THE SCHRÖDINGER EQUATION IN A PERIODIC FIELD AND RIEMANN SURFACES

B. A. DUBROVIN, I. M. KRIČEVER, AND S. P. NOVIKOV

1. Consider the two-dimensional Schrödinger equation $\hat{H} \psi=E \psi$ or $\hat{H} \psi=i \partial \psi / \partial t$, where $\hat{H}=\left(i \partial / \partial x-A_{1}\right)^{2}+\left(i \partial / \partial y-A_{2}\right)^{2}+u(x, y)$, the potential $u(x, y)$ and vector potential $\left(A_{1}, A_{2}\right)$ being periodic in (x, y) with periods T_{1}, T_{2}. In the nonstationary case u, A_{1}, A_{2} also depend on the time. The magnetic field is directed along the z-axis and has zero flux: $\int_{0}^{T_{1}} \int_{0}^{T_{2}} H(x, y) d x d y=0$. We wish to find the widest possible class of "integrable" cases of the direct and inverse problems where the eigenfunction ψ and the coefficients of \hat{H} can be exactly determined simultaneously. In the one-dimensional problem, where $\hat{H}=-d^{2} / d x+u(x)$, the integrable class of "finite-zoned" potentials was discovered and studied in connection with the theory of the Kortweg-de Vries (K.-dV.) equation (see the survey [2]). In the one-dimensional nonstationary problem $\hat{H} \psi-i \partial \psi / \partial t=0$, the integrable class of potentials $u(x, t)$ was found in [3]. The present work was stimulated, on the one hand, by the method of [3] and, on the other hand, by analogous higher K.-dV. equations, which were discovered by Manakov [4] and preserve the equation $\hat{H} \psi=E_{0} \psi$ with magnetic field for one level E_{0}.
2. In the two-dimensional stationary problem $\hat{H} \psi=E \psi$ it is natural to distinguish the Bloch eigenfunctions $\psi\left(x, y, p_{1}, p_{2}\right)$, where $\psi\left(x+T_{1}, y\right)=e^{i p_{1} T_{1}} \psi(x, y)$ and $\psi\left(x, y+T_{2}\right)=e^{i p_{2} T_{2}} \psi(x, y)$. Suppose also $\psi\left(0,0, p_{1}, p_{2}\right)=1$. The numbers p_{1}, p_{2} are called quasi-momenta. The discrete energy spectrum $\mathcal{E}_{n}\left(p_{1}, p_{2}\right)$ is defined for given real p_{1}, p_{2}. Clearly $\psi=\psi\left(x, y, p_{1}, p_{2}, n\right)$.

Definition 1. We say that the Hamiltonian \hat{H} has good analytic properties if: a) all of the branches of $\mathcal{E}_{n}\left(p_{1}, p_{2}\right)$ extend to all complex values of the quasi-momenta, b) a Bloch function $\psi\left(x, y, p_{1}, p_{2}, n\right)$ exists for all complex $\left(p_{1}, p_{2}\right)$ as a meromorphic function of (p_{1}, p_{2}) on all n sheets, and c) the complete graph of the multivalent functions $\mathcal{E}_{n}\left(p_{1}, p_{2}\right)$ forms a complex manifold \hat{M}^{2} on which the group $G=Z \times Z$ of translations $G=Z \times Z, p_{1} \rightarrow p_{1}+2 \pi n / T_{1}, p_{2} \rightarrow p_{2}+2 \pi m / T_{2}$ acts. The quotient manifold $M^{2}=\hat{M}^{2} / Z \times Z$ is called the manifold of quasi-momenta. A Bloch function $\psi=\psi(x, y, P)$ is defined for the points $P \in M^{2}$. A function $\mathcal{E}: M^{2} \rightarrow C$ (dispersion law), where $\hat{H} \psi=\mathcal{E}(P) \psi$ and C is the complex energy plane, is also defined.

