s  and  p a r a m e t e r  F,  z = k -~  n e a r  Po = ~ .  

Le~ ~he p o Y n t s  ? ~ , . . . ,  ?,~-~ b e  g£ven~ and ~ o o k  f o r  ~o £n a ~orm £ ~ d e p e n d e n ~  o f  f u n c ~ 2 o n a $  

p a r a m e t e r s ,  A~ = Wo~W~ ~ = ~, A2 = Wo~T~ ~ = ~ ,  Aa = WotW~ ~ = ~ .  The 3 a k e ~ A k h ~ e z e r  v e c t o ~  
f u n c t i o n  Ss s o u g h ~  Yn ~he fo~m 

Nl 

, =  (~o+ ~ a~ (x, y, o (~-- ~)-1) ~'o, 
q ~ l  
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where a,. -- (aql . . . . .  a~,), ~o ~- (t,  0 , . . . ,  
(5) and by the following requirements at the "double" points: 

)' , ~j ~ ~ {l 
1. a~Fo = a~ a~ Fo ~=v~, 

i = l  ~ = 1  

2.  ~ (x, ~, t, x,~0 = ~ (x, ~, t, x~) 

f o r  a l l  p o i n t s  xn,  xn, x2~, x ~ , . . . ,  XN~, X~ ( t h e  p o i n t s  xr~ ~xr~  

P). 

0). This function is completely determined by conditions 
,~ 

are "double"). 

The collection of parameters (y, ~) and the double points determine the vector ~ (z,~,t, 
Using (18), we find for the potential (k has been changed to-~ in the matrix ~) 

(19) 

N l  

) U (x, y, t) = -- 2 ~ ai~ . 

. sin 01 , 

cos0 / 
0 = V--~(x + kt).  

In the case Z = 2, we obtain 

"Fo (x, y, t, k) = e ~ ~ ( cos 0 

- " \ - -  ~ sin 0 

For real ?, a, ×, we get real solutions of the KP e.quation, with U(x, y, t) expressed ra- 
tionally in terms of the entries of the matrices 

that is to say in terms of the exponentials e ~, cos (~ (x + kmt)), sin (F~-m (x + k,~t)) 
these points k m. 

The simplest case N = i, Z = 2 gives 

W - % ~  - ~ ( ~ o ~  0 , -  % / V ~  ~ o~) 
~ = - ~ ~ -  % ~  - - F ~  ~ 0, - % ~ s  % = - ~'~" (~ + wt) ,  

~ =  ~ ,2 ,  0 , =  ~ ( ~ + ~ , t ) .  

I f  one p u t s  ~ = - - ? , ,  t h e n  ~ = - - ~ =  consL 

L e t  xn  = x ~  and x~2 = x 2 .  L e t  us  s o l v e  t h e  e q u a t i o n  ~ ( x ,  za) = , ( x , x ~ ) .  

(x + x~t), o, = ~Y~ (~ + x,t), ( ' ) ( :  
. 

COS Oa ~ sin O~ COS 0~ ~z~ ~. 

D = ( d i e ) = -  V ~  sin 0~ cosO~ : ~ V ~ s n O ,  cos0, / 

~F~(x, y, t, k) at the points k m =  {7~, ×,-~} 
for all 

With 0~ =: F~'I 

Set x =~x--×~, 6~# =I/(~--?~), i, ] =i, 2. 

find from the equation , (x, ×i) ---- ~ (x, ×2) 

U ( x , y , t )  = - -  2 

For the potential U (z, V, t) = -- 2 ~-~ (a12 + a2~,) 

that 

0 ale -:~ ~- old "'~ + b~ (~, t) 
O~ ~e -zv + c~# ~ + b~ (x, t) 

w e  

(20) 

where 

ax = 6 n  - -6 ,2 ,  *, = 6 2 ,  - -  622, ~2 = ( ~ 2  - -  Xl) 6n6,2, c2 = ( ~ z  - - ~ , )  6216~, 

~ (~, 0 = ~n (6,~ -- ~,~) ÷ ~,~ (6~,~.~ - 6,~x, ÷ 6,#~ - ~=~) + d~ (~= - 6~,); 

b~ (~, t) = ~n (6~z6~ -- 6=~n~) + ( ~  - ~,~d,~) ( ~ , ~  - ~,6~) + d= (6=~n~.~ - ~6,~7~). 

The numerator and denominator under the derivative s~bol in (20) are, for these special 
solutions of the ~ equation, linear combinations, with constant coefficients, of ~->"~, ~, 
¢os@~cos ~, sin@~os@~, ~os@~sin@~, sin @~sin@~, if %~ =--eT~ and =~ ~--?~. If all %~, ?~<0 
and ~ are real, then we have a real solution for which ~ (z, ~, ~) ~ 0, ~ ~ ~ ~. Both trigono- 
metric (~ ~ 0) and hyperbolic (~ < 0) forms are possible. 

