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1. Introduction

05XF The purpose of this chapter is to find criteria guaranteeing that a stack in groupoids
over the category of schemes with the fppf topology is an algebraic stack. His-
torically, this often involved proving that certain functors were representable, see
Grothendieck’s lectures [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and [Gro95d].
This explains the title of this chapter. Another important source of this material
comes from the work of Artin, see [Art69b], [Art70], [Art73], [Art71b], [Art71a],
[Art69a], [Art69c], and [Art74].

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 2 for an explanation.

This is a chapter of the Stacks Project, version 74af77a7, compiled on Jun 27, 2023.
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2. Conventions

05XG The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 2.

3. What we already know

05XH The analogue of this chapter for algebraic spaces is the chapter entitled “Bootstrap”,
see Bootstrap, Section 1. That chapter already contains some representability re-
sults. Moreover, some of the preliminary material treated there we already have
worked out in the chapter on algebraic stacks. Here is a list:

(1) We discuss morphisms of presheaves representable by algebraic spaces in
Bootstrap, Section 3. In Algebraic Stacks, Section 9 we discuss the notion
of a 1-morphism of categories fibred in groupoids being representable by
algebraic spaces.

(2) We discuss properties of morphisms of presheaves representable by algebraic
spaces in Bootstrap, Section 4. In Algebraic Stacks, Section 10 we discuss
properties of 1-morphisms of categories fibred in groupoids representable
by algebraic spaces.

(3) We proved that if F is a sheaf whose diagonal is representable by algebraic
spaces and which has an étale covering by an algebraic space, then F is an
algebraic space, see Bootstrap, Theorem 6.1. (This is a weak version of the
result in the next item on the list.)

(4)05XI We proved that if F is a sheaf and if there exists an algebraic space U and
a morphism U → F which is representable by algebraic spaces, surjective,
flat, and locally of finite presentation, then F is an algebraic space, see
Bootstrap, Theorem 10.1.

(5) We have also proved the “smooth” analogue of (4) for algebraic stacks: If
X is a stack in groupoids over (Sch/S)fppf and if there exists a stack in
groupoids U over (Sch/S)fppf which is representable by an algebraic space
and a 1-morphism u : U → X which is representable by algebraic spaces,
surjective, and smooth then X is an algebraic stack, see Algebraic Stacks,
Lemma 15.3.

Our first task now is to prove the analogue of (4) for algebraic stacks in general; it
is Theorem 16.1.

4. Morphisms of stacks in groupoids

05XJ This section is preliminary and should be skipped on a first reading.

Lemma 4.1.05XK Let X → Y → Z be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . If X → Z and Y → Z are representable by algebraic spaces and
étale so is X → Y.

Proof. Let U be a representable category fibred in groupoids over S. Let f : U → Y
be a 1-morphism. We have to show that X ×Y U is representable by an algebraic
space and étale over U . Consider the composition h : U → Z. Then

X ×Z U −→ Y ×Z U

is a 1-morphism between categories fibres in groupoids which are both representable
by algebraic spaces and both étale over U . Hence by Properties of Spaces, Lemma

https://stacks.math.columbia.edu/tag/05XK
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16.6 this is represented by an étale morphism of algebraic spaces. Finally, we obtain
the result we want as the morphism f induces a morphism U → Y ×Z U and we
have

X ×Y U = (X ×Z U) ×(Y×Z U) U .

□

Lemma 4.2.05XL Let X ,Y,Z be stacks in groupoids over (Sch/S)fppf . Suppose that
X → Y and Z → Y are 1-morphisms. If

(1) Y, Z are representable by algebraic spaces Y , Z over S,
(2) the associated morphism of algebraic spaces Y → Z is surjective, flat and

locally of finite presentation, and
(3) Y ×Z X is a stack in setoids,

then X is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 6.10. □

The following lemma is the analogue of Algebraic Stacks, Lemma 15.3 and will be
superseded by the stronger Theorem 16.1.

Lemma 4.3.05XW Let S be a scheme. Let u : U → X be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective, flat and locally of finite

presentation,
then ∆ : X → X × X representable by algebraic spaces.