Definition 2. A Hamiltonian \hat{H} with good analytic properties is said to be algebraic if there exists a compact complex manifold W and a meromorphic mapping

[^0]$\mathcal{E}: W \rightarrow P^{1}=(C \cup \infty)$ into the extended energy plane, on which an open (everywhere dense) domain is isomorphic to the manifold of quasi-momenta M^{2} with dispersion law $\mathcal{E}: M^{2} \rightarrow C$. The complement $W \backslash M^{2}=X_{\infty}$ is called the part at infinity. We require that X_{∞} be the union of a finite number of Riemann surfaces (algebraic curves). The fibers of $\mathcal{E}: M^{2} \rightarrow C$, after going over to the completion $W^{\mathcal{E}} \rightarrow(C \cup \infty)$, have the form $\mathcal{E}^{-1}\left(E_{0}\right) \subset W$; they are compact Riemann surfaces $X=\mathcal{E}^{-1}\left(E_{0}\right)$. For all $E_{0} \neq \infty$ the intersection $X \cap X_{\infty}$ consists of a finite number of points. The Bloch function $\psi(x, y, P)$ has an essential singularity at the infinite points $P \in X_{\infty}$.

We enumerate the properties of algebraic Hamiltonians.

1. For an algebraic Hamiltonian \hat{H} on a fiber $X=\mathcal{E}^{-1}\left(E_{0}\right), E_{0} \neq \infty$, there are precisely two infinite points $P_{1} \cup P_{2}=X \cup X_{\infty}$; if w_{1}, w_{2} are local parameters in the vicinity of the points P_{1}, P_{2} on X, then the Bloch function has the asymptotic behavior

$$
\begin{aligned}
\psi & \sim e^{k_{1}(x+i y)}\left[c_{1}(x, y)+c_{1}(x, y)^{\mu(x, y)} / k_{1}+O\left(1 / k_{1}^{2}\right)\right], \\
\psi & \sim e^{k_{2}(x-i y)}\left[c_{1}(x, y)+c_{1}(x, y)^{\nu(x, y)} / k_{2}+O\left(1 / k_{2}^{2}\right)\right],
\end{aligned}
$$

where $k_{1}=1 / w_{1}, k_{2}=1 / w_{2}, k_{1} \rightarrow \infty, k_{2} \rightarrow \infty$.
2. The divisor D of the poles of ψ on $X=\mathcal{E}^{-1}\left(E_{0}\right)$ has degree $n(D)=g$, $D=D_{1}+\cdots+D_{g}$, where g is the genus of the curve X if X is the general fiber of E. The divisor D does not depend on x or y.

We usually introduce a more general class of complex quasi-periodic weakly algebraic Hamiltonians \hat{H}. It is required that there exist a "Bloch" eigenfunction $\psi(x, y, P)$ such that: a) the differential $d \psi / \psi=\left(\psi_{x} d x+\psi_{y} d y\right) / \psi$ is quasi-periodic with the same group of periods as \hat{H}, b) ψ is meromorphic on a complex manifold M^{2} and, as in Definition 1, $\hat{H} \psi=\mathcal{E}(P) \psi, \mathcal{E}: M^{2} \rightarrow C$, c) an energy level $\mathcal{E}=E_{0}$ in M^{2} can be completed to a complex algebraic curve X, and d) properties 1 and 2 (see above) are valid.
3. We now turn to the solution of the inverse problem.

Lemma 1. If a pair of points P_{1}, P_{2} and a divisor $D=D_{1}+\cdots+D_{g}$ are given on an arbitrary Riemann surface X of genus g, then there exists a function $\psi(x, y, P)$ with pole divisor D and the asymptotic behavior indicated in property 1. This function is uniquely determined to within a common factor $c_{1}(x, y) \rightarrow c_{1}(x, y) f(x, y), c_{2} \rightarrow$ $c_{2} f$.

The construction of this function is carried out according to the scheme of [1], which has already been repeatedly used in the works of the authors, Matveev and Its (see the survey [2] and the paper [3]).

Lemma 2. The function $\psi(x, y, P)$ constructed in Lemma 1 satisfies the equation $\hat{H} \psi=0$, where

$$
\begin{gathered}
\hat{H}=-\partial^{2} / \partial z \partial \bar{z}+A_{\bar{z}} \partial / \partial \bar{z}+v(x, y)=\left(i \partial / \partial x-A_{1}\right)^{2}+\left(i \partial / \partial y-A_{2}\right)^{2}+u(x, y) \\
c_{1}=1, \quad c_{2}=c(x, y) \\
A_{1}+i A_{2}=A_{\bar{z}}=\partial \ln c(x, y) / \partial z, \quad A_{z}=A_{1}-i A_{2}=0 \\
v(x, y)=-2 \partial \mu / \partial \bar{z}
\end{gathered}
$$

The functions $A_{1}, A_{2}, u(x, y)$ and the differential $d \ln \psi=\left(\psi_{x} d x+\psi_{y} d y\right) / \psi$ are almost periodic with a common group of periods depending only on the curve X and the pair of points $P_{1}, P_{2} \in X$.

