FORMAL GROUPS AND THE ATIYAH-HIRZEBRUCH FORMULA

UDC 513.83

\author{

1. M. KRIČEVER
}

Abstract

In this arricle, manifolds with actions of compact Lie groups are considered. For éach rational Hirzebruch genus $h: \Omega_{*} \rightarrow Q$, an "equivariant genus'" h^{G}, a homomorphism from the bordism ring of G-manifolds to the ring $K(B G) \otimes Q$, is constructed. With the aid of the language of formal groups, for some genera it is proved that for a connected compact Lie group G, the image of h^{G} belongs to the subring $Q \subset K(B G) \otimes Q$. As a consequence, extremely simple relations between the values of these genera on bordism classes of S^{1}-manifolds and submanifolds of its fixed points are found. In particular, a new proof of the Atiyah-Hirzebruch formula is obtained.

Bibliography: 10 items.
In [1] it was proved that the signature of every S^{1}-manifold X is equal to the sum of the signatures of the submanifolds F_{s} of its fixed points:

$$
\operatorname{Sign}([X])=\sum_{s} \operatorname{Sign}\left(\left[F_{s}\right)\right)
$$

As a unitary variant of this formula, there is a relation between the values of the classical T_{y}-genus of an S^{1}-manifold, i.e. an almost complex manifold on which the action of S^{l} preserves the complex structure in the stable tangent bundle, and its fixed submanifolds:

$$
T_{y}([X])=\sum_{s}(-y)^{\varepsilon_{s}^{-}} T_{y}\left(\left[F_{s}\right]\right)
$$

Here ϵ_{s}^{-}is the number of summands in the decomposition of the representation of S^{1} in the fibers of the normal bundle over the submanifold F_{s} into irreducible representations $\eta^{i s i}$ (the action of $z \in S^{1}$ in η^{k} is multiplication by z^{k}) with $j_{s i}<0$. We shall denote by ϵ_{s}^{+}the number of the remaining summands.

The previous proof of both formulas in [1] is based on the index theorem of Atiyah and Singer. In this article they are obtained as a consequence of a fundamentally different approach, whose essence is reduced to the study of the analytic properties of the Conner-Floyd expressions.

We recall these expressions for actions with isolated fixed points (see [2], [3] and
AMS (MOS) subject classifications (1970). Primary 57A65, 53C10, 53C15; Secondary 55B20, 57D15, 57D90.
[4]; for an arbitrary action they were first obtained in [5], whose formulas were improved in [6]).

Assume that the action of S^{1} on X has only isolated fixed points p_{s} and that the representation of the group in the fibers of the tangent bundle over them is $\Sigma_{i=1}^{n} \eta^{i s i}$.

If $[u]_{j}$ is the j th power of u in the formal group of 'geometric cobordisms'

$$
f(u, v)=g^{-1}(g(u)+g(v)), g(u)=\sum_{n=0}^{\infty} \frac{\left[C P^{n}\right]}{n+1} u^{n+1}
$$

i.e. $[u]_{j}=g^{-1}(j g(u)$, then the equalities of Conner and Floyd assert that the Laurent series

$$
\Phi(u)=\sum_{s} \prod_{i=1}^{n} \frac{1}{[u]_{s i}}
$$

with coefficients in $U^{*} \otimes Q$, contains only the right part, and the independent term is the bordism class of X.

To each rational Hirzebruch genus $h: U^{*} \rightarrow Q$ there corresponds a numerical realization $\Phi(u)$, a series in $1-\eta$ with rational coelficients:

$$
\Phi_{h}(\eta)=\sum_{s} \prod_{i=1}^{n} \frac{1}{g_{h}^{-1}\left(\ln \eta^{I_{s i}}\right)}
$$

where $g_{h}^{-1(t)}$ is functionally inverse to the logarithm

$$
g_{n}(t)=\sum_{n=0}^{\infty} \frac{h\left(\left[C P^{n}\right]\right)}{n+1} t^{n+1}
$$

of the formal group $/_{b}(u, v)$ corresponding to the homomorphism h. We note that $\Phi_{h}(\eta)$ is the image of the series $\Phi(u)$, to which there corresponds a cobordism class in $U^{*}\left(C P^{\infty}\right) \otimes Q=U^{*}[[u]] \otimes Q$, under the homomorphism $\tilde{h}: U^{*}\left(C P^{\infty}\right) \otimes Q \rightarrow$ $K\left(C P^{\infty}\right) \otimes Q$ induced by the genus h. The existence of the transformation of functors \tilde{b} follows from [7].

We shall assume that the series $g_{h}^{-1}(\ln \eta)$ is the expansion about 1 of an analytic function in some neighborhood of that point; then from the Conner-Floyd equalities it follows that $\Phi_{h}(\eta)$ is analytic in some neighborhood of 1 , and that $\Phi_{h}(1)=h([x])$.

Our task is to prove that if the function $g_{h}^{-1}(\ln \eta)$ is analytic in the disk $|\eta|<2$ and does not have zeros there, except at 1 , then $\Phi_{h}(\eta)$, which could have poles at the roots of 1 , is also analytic in the disk $|\eta|<2$. From this it follows that, for a genus h such that $g_{h}^{-1}(\ln \eta)$ is a rational function with one simple zero at 1 , i.e. $g_{h}^{-1}(\ln \eta)=$ $(\eta-1) /(a \eta+b), a+b=1, \Phi_{h}(\eta)$ is analytic everywhere and hence is a constant. Then its value at 1 , equal to $h^{\prime}[X]$, coincides with

$$
\lim _{\eta \rightarrow \infty} \Phi_{h}(\eta)=\sum_{s} a^{\varepsilon_{s}^{+}}(-b)^{\varepsilon_{s}^{-}}
$$

Precisely in this way, a new proof of the Atiyah-Hirzebruch formula will be obtained; for the two-parameter genus $T_{x, y}$ (the value of $T_{x, y}$ on the bordism class
[CP ${ }^{n}$] is equal to $\sum_{i=0}^{n} x^{n-1}\left(-y^{)^{i}}\right.$; we note that $T_{1, y}$ coincides with the T_{y}-genus) we shall obtain the relation

$$
T_{x, y}([X])=\sum_{s} x_{s}^{\varepsilon_{s}^{+}}(-y)^{\varepsilon_{s}^{-}} T_{x, y}\left(\left[F_{s}\right]\right)
$$

I take this occasion to express deep acknowledgement to S. P. Novikov, V. M. Buhštaber and S. B. Šlosman for their interest in this work and valuable advice.