If ~ 6~y~0, then for fixed xo, to the solution (20) invariably has a singularity, and 
i ,  J = l  

a~ e x a c t l y  on~ po in~  y ~ ( x o ,  ~o) .  In  ~h~ ~ r i g o n o m o ~ r i c  cas~  (x~ > 0, x 2 > 0 ) ,  we a lways  have  
2 

~ ~ i i > 0 .  Tho p r e s e n c e  o f  a s i n g u l a r i t y  f o r  g i v o n  x ,  ~ depends  on ~he s o l v a b ~ l £ C y  o f  
i ,  j = l  
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2 

4a~cz ~ b ~ (x, t) under the constraint, where b~ (x, t)/c~ <0, where a~c~ = (~-- ~)~ i-[ 6~70. 
i ,  j = l  

It can be shown that in the trigonometric case these special solutions will always develop 
a singularity; it is confined to a regionly I < const, .bounded uniformly for all x and t. 

Example 2. A rational curve F with more complicated degeneracies. 

Again, let there be given points ?, .... ,?m , and let some of the pairs of points 
end ×~2 coalesce: ×~-+~2, ~ = ~,-.., iv- We look for ~ in the form 

Nl 

¢ (x. u. t. ~) = (~, + ~ c~ (x. ~. t)(~ - v,) -~) Vo (z. ~. t. ~). 
q = l  

i = I q  

l l ~ 

2 a ~ ¢ = a ~ ( 2 a ~ ' ) l  t ~ ] < l - t ,  t < q < ~ ' z .  ~._~ ' . 

i = 1  , i = 1  ~ ~ - -  q 

2 ~ 2 ' .  
o ~  [ = O, i = i t  . . . . .  i~, 
Ok ~ i ~ = z ~ 2  

~ (x, y, t, U~l) = ¢ (z, y, t, u~), ~ ~ i~ . . . .  , i~. 
N~. 

Again we find a solution U(x,y,t)= --2 0 (E) ~ ai~ . 
]=I 

In the simplest case N = I, I =2, p = l,n~ =u,z =~ we obtain solutions of the ~ equa- 
tion which are rational in x, y, t, .if ~ --0, ~s =-- ?~, a~ ~-- a~%.~, where %.~ =--e~-*, just 
as in Example i. Equation (2') takes the form 

"' = 
~,~ ~,~ " ,a  ~'~,, 

where -- ?~ = %~', a~ = (--)~a~ 1, a~z), ,=o = (1,0), 

a ~ { y _ 4  x ~ 5z~\ 

W -  ~ - - f - -  ~' / 

0 
U (x, y, t) = -- 2 --gf (al~ + az~). 

These rational solutions do not decay as x ÷ ~, y = y~, t = t~, and are therefore not con- 
rained among the known rational solutions (see [8, i0]). 

Claim. Rational solutions are obtained for all N~I, 
dition 2', the following condition 2" at the point ~ = 0. 

~ 
2" ~ -- O, -- O. 

• d k  " ' ' '  d k  

C o n j e c t u r e .  
d e c a y  a s  x ÷ ~ .  
ities. 

if one imposes, instead of con- 

i) These are all the rational solutions of the KP equation which do not 
2) For all even N there are solutions of this type which have no singular- 

3. Multiparameter Variation of the Equipped Bundle. KP Solutions of Genus ~ = |, I = 2 

In the case ~ = i there is, for the KdV equation, a well-known system of differential 
equations in x and t for the parameters YI, • • ., yg, and the potential u(x, t) can be ex- 
pressed very simply through these parameters (see [2, Chap. II, Secs. 3, 4]). In the case 
~ = i, however, the use of these equations may be circumvented entirely because there are 
explicit formulas for the scalar Baker--Akhiezer function in terms of the Riemann @-function 
(see [2, 10]). In the present paper, it is clear that the situation for ~ > i is much more 
complicated: the computation of the Baker--Akhiezer vector function ~ (x, P) has not been 
carried through to the end, and it leads to the solution of a system of singular integral 
equations on the circle, following the method of [9] (see See. i). At least we do not need 
to know the whole vector ~ (x, P), but rather it is sufficient to know one coefficient in the 
expansion of ~ ~.$i at Po, which then determines U(x, y, t) (see formula (18)). Hoping to 
get a more explicit answer for U(x, y, t), we turn now to the computation of the x, y, t 
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dynamics of the Tyurin parameters (y, ~) the moduli of the holomorphic equipped bundle, and 
we consider the resulting equations to generalize to the case Z > 1 the Dubrovin equations 
for the parameters y~, ., yg in the ~ = i KdV case. 