Proof. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the associated
representable fibre categories. Suppose given 1-morphisms fi : Ti → X . According
to Algebraic Stacks, Lemma 10.11 it suffices to prove that the 2-fibered product
T1 ×X T2 is representable by an algebraic space. By Stacks, Lemma 6.8 this is
in any case a stack in setoids. Thus T1 ×X T2 corresponds to some sheaf F on
(Sch/S)fppf , see Stacks, Lemma 6.3. Let U be the algebraic space which represents
U . By assumption

T ′
i = U ×u,X ,fi Ti

is representable by an algebraic space T ′
i over S. Hence T ′

1 ×U T ′
2 is representable

by the algebraic space T ′
1 ×U T ′

2. Consider the commutative diagram

T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

https://stacks.math.columbia.edu/tag/05XL
https://stacks.math.columbia.edu/tag/05XW
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In this diagram the bottom square, the right square, the back square, and the
front square are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 →

T1 ×X T2 is the “base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces, flat,
locally of finite presentation and surjective, see Algebraic Stacks, Lemmas 9.6, 9.7,
10.4, and 10.6. Therefore F is an algebraic space by Bootstrap, Theorem 10.1 and
we win. □

Lemma 4.4.07WG Let X be a category fibred in groupoids over (Sch/S)fppf . The
following are equivalent

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) for every 1-morphism V → X × X with V representable (by a scheme)

the fibre product Y = X ×∆,X ×X V has diagonal representable by algebraic
spaces.

Proof. Although this is a bit of a brain twister, it is completely formal. Namely,
recall that X ×X ×X X = IX is the inertia of X and that ∆∆ is the identity section
of IX , see Categories, Section 34. Thus condition (1) says the following: Given
a scheme V , an object x of X over V , and a morphism α : x → x of XV the
condition “α = idx” defines an algebraic space over V . (In other words, there exists
a monomorphism of algebraic spaces W → V such that a morphism of schemes
f : T → V factors through W if and only if f∗α = idf∗x.)

On the other hand, let V be a scheme and let x, y be objects of X over V . Then
(x, y) define a morphism V = (Sch/V )fppf → X × X . Next, let h : V ′ → V be
a morphism of schemes and let α : h∗x → h∗y and β : h∗x → h∗y be morphisms
of XV ′ . Then (α, β) define a morphism V ′ = (Sch/V )fppf → Y × Y. Condition
(2) now says that (with any choices as above) the condition “α = β” defines an
algebraic space over V .

To see the equivalence, given (α, β) as in (2) we see that (1) implies that “α−1 ◦β =
idh∗x” defines an algebraic space. The implication (2) ⇒ (1) follows by taking
h = idV and β = idx. □

5. Limit preserving on objects

06CT Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is limit preserving on objects if the following
condition holds: Given any data consisting of

(1) an affine scheme U = limi∈I Ui which is written as the directed limit of
affine schemes Ui over S,

(2) an object yi of Y over Ui for some i,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x) → yi|U ,

https://stacks.math.columbia.edu/tag/07WG
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then there exists an i′ ≥ i, an object xi′ of X over Ui′ , an isomorphism β : xi′ |U → x,
and an isomorphism γi′ : p(xi′) → yi|Ui′ such that

(5.0.1)06CU

p(xi′ |U )

p(β)
��

γi′ |U

// (yi|Ui′ )|U

p(x) γ // yi|U
commutes. In this situation we say that “(i′, xi′ , β, γi′) is a solution to the problem
posed by our data (1), (2), (3), (4)”. The motivation for this definition comes from
Limits of Spaces, Lemma 3.2.

Lemma 5.1.06CV Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is limit preserving on objects, then so
is the base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes
Ui over S, let zi be an object of Z over Ui for some i, let w be an object of
X ×Y Z over U , and let δ : p′(w) → zi|U be an isomorphism. We may write
w = (U, x, z, α) for some object x of X over U and object z of Z over U and
isomorphism α : p(x) → q(z). Note that p′(w) = z hence δ : z → zi|U . Set
yi = q(zi) and γ = q(δ) ◦ α : p(x) → yi|U . As p is limit preserving on objects there
exists an i′ ≥ i and an object xi′ of X over Ui′ as well as isomorphisms β : xi′ |U → x
and γi′ : p(xi′) → yi|Ui′ such that (5.0.1) commutes. Then we consider the object
wi′ = (Ui′ , xi′ , zi|Ui′ , γi′) of X ×Y Z over Ui′ and define isomorphisms

wi′ |U = (U, xi′ |U , zi|U , γi′ |U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(wi′) = zi|Ui′

id−→ zi|Ui′ .