§1. "Characteristic" homomorphisms for G-bundles

To each characteristic class $\chi \in U^{i}(B U)$ of complex vector bundles in unitary cobordism there corresponds a "characteristic" homomorphism

$$
\chi^{e}: U_{n}(B U(k)) \rightarrow U^{-n+i}=U^{-n+i}(p t)
$$

which associates to a bundle ξ over the manifold X the image of the cobordism class $\chi(\xi)$ under the composite

$$
U^{i}(X) \xrightarrow{D} U_{n-i}(X) \rightarrow U_{n-i} \equiv U^{-n+i}
$$

where D is the duality homomorphism.
In this section, an analogous homomorphism for complex G-bundles (here and in what follows G is a compact Lie group) will be constructed and studied.

1. Consider the category of complex G-bundles over unitary G-manifolds. Two such bundles ξ_{1} and ξ_{2} over G-manifolds X_{1} and X_{2} are bordant if there exists a G-bundle ζ over W such that $\partial W^{\prime}=X_{1} U-X_{2}$ and the restriction of ζ to $X_{i}, i=1,2$, coincides with ξ_{i}. The bordism groups obrained in this way will be denoted by $U_{n, k}^{G}$, where $k=\operatorname{dim}_{C} \xi$ and $n=\operatorname{dim}_{R} X$. In the case when $G=\{e\}$ is trivial, $U_{n, k}^{e}$ coincides with $U_{n}(B U(k))$. Then $U_{*, *}^{G}$ becomes a ring and a U_{*}-module in the usual way. The submodule $U_{*, 0}^{G}$ is identified with the bordism module U_{*}^{G} of unitary G-manifolds.

We shall denote by X_{G} the space $(X \times E G) / G$, and by ξ_{G} the image of the G bundle ξ under the homomorphism

$$
\operatorname{Vect}_{\sigma}(X) \longrightarrow \operatorname{Vect}\left(X_{\sigma}\right) .
$$

If $p_{!}: U^{*}\left(X_{G}\right) \rightarrow U^{*}(B G)$ is the Gysin homomorphism induced by the projection $p: X_{G} \rightarrow B G$, then the formula

$$
\chi^{G}([\xi])=p_{!}\left(\chi\left(\xi_{G}\right)\right)
$$

defines an "equivariant characteristic" homomorphism

$$
\chi^{G}: U_{n, k}^{G} \rightarrow U^{-n+i}(B G)
$$

Its relation with X is given by the following lemma.
Lemma 1.1. Let $U_{n, k}^{G} \rightarrow U_{n, k}^{e}$ be the homomorphism which "forgets' the G action; then the diagram

is commutative.
The proof of the lemma follows immediately from the definition of the Gysin homomorphism and from the fact that the restriction to the fiber X of the fibering $X_{G} \rightarrow B G$ of ξ_{G} coincides with ξ.

In what follows, it will be convenient to denote the "characteristic" homomorphism 1^{G} corresponding to $1 \in U^{0}(B U)$ by

$$
x_{0}^{G}: U^{G} \rightarrow U^{*}(B G)
$$

2. Let H be a normal subgroup of G. The set of fixed points under the action of H on a unitary G-manifold X is the disjoint union of almost complex submanifolds F_{s} (not necessarily connected). The normal bundles ν_{s} over the submanifolds F_{s} have a natural complex G-bundle structure.

As is known, there exists an equivariant embedding of X into the space of a unitary representation $\bar{\Delta}$ of the group G. (To avoid repeating conditions, we shall agree that in this section and in the next one, only unitary manifolds, bundles, representations, etc., will be considered.) Denote the restricrion of the normal G-bundle over X in the space of the representation $\tilde{\Delta}$ to the submanifold F_{s} by ($-\tilde{\nu}_{s}$). It is evident that the $\operatorname{sum} \nu_{s} \oplus\left(-\tilde{\nu}_{s}\right)$ is a trivial G-bundle. Let Δ be a maximal direct summand of $\tilde{\Delta}$ whose restriction to the subgroup H does not contain trivial representations of H. In an analogous way we select a direct summand ($-\nu_{s}$) in the G-bundle $\left(-\tilde{\nu}_{s}\right)$.

Theorem 1.1. Let ξ_{s} be the restriction of a complex G-bundle ξ over a G-manifold X to a submanifold F_{s}. Then, with the notation introduced above,

$$
e\left(\Delta_{G}\right) \chi^{G}([\xi])=\sum_{s} p_{s!}\left(e\left(\left(-v_{s}\right)_{G}\right) \cdot \chi\left(\xi_{s}\right)\right)
$$

where $p_{s!}: U^{*}\left(F_{s G}\right) \rightarrow U^{*}(B G)$ is the Gysin homomorphism and, for an arbitrary bundle $\zeta, e(\zeta)$ is the Euler class of ζ.

Proof. The composite of the embedding of X in the space of the representation χ and the projection on the direct summand Δ defines an equivariant map $h: X \rightarrow \Delta$.

For each bundle ζ we shall denote by $E \zeta$ its total space and by $S \zeta$ its sphere bundle. $(\Delta \times E G) / G$ coincides with $E \Delta_{G}$ by definition. Here and in what follows, Δ denotes both the representation and its space.

Let $h \times$ id: $X \times E G \rightarrow \Delta \times E G$; then the corresponding quotient map

$$
\hbar: X_{\sigma} \rightarrow(\Delta \times E G) / G
$$

induces a Gysin homomorphism

$$
\widetilde{h_{1}}: U^{*}\left(X_{G}\right) \rightarrow U^{*}\left(E \Delta_{G}, S \Delta_{G}\right)
$$

Lemma 1.2. Let $i^{*}: U^{*}\left(E \Delta_{G}, S \Delta_{G}\right) \rightarrow U^{*}(B G)$ be the homomorphism from the
exact sequence of the pair; then for every $x \in U^{*}\left(X_{G}\right)$ the following equality is satisfied:

$$
\theta\left(\Delta_{G}\right) p_{!}(x)=i^{*} \widetilde{h}_{!}(x) .
$$

Proof. From the definition of the Gysin homomorphism it follows immediately that

$$
h_{1}(x)=t\left(\Delta_{G}\right) p_{1}(x)
$$

where $t\left(\Delta_{G}\right)$ is the Thom class of Δ_{G}. Apply to both sides of this equality the homomorphism i^{*}. The lemma follows from the fact that $i^{*} t\left(\Delta_{G}\right)=e\left(\Delta_{G}\right)$.

We shall state a simple corollary of Lemma 1.2. We denote by $I^{*}(G)$ the ideal of $U^{*}(B G)$ consisting of those cobordism classes which are annihilated by multiplication by the Euler classes of bundles associated with representations of G.

Comollary. If the action of the group G on the manifold X has no fixed points, then the image of $p_{!}: U^{*}\left(X_{G}\right) \rightarrow U^{*}(B G)$ belongs to the ideal $I^{*}(G)$.