We study the Baker-Akhiezer vector fun6tion @ (x, P), defined by the following data: 
an algebraic curve r of genus g, a collection of Tyurin parameters (71 .... ,?zg, ~i ..... ~), 
a distinguished point P, =oo~ and the "input" matrix g0(x, k) (see (i), x = (z, ~, t). 

Let P denote the Wronskian determinant of the vector ~. The following are some ele- 
mentary properties of the Wronskian matrix: 

a) ~=~-i is a rational matrix function of P ~ F, of the form 

I O t 0...001 0 0 t . . . 0 0  

~ W - ~ =  = ~ (~, P)  

/ 
X1 ~2 . . . . .  ~l / 

(i.e., the scalar functions X~ are rational); 

b) for x = x o = 0 the poles of the matrix ~=~-i = ~(0, P) coincide with 71,..-, ?~g, 

and the ratios of the residues of the Xj at the points Yi coincide with the parameters 
~ ,~:  ~ , ~  = ~ 1  ]~.  

Definition. The dependence upon x of the poles ~f the matrix ~ and of the ratios of 
the residues of the functions Xj at these poles will be called the x dynamics of the Tyurin 
parameters (y, ~). 

Consider the Baker--Akhiezer vector function corresponding to the choice of the Ai in 
the form As =~, i = I,..., l(g + I)-- ~ =N. It defines a multiparameter variation of the 
Tyurin parameters. Thus: 

THEOREM 2. There exists a commutative Z(g + i) -- 1-dimensional group of transforma- 
tions of the space of moduli of the equipped Z-dimensional holomorphic vector bundle of de- 
gree Zg over a nonsingular algebraic curve of genus g. Its generators are meromorphic vec- 
tor fields. 

Note that the space of moduli is Z~g,dimensional. For Z = i it is just t.he Jacobian 
torus J(F), which in this case is itself a group. For ~ > 1 the whole moduli space is no 
longer a group. The group GL(Z, C), acts on this space by permuting the equipment. It is 
important tO realize that the action of our Z(g + i) -- 1-dimensional group does not ¢ommute 
with the action of GL(~, C), and so is not defined on the space of moduli of bundles without 
equipment. 

For one variable x, this dynamics was discussed in [9] (Sec. 3), and an algorithm for 
the computation of the right-hand sides of the equations ?~ .... , ~ .... was given. In 
the present paper we obtain, for genus g = 1 and Z = 2, a peculiar analog of the "trace for- 
mulas," which connects y, ~ with the potential U(x, y, t) of primary interest to us. This 
makes it possible to close the system of equations for .the (x, y, t) dynamiqs of the param- 
eters y, ~, It should be mentioned that an explicit representation of U(x, y, t) in terms 
of ?~(x), ~(x): and u(x, t) has still not been obtained. 

For the Wronskian matrix ~(x, P), of the Baker--Akhiezer vector function ~ (x, P), intro- 
duced for the construction of solutions of the KP equation with Z = 2 (see Theorem 1 of Sec. 
2 and Example of of Sec. i) we find 

(_0 
B~ = T 2 ~  "-~ = ~ ~ o + o (k-D, u = - - =  - -  2 ~ i  ), 

=( ~) =~(~) B~ = ~-i ~ + O(k-~), v~ ~. 
~I " 

~ ~ + W  +O(k_~)" B ' = ~ t ~ - ~ = ~ _ ~ +  m ~. / 

(21) 
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Using the technique of [9], we extract equations for ~ ,  ~ ,  ~ ,  ~ from formula (21): 

{ ?~x = (--I) ~ (a~ -- ~)7~, (22) 
% ~- ~ + (- ~)~(~(?~- ~0 ÷.~(~- v~)- ~(P~- ~,)), 

y~ = I, (23) 

- -  ~iy  ~ - -  ~1, 
U { ~ = (_ ~)~ (~,~ + ~) (~_ ~)-1, 

ay~ 
a~t = a~ ( ~  - -  ~ )  + ~ - -  ~ a - -  ~ ( P o - -  ?~)+ 

+ ( -  ~)~ @ + ~ )  (~ (~  - ~ )  + ~ ( ~  - ~ )  - ~ (co - ~=)). (24) 

Here ~$(z) ~(z), where ~ is the Weierstrass function (see [12]). ~z 

In [9], with just one parameter x, it was possible to regard U(x, 0, 0) as an arbi- 
trary function of x, which then replaced the functional parameter u(x) in the matrix A~ ---- 
~o~F~ ~. In the present case it is necessary to compute this U as function of y, ~ and of 
the coefficient u(x, t) in the matrix ~0~ I = ~. To this end we use the commutativity of 
the flows (22)-(24) with respect to x, y~ t. Compatibility of (22), (23) in x, y yields 