These combine to give a solution to the problem. □

Lemma 5.2.06CW Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are limit preserving on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui

over S, let zi be an object of Z over Ui for some i, let x be an object of X over U ,
and let γ : q(p(x)) → zi|U be an isomorphism. As q is limit preserving on objects
there exist an i′ ≥ i, an object yi′ of Y over Ui′ , an isomorphism β : yi′ |U → p(x),
and an isomorphism γi′ : q(yi′) → zi|Ui′ such that (5.0.1) is commutative. As p is
limit preserving on objects there exist an i′′ ≥ i′, an object xi′′ of X over Ui′′ , an
isomorphism β′ : xi′′ |U → x, and an isomorphism γ′

i′′ : p(xi′′) → yi′ |Ui′′ such that
(5.0.1) is commutative. The solution is to take xi′′ over Ui′′ with isomorphism

q(p(xi′′))
q(γ′

i′′ )
−−−−→ q(yi′)|Ui′′

γi′ |U
i′′−−−−→ zi|Ui′′

and isomorphism β′ : xi′′ |U → x. We omit the verification that (5.0.1) is commu-
tative. □

Lemma 5.3.06CX Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

https://stacks.math.columbia.edu/tag/06CV
https://stacks.math.columbia.edu/tag/06CW
https://stacks.math.columbia.edu/tag/06CX
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(1) p is limit preserving on objects, and
(2) p is locally of finite presentation (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). Let U = limi∈I Ui be the directed limit of affine schemes Ui

over S, let yi be an object of Y over Ui for some i, let x be an object of X over U ,
and let γ : p(x) → yi|U be an isomorphism. Let Xyi

denote an algebraic space over
Ui representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,p X .
Note that ξ = (U,U → Ui, x, γ

−1) defines an object of this 2-fibre product over
U . Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xyi

over
Ui. By Limits of Spaces, Proposition 3.10 there exists an i′ ≥ i and a morphism
fi′ : Ui′ → Xyi

such that fξ is the composition of fi′ and the projection morphism
U → Ui′ . Also, the 2-Yoneda lemma tells us that fi′ corresponds to an object ξi′ =
(Ui′ , Ui′ → Ui, xi′ , α) of the displayed 2-fibre product over Ui′ whose restriction to
U recovers ξ. In particular we obtain an isomorphism γ : xi′ |U → x. Note that
α : yi|Ui′ → p(xi′). Hence we see that taking xi′ , the isomorphism γ : xi′ |U → x,
and the isomorphism β = α−1 : p(xi′) → yi|Ui′ is a solution to the problem.
Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,p X .
We have to show that Xy → T is locally of finite presentation. To do this we will
use the criterion in Limits of Spaces, Remark 3.11. Consider an affine scheme
U = limi∈I Ui written as the directed limit of affine schemes over T . Pick any
i ∈ I and set yi = y|Ui

. Also denote i′ an element of I which is bigger than
or equal to i. By the 2-Yoneda lemma morphisms U → Xy over T correspond
bijectively to isomorphism classes of pairs (x, α) where x is an object of X over U
and α : y|U → p(x) is an isomorphism. Of course giving α is, up to an inverse,
the same thing as giving an isomorphism γ : p(x) → yi|U . Similarly for morphisms
Ui′ → Xy over T . Hence (1) guarantees that the canonical map

colimi′≥i Xy(Ui′) −→ Xy(U)
is surjective in this situation. It follows from Limits of Spaces, Lemma 3.12 that
Xy → T is locally of finite presentation. □

Lemma 5.4.06CY Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Assume p is representable by algebraic spaces and an open immersion.
Then p is limit preserving on objects.

Proof. This follows from Lemma 5.3 and (via the general principle Algebraic
Stacks, Lemma 10.9) from the fact that an open immersion of algebraic spaces
is locally of finite presentation, see Morphisms of Spaces, Lemma 28.11. □

Let S be a scheme. In the following lemma we need the notion of the size of an
algebraic space X over S. Namely, given a cardinal κ we will say X has size(X) ≤ κ
if and only if there exists a scheme U with size(U) ≤ κ (see Sets, Section 9) and a
surjective étale morphism U → X.

Lemma 5.5.07WH Let S be a scheme. Let κ = size(T ) for some T ∈ Ob((Sch/S)fppf ).
Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf

such that
(1) Y → (Sch/S)fppf is limit preserving on objects,

https://stacks.math.columbia.edu/tag/06CY
https://stacks.math.columbia.edu/tag/07WH
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(2) for an affine scheme V locally of finite presentation over S and y ∈ Ob(YV )
the fibre product (Sch/V )fppf ×y,Y X is representable by an algebraic space
of size ≤ κ1,

(3) X and Y are stacks for the Zariski topology.
Then f is representable by algebraic spaces.