Proof. If H coincides with G, then, by definition of \tilde{h}, the nonexistence of fixed points implies that the image of X_{G} belongs to $S \Delta_{G}$. This means that $i * \tilde{h}_{!}$is a trivial homomorphism. By Lemma 1.2, the image of p_{1} is annihilated by multiplication by $e\left(\Delta_{G}\right)$.

If we return to the proof of the theorem, we note that for an arbitrary action of G on X, \tilde{h} maps the pair $\left(X_{G}, N_{G}\right)$ to the pair $\left(E \Delta_{G}, S \Delta_{G}\right)$. Here N is the complement of tubular neighborhoods of the fixed points under the action of H. The restriction of \tilde{h} to a closed tubular neighborhood of F_{s} defines a map of pairs $\tilde{h}_{s}:\left(E \nu_{s G}, S \nu_{s G}\right) \rightarrow$ ($E \Delta_{G}, S \Delta_{G}$) which induces a Gysin homomorphism:

$$
\tilde{h}_{s!}: U^{*}\left(E v_{s G}\right)=U^{*}\left(F_{s c}\right) \rightarrow U^{*}(B G) .
$$

Lemma 1.3. If $f_{s}: E \nu_{s G} \rightarrow X_{G}$ is the inclusion, then

$$
\tilde{h}_{s!} \circ f_{\mathrm{s}}^{*}: U^{*}\left(X_{G}\right) \rightarrow U^{*}(B G) \quad \text { and } \quad \sum_{\mathrm{s}} \bar{h}_{\mathrm{s}!} \circ f_{\mathrm{s}}^{*}=i^{*} \circ \widetilde{h}_{!} .
$$

Proof. The Gysin homomorphisms induced by the maps of the commutative diagram

$$
\begin{aligned}
& E \Delta_{G} \xrightarrow{i}\left(E \Delta_{G}, S \Delta_{G}\right) \\
& \uparrow \bar{h} \\
& X_{G} \rightarrow\left(X_{G}^{\dagger}, N_{G}\right)
\end{aligned}
$$

also form a commutative diagram:

The natural identification of $X_{G} \backslash N_{G}$ with the disjoint union of the $E \nu_{s G}$ will yield the lemma.

Lemma 1.4. For $x \in U^{*}\left(F_{s r}\right)$ the following equality holds:

$$
\widetilde{h}_{s!}(x)=p_{s 1}\left(x e\left(\left(-v_{s}\right)_{G}\right) .\right.
$$

Proof. The map \tilde{h}_{s} can be factored as the composite

$$
\begin{gathered}
\left(E\left(p_{s}^{*} \Delta_{G}\right), S\left(p^{*} \Delta_{G}\right)\right) \\
\left(E v_{s G}, S v_{s G}\right) \xrightarrow{\widetilde{n_{s}}}\left(E \Delta_{G}, S \Delta_{G}\right)
\end{gathered}
$$

where g is the quotient map of the equivariant map

$$
E v_{\mathrm{s}} \times E G \rightarrow F_{\mathrm{s}} \times \Delta \times E G
$$

obtained from the projection $E \nu_{s} \rightarrow F_{s}$, the equivariant inclusion of $E \nu_{s}$ in Δ and the identity map of $E G$. This means that $\tilde{h}_{s!}(x)=p_{s!} g!(x)$. The map g is the identity on the base of the bundles; therefore $g^{*}(x)=x$ and $g_{!}(x)=g_{!}\left(g^{*}(x)\right)=x g_{!}(1)$. It remains to show that $g_{!}(1)=e\left(\left(-v_{s}\right)_{G}\right)$.

According to the definition of \tilde{h}, g is the embedding with normal bundle $\left(-\nu_{s}\right)_{G}$. However, for any bundles ζ_{1} and ζ_{2} over the common base, the "diagonal" section of $\pi^{*} \zeta_{2}\left(\pi: E\left(\zeta_{1} \oplus \zeta_{2}\right) \rightarrow Y\right.$ is the projection on the base) is transversal to the zero section and their intersection is the image of the embedding $i:\left(E \zeta_{1}, S \zeta_{1}\right) \rightarrow$ ($E\left(\zeta_{1} \oplus \zeta_{2}\right), S\left(\zeta_{1} \oplus \zeta_{2}\right)$). From the definition of the Euler class and of the homomorphism i_{1} it follows that $i_{!}=e\left(\zeta_{2}\right)$, which concludes the proof of the lemma.

The theorem follows immediately from the preceding lemmas and from the fact that $/_{s}^{*}\left(\chi\left(\xi_{G}\right)\right)=\chi\left(\xi_{s G}\right)$.

Remark. In the case when the subgroup H coincides with the group G, Theorem 1.1 gives a relation between the value of the homomorphism χ^{G} on the bordism class of the G-bundle ξ and invariants in the cobordisms of the fixed submanifolds.
3. Along with the expression for $\chi_{0}^{s^{1}}$ given by Theorem 1.1 , in what follows we shall need a modification of it, which will be obtained precisely in this subsection.

Let F_{s} be a connected component of the set of fixed points under the action of S^{1} on an S^{1}-manifold X. The normal bundle ν_{s}, like every complex S^{1}-bundle over a trivial S^{1}-manifold, will be represented in the form $\Sigma_{j \neq 0} \nu_{s j} \otimes \eta^{j}$, where η^{j} is the j th tensor power of the standard representation of $S^{1} \eta$, as in the Introduction (see [8]).

The collection of complex bundles $\nu_{s j}$, of which only a finite number are different from zero, defines a bordism class belonging to the group

$$
R_{n}=\Sigma U_{l}\left(\prod_{j \neq 0} B U\left(n_{j}\right)\right)
$$

The summation is taken over all collections of nonnegative integers n_{j} and l such that $2 \Sigma n_{j}+l=n$.

The sum over all the connected components of these classes gives the image of the bordism class of the S^{1}-manifold $X,\left[X, S^{1}\right] \in U_{n}^{S^{1}}$, under the homomorphism β : $U_{*}^{S^{1}} \rightarrow R_{*}$.