For any anti-involution $T: X \rightarrow X$ the group $H_{1}(X)$ has a basis of cycles $a_{i}, b_{i} \in$ $H_{1}(X)$ such that $a_{i} \cdot b_{i}=\delta_{i j}, T_{*} a_{i}=a_{i}, T_{*} b_{j}=-b_{j}$. We choose a basis $\left(\omega_{1}, \ldots, \omega_{g}\right)$ of differentials of the first kind such that $\oint_{a_{i}} \omega_{j}=2 \pi i \delta_{i j}$. The matrix $B_{k j}=\oint_{b_{k}} \omega_{j}$ is real and $T^{*}\left(\omega_{k}\right)=-\bar{\omega}_{k}$. We choose two differentials Ω_{α} of the second kind having the form $\Omega_{\alpha} \sim\left(d w_{\alpha} / w_{\alpha}^{2}+\right.$ a regular differential $)$ near the points P_{α} and such that $\oint_{a_{k}} \Omega_{\alpha}=0$. Let $U_{j \alpha}=\oint_{b_{j}} \Omega_{\alpha}$. If $T\left(P_{1}\right)=P_{2}$, then one of the relations $U_{j 1}= \pm U_{j 2}$ is valid if $T_{w_{1}}^{*}= \pm \bar{w}_{2}$. Let $D(x, y)=\sum_{j=1}^{g} D_{j}(x, y)$ be the divisor of zeros of $\psi(x, y, P)$. By the scheme of [1], in every case we get

$$
\left(z U_{k 1}+\bar{z} U_{k 2}\right)=\sum_{j=1}^{g} \int_{D_{j}}^{\left.D_{(}, y, y\right)} \omega_{k}, \quad z=x+i y
$$

(to within a lattice in C^{n}). Suppose the anti-involution T has at least g real (fixed) ovals that are independent in $H_{1}(X)$. These ovals provide a semibasis of cycles a_{1}, \ldots, a_{g}. We take a divisor of poles of the form $D=\sum_{j=1}^{g} D_{j}$, where the point D_{j} lies on the oval a_{j}. Suppose $T\left(P_{1}\right)=P_{2}$ and $T^{*}\left(w_{1}\right)=\bar{w}_{2}$.

Lemma 3. If the points P_{1}, P_{2} lie outside the ovals $\left(a_{1}, \ldots, a_{g}\right)$ and the poles D_{j} lie on the different ovals a_{j}, then the functions $i A_{1}, i A_{2}, u$ are smooth and real.

This yields a sufficient (but not necessary) condition for the boundedness of the coefficients $i A_{1}, i A_{2}, u(x, y)$.

Let $\theta\left(\eta_{1}, \ldots, \eta_{n}\right)$ be the Riemann θ-function constructed from the matrix $B_{k j}=$ $\oint_{b_{j}} \omega_{k}$. The above lemmas imply

Theorem 1. Suppose $\psi(x, y, P)$ has the asymptotic behavior

$$
\psi \sim e^{k_{1} z}\left(1+\mu(x, y) / k_{1}+\cdots\right) \quad \text { and } \quad \psi \sim c(x, y)^{k_{2} \bar{z}}\left(1+\nu(x, y) / k_{2}+\cdots\right)
$$

near arbitrary points P_{1} and P_{2} on X, where $w_{1}=1 / k_{1}$ and $w_{2}=1 / k_{2}$ are local parameters on X in the vicinity of P_{1} and P_{2}.

