ALGEBRAIC CURVES AND NON-LINEAR DIFFERENCE EQUATIONS

I.M. Krichever

In [1] we have given an account of a scheme for the integration of certain non-linear differential equations by methods of algebraic geometry. After a slight modification, the main ideas and results of the scheme can be carried over to difference equations.

1. Let

$$
L_{1}^{i j}=\sum_{\alpha=-n_{1}}^{n_{2}} u_{\alpha}(s) \delta_{i, j-\alpha}, \quad L_{2}^{i j}=\sum_{\beta=-m_{1}}^{m_{2}} v_{\beta}(s) \delta_{i, j-\beta}
$$

be difference operators whose coefficients are $(l \times l)$-matrices. We stipulate that their highest and lowest coefficients are non-singular diagonal matrices with distinct diagonal elements.

We consider equations in the coefficients of these operators that are equivalent to the equality $\left[L_{1}, L_{2}\right]=0$.

The operator L_{2} induces on the solution space of the equation $L_{1} y=E y$ a finite-dimensional linear operator $L_{2}(E)$. Its characteristic polynomial $Q(w, E)$ defines a complex curve \Re, and the projection (w, E) $=P \rightarrow E$ defines a meromorphic function on it.

THEOREM 1. For any pair of commuting difference operators we can find a polynomial in two variables such that $Q\left(L_{2}, L_{1}\right)=0$.

If all the eigenvalues of $L_{2}(E)$ are distinct, as in the case of pairwise coprime numbers n_{2}, m_{2} and n_{1}, m_{1}, then to each point (ω, E) of \Re there corresponds an eigenvector of $L_{2}(E)$ that is unique up to a proportionality factor.

THEOREM 2.If $\left(n_{2}, m_{2}\right)=1$ and $\left(n_{1}, m_{1}\right)=1$, then $E(P)$ has lpoles $\left(P_{1}^{+}, \ldots, P_{l}^{+}\right)$of order n_{2} and l poles $\left(P_{1}^{-}, \ldots, P_{l}^{-}\right)$of order n_{1}. The coordinates $\psi_{j}(i, P)$ of the eigenvector-functions of L_{1} and L_{2} belong to the space associated with the divisor $\Delta=D+(i-1) D_{\infty}+P_{j}^{+}-P_{j}^{-}$, where D is an effective divisor whose degree g is equal to the genus of the curve for almost all solutions of the original equations, and $D_{\infty}=\left(P_{1}^{+}+\ldots+P_{l}^{+}\right)-\left(P_{1}^{-}+\ldots+P_{l}^{-}\right)$.

We consider the inverse problem of recovering the operators from a curve with distinguished points $P_{j}^{ \pm}$and a divisor D of degree g.

Since $\operatorname{deg} \Delta=g$, by the Riemann-Roch theorem the $\psi_{j}(i, P)$ are uniquely determined by the conditions of Theorem 2 up to a normalization. Having fixed one, we have the following theorem.

THEOREM 3. For any function $E(P)$ with poles on \Re only at the points $P_{j}^{ \pm}$, there exists a unique operator L such that $L \psi(i, P)=E(P) \psi(i, P)$.
2. In this section we construct exact solutions for certain non-inear differential-difference equations.

Suppose that we are given a set of polynomials $Q_{j}^{ \pm}(k)$ and $R_{j}^{ \pm}(k)$.
THEOREM 4. For every effective divisor $D_{ \pm}$on a curve \Re of genus $g(\operatorname{deg} D=g$) with fixed local coordinates $k_{j \pm}^{-1}(P)$ in neighbourhoods of the $P_{j}^{ \pm}$, one and (apart from a proportionality factor) only one there exists function $\varphi_{j_{1}}(i, y, t, P)$ that is meromorphic outside $P_{j}^{ \pm}$, and for which D is the divisor of the poles. In a neighbourhood of $P_{j}^{ \pm}$the function

$$
\varphi_{j_{1}}(i, y, t, P) \exp \left\{Q_{j}^{ \pm}\left(k_{j \pm}(P)\right) y+R_{j}^{ \pm}\left(k_{j \pm}(P)\right) t\right\}
$$

has a pole (zero) of order i if $j=j_{1}$, and of order $i-1$ if $j \neq j_{1}$.
By defining the normalization of $\varphi_{j}(i, y, t, P)$ arbitrarily we obtain the vector-valued function $\psi(i, y, t, P)$.