We choose as generators of the U_{*}-module $U_{*}\left(C P^{\infty}\right)=U_{*}(B U(1))$ the bordism classes $\left(C P^{n}\right) \in U_{2 n}\left(C P^{\infty}\right)$ corresponding to the inclusion of $C P^{n}$ in $C P^{\infty}$ or, what is the same, the canonical bundle $\eta_{(n)}$ over $C P^{n}$. The standard multiplication in R_{*} allows us to choose as generators of the U_{*}-module R_{*}, in this case, the monomials

$$
\left(C P_{i_{1}}^{l_{1}}\right) \times \ldots \times\left(C P_{i_{r}}^{l_{r}}\right)
$$

It will be convenient to denote by η not only the canonical representation of S^{1} but also the corresponding canonical bundle over $C P^{\infty}$; that is, $\eta_{S I}=\eta$. Then for the S^{1}-bundle $\eta_{(n)}$ over $C P^{n}$, the bundle $\left(\eta_{(n)} \otimes \eta_{S 1}\right.$ over $C P^{n} \times C P^{\infty}$ is equal to $\eta_{(n)} \otimes \eta$. The Euler class of $\left(-\eta_{(n)}\right) \otimes \eta$, where $\left(-\eta_{(n)}\right)$ is the n-dimensional bundle complementary to $\eta_{(n)}$, is defined by

$$
e\left(\left(-\eta_{(n)}\right) \otimes \eta\right) f(u, v)=u^{n+1}
$$

where $f(u, \nu)=\varepsilon(\eta \otimes \eta)=u+v+\Sigma a_{i j} u^{i} v^{j}$, the formal group of "geometric" cobordisms. Hence, if

$$
A_{n}(u, v)=e\left(\left(\eta_{(n)}\right) \otimes \eta\right) \in U^{*}\left(C P^{n} \times C P^{\infty}\right)=U^{*}\left[\left[\begin{array}{ll}
u, & v
\end{array}\right] / v^{n+1}=0\right.
$$

then

$$
A_{n}(u, v)=\frac{u^{n}}{\frac{1}{u} f(u, v)}
$$

Let $B^{n}(u)$ be the image of $A_{n}(u, v)$ under the Gysin homomorphism $U^{*}\left(C P^{n} \times C P^{\infty}\right)$ $\rightarrow U^{*}\left(C P^{\infty}\right)$ induced by the projection. We note that for $A_{n}(u, v)$ this homomorphism corresponds to the substitution of $\left[C P^{n-k}\right]$ for ν^{k}.

Theorem 1.1 immediately yields the following assertion.
Theorem 1.2 There exists a $U_{*} \cdot$ module homomorphism $\Psi: R_{*} \rightarrow U^{*}[[u]] \otimes Q\left[u^{-1}\right]$ such that $\Psi_{\circ} \beta$ coincides with the composition of X_{0}^{51} and the inclusion $U^{*}\left(C P^{\infty}\right) \rightarrow$ $U^{*}[[u]] \otimes Q\left[u^{-1}\right]$. The values of Ψ on the generators of the U_{*}-module are given by the formula

$$
\left.\Psi\left(\prod_{m=1}^{r}\left(C P_{i_{m}}^{l_{m}}\right)\right)=\prod_{m=1}^{r}\left(\frac{1}{[u]_{i_{m}}}\right)^{l_{m}+1} B_{l_{m}}(\mid u]_{j_{m}}\right), \quad[u]_{i}=\theta\left(\eta^{i}\right)
$$

4. Consider an arbitrary homomorphism $a: G_{1} \rightarrow G$ of Lie groups. It induces a map $a_{*}: B G_{1} \rightarrow B G$ of universal classifying spaces and hence a homomorphism $\alpha^{*}: U^{*}(B G) \rightarrow U^{*}\left(B G_{1}\right)$.

On the other hand, by means of a each G-bundle becomes a G_{1}-bundle, i.e. there exists a homomorphism

$$
a^{*}: U_{* * *}^{G} \rightarrow U_{* *}^{G_{1}}
$$

The commutative diagram

$$
\begin{gathered}
X_{G_{1}} \rightarrow X_{G} \\
\downarrow \\
B G_{1} \rightarrow B G
\end{gathered}
$$

where X is an arbitrary G-manifold, easily yields
Theorem 1.3. For every characteristic class χ, the diagram

$$
\begin{aligned}
& U_{a^{+*}}^{G} \xrightarrow{x^{G}} U^{*}(B G) \\
& a^{*} \downarrow \\
& U_{* *}^{G_{1}} \xrightarrow{\boldsymbol{x}^{G_{1}}} U^{*}\left(B G_{1}\right)
\end{aligned}
$$

§2. Equivariant Hirzebruch genera. Statement and proof of the main theorem

1. From the viewpoint of characteristic classes, a rational Hirzebruch genus, i.e. a homomorphism $h: U_{*} \rightarrow Q$, is given by a series $t / h(t)$ with $h(t)=t+\Sigma_{i>1} \lambda_{i} t^{i}, \lambda_{i} \in Q$. The "action" of such a series on the bordism class $\left[C P^{n}\right]$ is given by the formula

$$
h\left(\left[C P^{n}\right]\right)=\left[\left[\frac{t}{h(t)}\right]^{n+1}\right]_{n}
$$

where $[r(u)]_{n}$ denotes the nth coefficient of the series $r(u)$.' In [2], S. P. Novikov proved that $h(t)$ coincides with the series $g_{h}^{-1}(t)$ functionally inverse to the logarithm

$$
g_{h}(t)=\sum_{n=0}^{\infty} \frac{n\left(\left[C P^{n}\right]\right)}{n+1} t^{n+1}
$$

of the formal group $/_{h}(u, v)$ which is the image of the formal group of "geometric" cobordisms under the homomorphism.

By a theorem of Dold [7], to each rational Hirzebruch genus h there corresponds a transformation of functors $\tilde{h}: U^{*}(Y) \rightarrow K^{\#}(y) \otimes Q$ (where $K^{\#}$ is the Z_{2}-graded K functor) such that $\tilde{h}: U^{*} \rightarrow Q$ coincides with the composite $U^{*} \simeq U_{*} \xrightarrow{h} Q$.

The proof of the following lemma is analogous to the proofs of Theorem 6.4 and Corollary 6.5 in [9]:

Lemma 2 1. The value of the homomorphism h at the generator $u \in U^{2}\left(C P^{\infty}\right)$ is equal to $\mathrm{ch}^{-1}\left(g_{h}^{-1}(t)\right)$, where ch is the Chern character; that is,

$$
\tilde{h}(u)=g_{h}^{-1}(\ln \eta) \in K\left(C P^{\infty}\right) \otimes Q=Q[[1-\eta]] .
$$

Definition. An equivariant Hirzebruch genus corresponding to a rational genus h : $U_{*} \rightarrow Q$ is a homomorphism $h^{G}=\tilde{h} \circ \chi_{0}^{G}: U_{e \nu}^{G} \rightarrow K(B G) \otimes Q$.

Since Lemma 1.1 implies the commutativity of the diagram

where $\epsilon: K^{\#}(Y) \otimes Q \rightarrow Q$ is the "augmentation", we have
Lemma 2.2. The value of a genus on the bordism class of a G-manifold X is equal to $\epsilon\left(h^{G}([X, G])\right)$.
2. Now we proceed to prove the main result.