Then the coefficients of \hat{H} have the form

$$
\begin{gathered}
u(x, y)=-2 \frac{\partial^{2}}{\partial z \partial \bar{z}} \ln \theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{W}(D)\right), \\
A_{\bar{z}}=A_{1}+i A_{2}=\frac{\partial}{\partial z} \ln \left[\frac{\theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{V}_{1}+\vec{W}(D)\right)}{\theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{V}_{2}+\vec{W}(D)\right)}\right], \\
A_{z}=A_{1}-i A_{2}=0, D=D_{1}+\cdots+D_{g} \text { is a divisor of poles, } \\
W_{j}(D)=\sum_{k} \int_{Q}^{D_{k}} \omega_{j}+\frac{1}{2}-\frac{1}{2} B_{j j}+\sum_{s \neq j} \oint_{a_{j}}\left(\int_{Q}^{t} \omega_{s}\right) \omega_{j}(t), \quad t \in a_{j}, \quad V_{\alpha j}=\int_{Q}^{P_{\alpha}} \omega_{j} ;
\end{gathered}
$$

Q is a fixed point. The function $\psi(x, y, P)$ satisfies the equation given by the formula $\hat{H} \psi=E_{0} \psi$ and is given by the formula
$\psi(x, y, P)=\exp \left\{z \int_{Q}^{P} \Omega_{1}+\bar{z} \int_{Q}^{P} \Omega_{2}\right\} \frac{\theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{W}(D)+\vec{f}(P)\right) \theta(\vec{W}(D))}{\theta(\vec{f}(P)+\vec{W}(D)) \theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{W}(D)\right)}$,
where $\vec{f}(P)=\left(f_{j}(P)\right), f_{j}(P)=\int_{Q}^{P} \omega_{j}$.

The magnetic field is directed along the third axis and has the form

$$
H(x, y)=\frac{\partial^{2}}{\partial x \partial y} \ln \frac{\theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{W}(D)+\vec{V}_{1}\right)}{\theta\left(\vec{U}_{1} z+\vec{U}_{2} \bar{z}+\vec{W}(D)+\vec{V}_{2}\right)}
$$

4. The coefficients of the linear operators

$$
\hat{H}=\frac{\partial^{2}}{\partial z \partial \bar{z}}-\frac{\partial \ln c}{\partial z} \frac{\partial}{\partial \bar{z}}-u
$$

found in this note from a curve X, a pair of points P_{1}, P_{2} and a divisor D, satisfy certain nonlinear equations. Any algebraic function f on X with poles of orders m_{1}, m_{2} only at the points P_{1}, P_{2} induces, by the scheme of [3], an operator \hat{H}_{f} such that $\hat{H}_{f} \psi=f \psi$, where

$$
\hat{H}_{f}=\left(\frac{\partial}{\partial z}\right)^{m_{1}}+\left(\frac{\partial}{\partial \bar{z}}\right)^{m_{2}}+\sum_{i=1}^{m_{1}} a_{i}(x, y)\left(\frac{\partial}{\partial z}\right)^{m_{1}-i}+\sum_{j=1}^{m_{2}} b_{j}(x, y)\left(\frac{\partial}{\partial \bar{z}}\right)^{m_{2}-j}
$$

The following relations hold:

$$
\left[\hat{H}_{f}, \hat{H}\right]=D_{(f)} \hat{H}, \quad\left[\hat{H}_{f}, \hat{H}_{g}\right]=D_{(f, g)} \hat{H}
$$

where $D_{f}, D_{(f, g)}$ are differential operators, and f and g are functions on X with poles only at the points P_{1}, P_{2}. These relations are equivalent to equations on the coefficients $c(x, y), u(x, y)$.

We consider an example that arose in the course of a discussion between the authors and A. R. Its on the relationship of the results of the present note with the Sin-Gordon equation. Suppose two functions f and g on X have a pole of second order only at the points P_{1}, P_{2} respectively, with $k^{2} \sim f, k^{\prime 2} \sim g$. Then

$$
\hat{H}_{f}=\frac{\partial^{2}}{\partial z^{2}}-2 \frac{\partial \mu}{\partial z}, \quad \hat{H}_{g}=\frac{\partial^{2}}{\partial \bar{z}^{2}}-2 \frac{\partial \ln c}{\partial \bar{z}} \frac{\partial}{\partial \bar{z}} .
$$