THEOREM 5. There exist unique difference operators whose coefficients depend on y and t, such that

$$
\left(L_{1}-\frac{\partial}{\partial y}\right) \psi(s, y, t, P)=0 \quad \text { and }\left(L_{2}-\frac{\partial}{\partial t}\right) \psi(s, y, t, P)=0
$$

COROLLARY. These operators satisfy the equation

$$
\begin{equation*}
\left[L_{1}, L_{2}\right]=\frac{\partial L_{2}}{\partial y}-\frac{\partial L_{1}}{\partial t} \tag{1}
\end{equation*}
$$

3. EXAMPLE. We consider the equations of a Toda chain:

$$
\dot{v}_{n}=c_{n+1}-c_{n}, \quad \dot{c}_{n}=c_{n}\left(v_{n}-v_{n-1}\right)
$$

By Theorem 4 , there is a unique function $\psi(n, t, P)$ with poles at the points d_{1}, \ldots, d_{g} of \mathfrak{F} defined $2 g+2$
by $w^{2}=\prod_{i=1}^{2}\left(E-E_{i}\right)$, and with the following asymptotic expansion at the inverse images of
$E=\infty\left(P^{ \pm}\right)$:

$$
\psi^{ \pm}(n, t, E)=i^{n} \lambda_{n}^{ \pm 1} E^{ \pm n}\left(1+\xi_{1}^{ \pm}(n, t) E^{-1}+\ldots\right) \exp \left(\mp \frac{1}{2} t E\right)
$$

By Theorem 5, the operators

$$
\begin{aligned}
& L^{n m}=i V c_{n} \delta_{n, m+1}+v_{n} \delta_{n, n}-i V c_{n+1} \delta_{n, m-1} \\
& A^{n m}=\frac{i}{2} V c_{n} \delta_{n, m+1}+w_{n} \delta_{n, n}+\frac{i}{2} V c_{n+1} \delta_{n, m-1}
\end{aligned}
$$

satisfy the equations $L \psi=E \psi$ and $A \psi=\partial \psi / \partial t$. Here $\sqrt{ } c_{n}=\lambda_{n-1} / \lambda_{n}, v_{n}=\xi_{1}^{+}(n+1, t)-\xi_{1}^{+}(n, t)$, and $w_{n}=v_{n} / 2+\lambda_{n} \lambda_{n}$.

The equations (1) are equivalent to the system $\dot{v}_{n}=c_{n+1}-c_{n}$,

$$
\frac{\dot{c}_{n}}{c_{n}}=\left(v_{n}-v_{n-1}\right)-\left(w_{n}-w_{n-1}\right)=\frac{1}{2}\left(v_{n}-v_{n-1}\right)-\frac{1}{2} \frac{\dot{c}_{n}}{c_{n}}
$$

which is the same as the equations of a Toda chain.
We must remark that this representation of equations is different from the commutation representation, used in earlier work (for a bibliography, see [2]).

By expressing $\psi(n, t, P)$ in terms of Riemann's theta-function as in the formula of Its [3] and also § 3 of [1], we obtain the following formulae in which we have used the notation of [1]:

$$
\begin{aligned}
\log c_{n} & =\frac{d}{d n} \log \frac{\theta\left(\boldsymbol{\omega}^{+}+\mathbf{W}\right) \theta\left((n-1) \mathbf{U}+t \mathbf{V}+\mathbf{W}+\boldsymbol{\omega}^{-}\right)}{\theta\left(\boldsymbol{\omega}^{-}+\mathbf{W}\right) \theta\left((n-1) \mathbf{U}+t \mathbf{V}+\mathbf{W}+\mathbf{\omega}^{+}\right)}+\mathbf{c o n s t} \\
v_{n} & =\frac{d}{d n} \frac{d}{d t} \log \frac{\theta\left(n \mathbf{U}+t \mathbf{V}+\mathbf{\omega}^{+}+\mathbf{W}\right)}{\theta\left(t \mathbf{V}+\mathbf{\omega}^{+}+\mathbf{W}\right)}+\mathbf{c o n s t}
\end{aligned}
$$

where the vectors ω^{+}, \mathbf{V}, and \mathbf{U} and the constants depend only on the curve \Re, and $d / d n$ denotes the difference derivative. A formula for the variables v_{n} analogous to ours was first derived by Novikov [2]. In 1977 the author became aware of a similar paper of Mumford.

References

[1] I. M. Krichever, Integration of non-linear equations by methods of algebraic geometry, Funktsional. Analiz i Prilozhen. 11 (1977), 15-31.
$=$ Functional Anal. Appl. 11 (1977), 12-26.
[2] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Non-linear equations of Korteweg-de Vries type, finite zone linear operators, and Abelian varieties, Uspekhi Mat. Nauk 31:1 (1976), 55-136. MR 55 \# 899.
$=$ Russian Math. Surveys $31: 1$ (1976), 59-146.
[3] A. R. Its and V. B. Matveev, On a class of solutions of the Korteweg de Vries equation, in: Problemy matematicheskoi fiziki (Problems of mathematical physics), No. 8, Leningrad State Univ., Leningrad 1976.