Theorem 21. For a connected compact Lie group G, the image of the homomorphism $T_{x, y}^{G}: U_{e \nu}^{G} \rightarrow K(B G) \otimes Q$ belongs to the subring $Q \subset K(B G) \otimes Q$. Moreover, for an S^{1}. manifold X,

$$
T_{x, y}([X])=\sum_{s} x^{e_{s}^{+}}(-y)^{\varepsilon_{s}^{-}} T_{x, y}\left(\left[F_{s}\right]\right)
$$

The Hirzebruch genus $T_{x, y}$ and the nonnegative integers ϵ_{s}^{+}and ϵ_{s}^{-}appearing in the statement are the same as in the Introduction.

Proof. First of all we shall show that the first part of the theorem ($\operatorname{Im} T_{x, y}^{G} \subset Q$) is a simple consequence of Theorem 1.3 and Lemma 2.3.

Lemma 23. The image of $T_{x, y}^{S^{1}}$ belongs to $Q \subset K\left(C P^{\infty}\right) \otimes Q$.
Indeed, for a connected compact Lie group G the homomorphism $a^{*}: K(B G) \otimes Q \rightarrow$ $K(B H) \otimes Q$ induced by the inclusion of a maximal torus H in G is a monomorphism. Therefore, if there exists a G-manifold X such chat $T_{x, y}^{G}([X, G]) \notin Q$, then also $a^{*}\left(T_{x, y}^{G}([X, G])\right) \notin Q \subset K(B H) \otimes Q$. Evidently, there is an embedding of S^{1} in H, a_{1} : $s^{1} \rightarrow H$, such that $a_{1}^{*}\left(a^{*}\left(T_{x, y}^{G}([X, G])\right)\right)$ does not belong to Q either. However, this contradicts Lemma 2.3 because by Theorem 1.3

$$
a_{1}^{*}\left(\alpha^{*}\left(T_{x, y}^{G}([X, G])\right)\right)=7_{x, y}^{S_{1}^{1}}\left(\left[X, S^{1}\right]\right)
$$

Proof of Lemma 23. Consider an S^{1}-manifold X. Let

$$
\beta\left(\left[X, S^{1}\right]\right)=\sum_{i}\left[M_{i}\right] \prod_{m}\left(C P_{i_{m} l}^{t_{m t}}\right) ;
$$

then by Theorem 1.2

$$
\begin{equation*}
T_{x, y}^{S^{1}}\left(\left[X, S^{1}\right]\right)=\sum_{i} T_{x, y}\left(\left[M_{i}\right]\right) \prod_{m}\left(\tilde{T}_{x, y}\left([u]_{f_{m l}}\right)\right)^{\left(l_{m l}+1\right)} \tilde{T}_{x, y}\left(B_{l_{m i}}\left([u]_{l_{m b} l}\right)\right) \tag{1}
\end{equation*}
$$

We shall calculate $\tilde{T}_{x, y}\left([u]_{j}\right)$ and $\tilde{T}_{x, y}\left(B_{N}(u)\right)$. Since

$$
T_{x, y}\left(\left[C P^{n}\right]\right)=\frac{x^{n+1}-(-y)^{n+1}}{x+y}
$$

we have

$$
g_{\tau_{x, y}}(t)=\sum_{n=0}^{\infty} \frac{x^{n+1}-(-y)^{n+1}}{(x+y)(n+1)} t^{n+1}=\frac{1}{x+y} \ln \left(\frac{1+y t}{1-x t}\right) .
$$

Therefore

$$
g_{x, y}^{-1}(t)=\frac{e^{(x+y) t}-1}{x e^{(x+y) t}+y}
$$

and hence

$$
\widetilde{T}_{x, y}\left([u]_{j}\right)=g_{x, y}^{-1}(j \ln \eta)=\frac{\eta^{j(x+y)}-1}{x \eta^{i(x+y)}+y}
$$

By definition of $B_{N}(u)$, to find $\widetilde{T}_{x, y}\left(B_{N}(u)\right)$ we have to apply $T_{x, y}$ to the coefficients of the series $A_{N}(u, \nu)$ and replace ν^{k} by $T_{x, y}\left(\left[C P^{N-k}\right]\right)$ in the resulting series $A_{N T_{x, y}}(u, \nu)$. Since

$$
f T_{x, y}(u, v)=g \bar{T}_{x, y}^{-1}\left(g T_{x, y}(u)+g T_{x, y}(v)\right)=\frac{u+v+(y-x) u v}{1+y x u v}
$$

we have

$$
A_{N T_{x, y}}(u, v) \equiv \frac{u^{N}(1+y x u v)}{1+\frac{v}{u}+(y-x) v}\left(\bmod v^{N+1}\right) .
$$

Therefore

$$
\begin{aligned}
& A_{N T_{x, y}}(u, v)=\sum_{k=0}^{N}(-1)^{k} v^{k} u^{N-k}(1+(y-x) u)^{k} \\
& \quad+\sum_{k=0}^{N-1}(-1)^{k} v^{k+1} u^{N-k+1} x y(1+(y-x) u v)^{k}
\end{aligned}
$$

Thus we obtain

$$
\begin{gathered}
\tilde{T}_{x, y}\left(B_{N}(u)\right)=\sum_{k=0}^{N}(-1)^{k} \frac{x^{N-k+1}-(-y)^{N-k+1}}{x+y}\left(\frac{\eta^{x+y}-1}{x \eta^{x+y}+y}\right)^{N-k}\left(\frac{x+y \eta^{x+y}}{x \eta^{x+y}+y}\right)^{k} \\
+\sum_{k=0}^{N-1}(-1)^{k} x y \frac{x^{N-k}-(-y)^{N-k}}{x+y}\left(\frac{\eta^{x+y}-1}{x \eta^{x+y}+y}\right)^{N-k+1}\left(\frac{x+y \eta^{x+y}}{x \eta^{x+y}+y}\right)^{k}
\end{gathered}
$$

We denote by $r_{x_{1} y}^{(N)}(\eta)$ the function of η given by the right side of this equality. With the preceding formulas, the equality (1) takes the form

$$
\begin{equation*}
T_{x, y}^{S 1}\left(\left[X, S^{1}\right]\right)=\sum_{i} T_{x, y}\left(\left[M_{i}\right]\right) \prod_{m}\left(\frac{x \eta^{i_{m i}(x+y)}+y}{\eta^{j_{m i}(x+y)}-y}\right)^{l_{m i}+1} \tau_{x, y}^{\left(l_{m i}\right)}\left(\eta^{l_{m i}}\right) \tag{2}
\end{equation*}
$$

Let us pause to consider in detail the meaning of the latter equality.
Let $\Phi_{x, y}(\eta)$ be the function of the complex variable η given by the right side of (2). It is easy to see that in a deleted neighborhood of 1 it is analytic; hence it has a Laurent series expansion in the variable $1-\eta$ there. By (2), this series coincides with $T_{x, y}^{S^{1}}\left(\left[X, s^{1}\right]\right) \in Q[[1-\eta]]$. This implies that $\Phi_{x, y}(\eta)$ is analytic not only in a deleted neighborhood, but also at 1 itself.