From the relations $\left[\hat{H}_{f}, \hat{H}\right]=D_{(f)} \hat{H},\left[\hat{H}_{g}, \hat{H}\right]=D_{(g)} \hat{H},\left[\hat{H}_{f}, \hat{H}_{g}\right]=D_{(f, g)} \hat{H}$ we obtain the collection of nonlinear equations

$$
\begin{gathered}
v_{z z}-v\left(c_{z z} / c\right)=0, \quad 2 u_{z z}=\left(c_{z z} / c\right)_{\bar{z} z}, \\
v_{\bar{z} \bar{z}}-v\left(c_{\bar{z} \bar{z}} / c\right)=0, \quad 2 u_{\bar{z} \bar{z}}=\left(c_{\bar{z} \bar{z}} / c\right)_{z \bar{z}}, \quad v=u / c .
\end{gathered}
$$

Nontrivial solutions of these equations are obtained from the compatibility conditions $\alpha_{z \bar{z}}=\phi(\alpha)$, where $\alpha=\ln c, \phi(\alpha)=a e^{2 \alpha}+b e^{-2 \alpha}, u=\kappa c^{2}=\kappa e^{2 \alpha}$, $\kappa=$ const $=2 a, b=$ const.

For Liouville's equation $\Delta \alpha=e^{-2 \alpha}$ we have $u \equiv 0$. The relation $u=\kappa c^{2}$ is not obvious from the formulas of Theorem 1. After making the change of variables $z \rightarrow x^{\prime}+t=\xi, \bar{z} \rightarrow x^{\prime}-t=\eta$, we get

$$
\hat{H} \rightarrow \hat{H}=\frac{\partial^{2}}{\partial \eta \partial \xi}-\frac{\partial \alpha}{\partial \xi} \frac{\partial}{\partial \eta}-u
$$

The equation $\hat{H} \psi=0$ takes the form

$$
\begin{aligned}
& i \frac{\partial \psi_{1}}{\partial t}=i \frac{\partial \psi_{1}}{\partial x^{\prime}}+c_{1} \psi_{2}, \quad \psi=\psi_{1} \\
& i \frac{\partial \psi_{2}}{\partial t}=-i \frac{\partial \psi_{2}}{\partial x^{\prime}}+c_{2} \psi_{1}, \quad \psi_{2}=\frac{i}{c_{2}} \frac{\partial \psi_{1}}{\partial \xi}, \quad u=-c_{1} c_{2}, \quad \alpha=-\ln c_{1}
\end{aligned}
$$

When $u=\kappa c^{2}$ we will have $c_{1}=-c, c_{2}=\kappa c$ (the inverse problem for this equation, when c_{1} and c_{2} decreases as $|x| \rightarrow \infty$, was first considered in [5]).

Finally, we note that solutions of the equation

$$
\left(i \frac{\partial}{\partial t}-\Delta-a(x, y, t) \frac{\partial}{\partial y}-u\right) \psi=0
$$

can be obtained in an analogous manner under the assumption that ψ has the asymptotic behavior ($\psi \sim e^{k x+i k^{2} t}, \psi \sim c e^{k^{\prime} y+i k^{2} t}$).

The methods of this note can be generalized to dimensions $n>2$, it being always necessary that the spectral data uniquely determining the operator \hat{H} be given on a Riemann surface X.

References

[1] N. I. Ahiezer, Dokl. Akad. Nauk SSSR 141 (1961), 263 = Soviet Math. Dokl. 2 (1961), 1409. MR 25 \#4383.
[2] B. A. Dubrovin, V. B. Matveev and S. P. Novikov, Uspehi Mat. Nauk 31 (1976), no. 1 (187), $55=$ Russian Math. Surveys 31 (1976), no. 1 (to appear)
[3] I. M. Kričever, Dokl. Akad. Nauk SSSR 227 (1976), 291 = Soviet Math. Dokl. 17 (1976), 394.
[4] S. V. Manakov, Uspehi Mat. Nauk 31 (1976), no. 6 (192), 237. (Russian)
[5] L. P. Nižnik, The inverse nonstationary scattering problem, "Naukova Dumka", Kiev, 1973. (Russian)

[^0]: Date: 19/FEB/76.
 UDC. 513.835. AMS (MOS) subject classifications (1970). Primary 35J10, 35R30.
 Translated by S. SMITH.