B2~ - -  Blv = [B1, B21 ~ ~ = ((z~ - -  (z2) -x (~(Po - -  71) - -  ~ ( P o - -  72)), ( 2 5 )  

U~, = - - ( a ~  ÷ a ~ ) v  or U = - - ( c ¢ ~ - 4 - ~ )  ÷ U o ( X ,  t). ( 2 6 )  

Using compatibility of the flows in x, t and y, t, we find a relation between uo (x, t) and 
u(x, t), where u(x, t) satisfies the KdV equation 

~ [ 6 u ~  ~ u~ = -- ~ ~ o~ + -g~'~ ) 

(see Example i of Sec. i). The KdV-type equation for uo is too complicated to give here. 

The remaining parameters figuring in (24) assume the form 
! U' 

- -  -- - -  ~--¢'~i = a~_a_~ [~(P0-- ~h)-- @~(P0 ?o_)] ± (27) 
: 2 ~ 

[ ~  ~ "~ u" ( 2 8 )  
o3 = Z2 UZ2 2~ % (a~-- %--a~)='z' Z., -~- -~- ÷ (a~ --I a2)= (2~' (?~ --  7'0 --  ~' (Po --  ~5) --  ~' (Po -- Ve)], 

where Z~=~ (?i-- ?z) + ~ (P~--?~)--~ (P0--?~), ~ = $ (P0--?~)--~ (P 0--?~). If the function- 
al parameter Uo(X, t) reduces to zero, then (22)-(24) become autonomous equations for the 
Tyurin parameters ?~, ?z, el, ~- In all cases, upon substitution of (25)-(28) into (22)-(24), 
we obtain a set of commuting flows in the variables x, y, t, with uo(x, t) figuring explic- 
ly on the right-hand sides. 

CONCLUSIONS 

Every solution of (22)-(24) from which U,~I,~i--o~, o3, have been removed by formulas 
(25)-(28), generates a solution of Kadomtsev--Petviashvili equation. This circumvents the 
use of singular integral equations for g = i, ~ = 2. In principle, this procedure extends 
to all I>~.2, ~ I. but the formulas become very complicated. 
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MATRIX SOLITONS AND BUNDLES OVER CURVES WITH SINGULARITIES 

Yu. I. ~nin UDC 517.944 

Introduction 

0.I. Let k = R or C, let ~ be an algebra of matrices whose coefficients are k-mero- 
morphic or differentiable functions (or germs of functions) of the variable x (or of the 
variables (x, t), (x, t, Y)). Let ~x----~/~z, ~=~/~y, ~t =~/~t: ~-+~9. Denote by ~[~] the 

ring of linear differential operators ~b~O~ t ~__~. Continue ~y, ~t to derivations of (~>~ 
the left ~-module $~ [~] by the fo~ula ~t(Eb,@~) = ~ (@,b~)#~, a~ analogously for ~y. 

A pair of operators L, P ~ ~[~] is called a solution of the stationary Lax equation 
(or of the Lax equation, or of the Zakharo~habat equation) if [P, L] = 0 (respectively, 
if ~L = [P, L], ~,P + ~,L = [P, L]). For simplicity, we will sometimes refer to any one of 
these equations as a Lax equation. 

In this paper we construct a new class of solutions of multisoliton type of the Lax 
equations. The separate solltons ~king up these solutions we will call matrix solitons, 
because the explicit formulas contain exponentials of the form exp (K,x + K=y + fit), with 
K,, K~, ~ matrices, rather than scalars (which is the case with the kno~ multisoliton so- 
lutions, see, e.g., [4]). The order of these ~trices, which we will call the rank of the 
solution, is not at all related to the order of the ~trices in the algebra ~: all of the 
latter may in fact be scalars. 

Let us introduce an elementary example of solitons of rank two, which shows an unusual 
behavior. 

0.2. The simplest Lax equation that has soliton solutions of rank two is #,L = [P, L], 
where L = @~ #~ ,+u#~+m~+z, P =o~ x+e~+u; here ~, ~ are constants, and u, v, w, 
z are the unkno~ functions of x and t. Equating coefficients and eliminating u, we find 
the equivalent system of equations 

-- ~-*~t ~ 2~ -- 2m~ -- e~-~u~, -- ~-~wt = -- m.~ + 2u~= + ~<~ -- ~m-~m~ -- 2z., 
. 

1 1 , ] 
-- ~-~ z~ = ~ ~== + ~ uU~-- z= ~ ~ u.m -- ~-~ Z~. 
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