Our immediate task will be to prove that there are no poles at roots of 1 and, as a consequence, that $\Phi_{x, y}(\eta)$ is analytic in the whole plane.

Lemma 2.4. Let $\tilde{x}=x /(x+y)$ and $\tilde{y}=y /(x+y)$. Then

$$
(x+y)^{N} \Phi_{\widetilde{x}, \bar{y}}\left(\eta^{x+y}\right)=\Phi_{x, y}(\eta), \quad N=\operatorname{dim}_{\mathrm{c}} X
$$

The proof of the lemma can easily be obtained from the fact that

$$
\begin{gathered}
\chi_{0}^{S^{1}}\left(\left[X, S^{1}\right]\right) \in U^{-2 N}\left(C P^{\infty}\right), \quad \bar{T}_{\tilde{x}, \tilde{y}}\left(u_{;}=\frac{\eta-1}{\tilde{x} \eta+\tilde{y}}=(x+y) \frac{\eta-1}{x \eta+y},\right. \\
(x+y)^{n} T_{\tilde{x}, \tilde{y}}\left(\left[C P^{n}\right]\right)=T_{x, y}\left(\left[C P^{n}\right]\right) .
\end{gathered}
$$

By this lemma it is enough to consider the case when $x+y=1$, what will be assumed till the conclusion of Lemma 2.3.

Assume that H (the normal subgroup appearing in $\S 1.2$) is a cyclic subgroup of s^{1} of order n. In the notation of Theorem 1.1,

$$
e\left(\Delta_{S^{1}}\right) \chi_{0}^{S^{1}}\left(\left[X, S^{1}\right]\right)=\sum_{s} p_{s!}\left(e\left(-v_{s}\right)_{s^{1}}\right)
$$

Since by definition of the representation Δ of S^{1} its restriction to the subgroup Z_{n} does not contain trivial summands, we have $\Delta=\Sigma_{m} \eta^{j}$, where none of the j_{m} is divisible by n. Hence

$$
\begin{equation*}
\left[\prod_{m}\left(\frac{\eta^{j_{m}}-1}{x \eta^{j_{m}}+y}\right)\right] T_{x, y}^{S_{1}^{1}}\left(\left[X, S^{1}\right]\right)=\sum_{s} \bar{T}_{x, y}\left[p_{s!}\left(e\left(-v_{s}\right)_{S^{1}}\right)\right] \tag{3}
\end{equation*}
$$

Now we consider an arbitrary S^{1}-bundle ζ over an S^{1}-manifold F such that the action of Z_{n} is trivial on F. ζ can be represented as a sum of S^{1}-bundles $\zeta_{r}, 0 \leqq$ $r \leqq n-1$. The generator of Z_{n} acts on a fiber of ζ_{r} by multiplication by $\exp (2 \pi i r / n)$. Hence, if the S^{n}-bundle $\tilde{\zeta}_{r}$ is $\zeta_{r} \otimes \eta^{-r}$, then Z_{n} acts trivially on $\tilde{\zeta}_{r}$. Since $\zeta_{r}=\tilde{\zeta}_{r} \otimes \eta^{\tau}$, we have

$$
e\left(\zeta_{s^{1}}\right)=\prod_{r=0}^{n-1} e\left(\widetilde{\zeta}_{r S^{2}} \otimes p^{+}\left(\eta^{r}\right)\right)
$$

where $p: F_{S^{1}} \rightarrow C P^{\infty}$.
Let $\mu_{r, k}$ be the Wu generators of $\tilde{\zeta}_{r S}$. Then

$$
\widetilde{T}_{x, y}\left(p_{1}\left(e\left(\zeta_{s}\right)\right)\right)=\widetilde{T}_{x, y}\left[p_{1}\left(\prod_{r, k} f\left(\mu_{r, k}, p^{*}\left([u]_{r}\right)\right)\right)\right] .
$$

The coefficient of $p^{*}\left([u]_{r}\right)^{i}$ in the series

$$
\prod_{k} f \tau_{x, y}\left(\mu_{r, k} p^{*}\left([u]_{r}\right)\right)=\prod_{k} \frac{\mu_{r, k}+p^{*}\left([u]_{r}\right)+(y-x) \mu_{r, k} p^{*}\left([u]_{r}\right)}{1+y x \mu_{r, k} p^{*}\left([u]_{r}\right)}
$$

is a symmetric polynomial in $\mu_{r, k}$. We denote the corresponding polynomial in the Chern classes of $\zeta_{r S^{1}}$ by $P_{i, k}$. The dimension of its lowest term is not smaller than $i-\operatorname{dim} \zeta_{r}$.

Thus

$$
\begin{equation*}
\tilde{\mathrm{T}}_{x, y}\left(p_{1}\left(e\left(\zeta_{s}\right)\right)\right)=\sum_{\omega} \widetilde{T}_{x, y}\left(\prod_{r=0}^{n-1}\left([u]_{r}\right)^{i_{r}}\right) \widetilde{T}_{x, y}\left(p_{!}\left(\prod_{r=0}^{i=1} P_{i_{r}, r}\right)\right), \omega=\left(i_{1}, \ldots, i_{n-1}\right) \tag{4}
\end{equation*}
$$

The projection $a: S^{1} \rightarrow S^{1} / Z_{n}=S^{1}$ of S^{1} onto the quotient group induces a map of classifying spaces

$$
\alpha_{*}: C P^{\infty} \rightarrow C P^{\infty},
$$

with $a^{*}(u)=[u]_{n}$. Since the S^{1}-bundle $\tilde{\zeta}_{r}$ is the inverse image under $a^{\#}$ of some \tilde{S}^{1}-bundle $\tilde{\zeta}_{r}^{\prime}$ (we recall that the subgroup Z_{n} acts trivially on the fibration space of $\tilde{\zeta}_{r}$), it follows from Theorem 1.3 that $p_{!}\left(\prod_{r=0}^{n-1} P_{i_{r}, r}^{n}\right) \in \operatorname{Im~} a^{*}$.

Since the diagram

is commutative and $a^{*}(\eta)=\eta^{n}$, we have that

$$
\widetilde{T}_{x, y}\left(p_{!}\left(\prod_{r=0}^{n-1} P_{i_{r}, r}\right)\right) \in \operatorname{Im} \alpha^{*}=Q\left[\left[1-\eta^{n}\right]\right] .
$$

From this and from (3) and (4) it follows that

$$
\begin{equation*}
T_{x, y}^{S_{1}^{2}}\left(\left[X, S^{1}\right]\right)=\prod_{m}\left(\frac{x \eta^{j_{m}}+y}{\eta^{j_{m}}-1}\right)\left(\sum_{k} P_{k} \cdot\left(1-\eta^{n}\right)^{k}\right), \tag{5}
\end{equation*}
$$

where P_{k} is a polynomial in $\left(\eta^{\gamma}-1\right) /\left(x \eta^{\gamma}+y\right)$.
Let η_{1} be the closest point to 1 at which there might be a pole of $\Phi_{x, y}(\eta)$; that is, the closest point to 1 of the form $\exp (2 \pi i r / n), r<n$ and $(r, n)=1$, for which chere is a $j_{m i}$ divisibie by n. The function $\Phi_{x, y}(\eta)$ is analytic in the disc $|\eta-1|<$ $\left|\eta_{1}-1\right|_{\text {; therefore the series }} T_{x, y}^{S^{1}}\left(\left[X, S^{1}\right]\right)$ converges uniformly to it on every compact subset of this disc. From (5) it easily follows that the limit of $\Phi_{x, y}(\eta)$ for $\eta \rightarrow \eta_{1}$ exists. Hence $\Phi_{x, y}(\eta)$ is analytic in the disc $|\eta-1|<\left|\eta_{2}-1\right|$, and the series $T_{x, y}^{S^{1}}\left(\left[X, S^{1}\right]\right)$ converges uniformly on every compact subset of that disc. Here η_{2} is the next point at which there can be a pole of $\bar{\Phi}_{x, y}(\eta)$. If we continue this process we obtain that $\Phi_{x, y}(\eta)$ is analytic in the whole closed complex plane. Therefore it is a constant. This concludes the proof of Lemma 2.3.

Now we pass to the second part of the theorem. By Lemma $2.2, T_{x, y}([X])=$ $\Phi_{x, y}(1)$. Since, by the previous part of the proof, $\Phi_{x, y}(\eta)$ is constant, we have that $\Phi_{x, y}(1)=\lim _{\eta \rightarrow \infty} \Phi_{x, y}(\eta)$, and

$$
\lim _{\eta \rightarrow \infty} \Phi_{x, y}(\eta)=\sum_{i} T_{x, y}\left(\left[M_{i}\right]\right) \prod_{m} \lim _{\eta \rightarrow \infty}\left(\frac{x \eta^{j_{m i}(x+y)}+y}{\eta^{j_{m}(x+y)}-1}\right)^{l_{m i}+1} \tau_{x, y}^{\left(l_{m i}\right)}\left(\eta^{\left.l_{m l}\right)}\right) .
$$

Remark. In what follows, all the limits are found under the assumption that $x+$ $y>0$. In the other case all the formulas are valid if we replace $\eta \rightarrow \infty$ by $\eta \rightarrow 0$.

Assume that $i_{m i}>0$. Then

$$
\lim _{\eta \rightarrow \infty}\left(\frac{x \eta^{j_{m i}(x+y)}+y}{\eta^{j_{m i}(x+y)}-1}\right)^{l_{m i+1}} \tau_{x, y}^{\left(l_{m i}\right)}\left(\eta^{i_{m i}}\right)=x^{l_{m i}+1} \lim _{\eta \rightarrow \infty} \tau_{x, y}^{\left(l_{m i}\right)}\left(\eta^{i_{m i}}\right) .
$$

If we remember the definition of $r_{x, y}^{N}(\eta)$, we obtain

$$
\begin{gathered}
\lim _{\eta \rightarrow \infty} \tau_{x, y}^{(N)}\left(\eta^{l_{m i}}\right)=\sum_{k=0}^{N}(-1)^{k} \frac{x^{N-k+1}-(-y)^{N-k+1}}{x+y} \frac{1}{x^{N-k}}\left(\frac{y}{x}\right)^{k} \\
+\sum_{k=0}^{N-1}(-1)^{k} x y \frac{x^{N-k}-(-y)^{N-k}}{x+y} \frac{1}{x^{N-k+1}}\left(\frac{y}{x}\right)^{k} \\
=\frac{1}{x^{N}(x+y)}\left[\sum_{k=0}^{N}(-y)^{k}\left(x^{N-k+1}-(-y)^{N-k+1}\right)\right. \\
\left.-\sum_{k=0}^{N-1}(-y)^{k+1}\left(x^{N-k}-(-y)^{N-k}\right)\right]=\frac{1}{x^{N}(x+y)}\left(x^{N+1}-(-y)^{N+1}\right) .
\end{gathered}
$$

In an analogous way, for $j_{m i}<0$ we find that

$$
\lim _{\eta \rightarrow \infty}\left(\frac{\eta^{l_{m l}(x+y)}+y}{\eta_{m l}^{l_{m l}(x+y)}-1}\right)^{l_{m i+1}} \tau_{x, y l}^{\left(l_{m l}\right)}\left(\eta^{j_{m l}}\right)=(-y) \frac{x^{l_{m 1}+1}-(-y)^{l_{m l}+1}}{x+y} .
$$

Thus

$$
\lim _{\eta \rightarrow \infty} \Phi_{x, y}(\eta)=\sum_{i} T_{x, y}\left(\left[U_{i}\right]\right) x^{\varepsilon_{i}^{+}}(-y)^{\varepsilon_{i}} \prod_{m} T_{x, y}\left(\left[C P^{b_{m i}}\right]\right)
$$

where ϵ_{i}^{+}is the number of positive integers among the $j_{m i}$ and ϵ_{i}^{-}is the number of negative ones, respectively.

Let $\Sigma_{i_{k}}\left[M_{i_{k}}\right] \|_{m}\left(C P_{j_{m i_{k}}}^{l_{m} i_{k}}\right)$ be the part of $\beta\left(\left[X, S^{1}\right]\right)=\Sigma_{i}\left[M_{i}\right] \Pi_{m}\left(C P_{j_{m i}}^{l_{m i}}\right)$ equal to the bordism class in R_{*} of the S^{1}-bundle ν_{s} over a fixed submanifold F_{l}. Then for all the i_{k} we have $\epsilon_{i_{k}}^{+}=\epsilon_{s}^{+}$and $\overline{\epsilon_{i_{k}}}=\epsilon_{s}^{-}$. Since $\left[F_{s}\right]=\Sigma_{i_{k}}\left[M_{i_{k}}\right] \Pi_{m}\left[C P^{l^{m} i_{k}}\right]$, the proof of Theorem 2.1 is complete.

§ 3. The orientable case

We shall consider orientation-preserving actions of compact Lie groups on manifolds and vector bundles. All the constructions and results of the preceding sections for unitary actions automatically carry over to the present case; for this reason we shall restrict ourselves to making statements only, with minimal explanations when necessary:

To each characteristic class $\chi \in \Omega^{i}(B S O)$ in the oriented cobordism of vector bundles there corresponds a homomorphism of the Ω_{*}-module of bordisms of oriented G-bundles over oriented G-manifolds to the cobordism ring of the universal classifying space $B G$:

$$
\chi^{G}: \Omega_{n, k}^{G} \rightarrow \Omega^{-n+i}(B G)
$$

Theorem 3.1. For every characteristic class χ and every G-bundle ξ, the following equality holds:

$$
\left.e\left(\Delta_{G}\right) \chi^{G}([\xi])=\sum_{s} p_{s!}\left(e\left(-v_{s}\right)_{G}\right) \cdot \chi\left(\xi_{s G}\right)\right)
$$

The notation is the same as in Theorem 1.1, with the substitution of "orientable" for "unitary" bundles (representations).

Let χ_{0}^{G} be, as before, the "equivariant characteristic homomorphism" corresponding to the characteristic class $1 \in \Omega^{0}(B S O)$.

Let us consider an arbitrary orientable S^{1}-manifold X. As we know, the structure group of the normal S^{1}-bundle ν_{s} over a connected component F_{s} of the set of fixed points under the action of S^{1} on X can be reduced to the unitary group and ν_{s} becomes a complex S^{1}-bundle (see [10], §38). We choose the complex structure in ν_{s} in such a way that the representation of S^{1} in the fibers has the form $\Sigma_{i} \eta_{s i}, j_{s i}>0$. As before, we define a homomorphism of Ω_{*}-modules

$$
\beta^{\prime}: \Omega_{n}^{S_{1}^{1}} \rightarrow R_{n}^{\prime}=\sum \Omega_{l}\left(\prod_{j>0} B U\left(n_{j}\right)\right),
$$

where the summation is taken over all the collections of nonnegative integers n_{j} and l such that $2 \Sigma_{j>0} n_{j}+l=n$.

Theorem 3.2. There exists a homomorphism $\Psi: R_{*}^{\prime} \rightarrow \Omega^{*}[[u]] \otimes Q\left[u^{-1}\right]$ of $\Omega_{*}-m o d-$ ules such that $\Psi \circ \beta^{\prime}$ coincides with the composite of the homomorphism $\chi_{0}^{S^{1}}$ with the homomorphism $\Omega^{*}[[u]] \rightarrow \Omega^{*}[[u]] \otimes Q\left[u^{-1}\right]$. The values of Ψ on the generators of the Ω_{*}-module are given by the formula

$$
\Psi\left(\prod_{m}\left(C P_{m}^{l_{m}}\right)\right)=\prod_{n}\left(\frac{1}{[u]_{l_{m}}}\right)^{I_{m}+1} B_{l_{m}}\left([u]_{l_{m}}\right) .
$$

Theorem 3.3. If $a: G_{1} \rightarrow G$ is a homomorphism of Lie groups, then the diagram

$$
\begin{aligned}
& \Omega_{* * *}^{G} \xrightarrow{x^{G}} \Omega^{*}(B G) \\
& \downarrow a^{*} \\
& \downarrow a^{*} \\
& \Omega_{* ; *}^{G_{1}} \xrightarrow{x^{G}} \Omega^{(}\left(B G_{1}\right)
\end{aligned}
$$

is commutative.
As in $\oint 2$, for each rational Hirzebruch genus $h: \Omega_{*} \rightarrow Q$ we construct an equivariant Hirzebruch genus $h^{G}: \Omega_{*}^{G} \rightarrow K(B G) \otimes Q$.

The values of the classical T_{y}-genus for $y=1$ on almost complex manifolds coincide with the signature of these manifolds. Therefore, exactly as for Theorem 2.1, one can prove

Theorem 3.4. For a connected compact Lie group G, the image of the homomorphism Sign ${ }^{G}: \Omega_{*}^{G} \rightarrow K(B G) \otimes Q$ belongs to the subring $Q \subset K(B G) \otimes Q$. For every oriented S^{1}-manifold X we have

$$
\operatorname{Sign}([X])=\sum_{s} \operatorname{sign}\left(\left[F_{s}\right]\right)
$$

Addendum. In a subsequent article, the proof of the following theorem will appear:
Theorem. If on a manifold X whose first Chern class $c_{1}(X) \in H^{2}(X, Z)$ is div. isible by k there exists a nontrivial action of S^{1}, then $A_{k}([x])=0$.

The proof is based on "analyticity" arguments connected with the equivariant series corresponding to the Hirzebruch genus $A_{k^{\prime}} k=2,3, \ldots$, given by the series $k t \cdot e^{t} /\left(e^{k t}-1\right)$.

> Received 11/DEC/73

BIBLIOGRAPHY

[^0]3. A. S. Miščenko, Manifolds under the action of the group Z_{p} and fixed points, Mat. Zametki 4 (1968), 381-386 = Math. Nores 4 (1968), 721-724. MR 43 \#4046.
4. G. G. Kasparov, Invariants of classical lens manifolds in cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 735-747 = Math. USSR Izv. 3 (1969), 695-705. MR 43 \#1205.
5. A. S. Miščenko, Bordisms with the action of the group Z_{p}, and fixed points, Mat. Sb. 80 (122) (1969), 307-313 = Math. USSR Sb. 9 (1969), 291--296. MR 43 \# 2725.
6. S. M. Gusein-Zade and I. M. Kričever, On formulas for the fixed points of the action of the group Z_{p}, Uspehi Mat. Nauk 28 (1973), no. 1 (169), 245-246. (Russian)
7. Albrecht Dold, Relations between ordinary and extraordinary homology, Colloq. on Algebraic Topology, August 1-10, 1962, Lectures, Aarhus Univ. Mat. Inst., Aarhus, 1962, pp. 2-9.
8. G. B. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. No. 34 (1968), 129-151. MR 38 \# 2769.
9. P. E. Conner and E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math., No. 28, Springer-Verlag, Berlin and New York, 1966. MR 35 \# 7344.
10. ——, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 33, Springer-Verlag, Berlin; Academic Press, New York, 1964. MR 31 \# 750.

Translated by M. B. HERRERO

[^0]: 1. Michael F. Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires Dédiés à Georges de Rham), Springer-Verlag, Berlin and New York, 1970, pp. 18-28. MR 43 \# 4064.
 2. S. P. Novikov, Adams operators and fixed points, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1245-1263 = Math. USSR Izv. 2 (1968), 1193-1211. MR 41 \#1046.