Proof. Let V be a scheme over S and y ∈ YV . We have to prove (Sch/V )fppf ×y,Y
X is representable by an algebraic space.
Case I: V is affine and maps into an affine open Spec(Λ) ⊂ S. Then we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 127.2. Then y comes from an object yi over Vi for some i by assumption
(1). By assumption (3) the fibre product (Sch/Vi)fppf ×yi,Y X is representable by
an algebraic space Zi. Then (Sch/V )fppf ×y,Y X is representable by Z ×Vi

V .
Case II: V is general. Choose an affine open covering V =

⋃
i∈I Vi such that each

Vi maps into an affine open of S. We first claim that Z = (Sch/V )fppf ×y,Y X
is a stack in setoids for the Zariski topology. Namely, it is a stack in groupoids
for the Zariski topology by Stacks, Lemma 5.6. Then suppose that z is an object
of Z over a scheme T . Denote g : T → V the morphism corresponding to the
projection of z in (Sch/V )fppf . Consider the Zariski sheaf I = IsomZ(z, z). By
Case I we see that I |g−1(Vi) = ∗ (the singleton sheaf). Hence I = ∗. Thus Z
is fibred in setoids. To finish the proof we have to show that the Zariski sheaf
Z : T 7→ Ob(ZT )/ ∼= is an algebraic space, see Algebraic Stacks, Lemma 8.2. There
is a map p : Z → V (transformation of functors) and by Case I we know that
Zi = p−1(Vi) is an algebraic space. The morphisms Zi → Z are representable by
open immersions and

∐
Zi → Z is surjective (in the Zariski topology). Hence Z is

a sheaf for the fppf topology by Bootstrap, Lemma 3.11. Thus Spaces, Lemma 8.5
applies and we conclude that Z is an algebraic space2. □

Lemma 5.6.07WI Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let P be a property of morphisms of algebraic
spaces as in Algebraic Stacks, Definition 10.1. If

(1) f is representable by algebraic spaces,
(2) Y → (Sch/S)fppf is limit preserving on objects,
(3) for an affine scheme V locally of finite presentation over S and y ∈ YV the

resulting morphism of algebraic spaces fy : Fy → V , see Algebraic Stacks,
Equation (9.1.1), has property P.

Then f has property P.

Proof. Let V be a scheme over S and y ∈ YV . We have to show that Fy → V
has property P. Since P is fppf local on the base we may assume that V is an
affine scheme which maps into an affine open Spec(Λ) ⊂ S. Thus we can write
V = limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra,
Lemma 127.2. Then y comes from an object yi over Vi for some i by assumption

1The condition on size can be dropped by those ignoring set theoretic issues.
2To see that the set theoretic condition of that lemma is satisfied we argue as follows:

First choose the open covering such that |I| ≤ size(V ). Next, choose schemes Ui of size
≤ max(κ, size(V )) and surjective étale morphisms Ui → Zi; we can do this by assumption (2)
and Sets, Lemma 9.6 (details omitted). Then Sets, Lemma 9.9 implies that

∐
Ui is an object of

(Sch/S)fppf . Hence
∐
Zi is an algebraic space by Spaces, Lemma 8.4.

https://stacks.math.columbia.edu/tag/07WI
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(2). By assumption (3) the morphism Fyi
→ Vi has property P. As P is stable

under arbitrary base change and since Fy = Fyi ×Vi V we conclude that Fy → V
has property P as desired. □

6. Formally smooth on objects

06CZ Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . We will say that p is formally smooth on objects if the following
condition holds: Given any data consisting of

(1) a first order thickening U ⊂ U ′ of affine schemes over S,
(2) an object y′ of Y over U ′,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x) → y′|U ,

then there exists an object x′ of X over U ′ with an isomorphism β : x′|U → x and
an isomorphism γ′ : p(x′) → y′ such that

(6.0.1)06D0

p(x′|U )

p(β)
��

γ′|U

// y′|U

p(x) γ // y′|U

commutes. In this situation we say that “(x′, β, γ′) is a solution to the problem
posed by our data (1), (2), (3), (4)”.

Lemma 6.1.06D1 Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is formally smooth on objects, then
so is the base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes over
S, let z′ be an object of Z over U ′, let w be an object of X ×Y Z over U , and let
δ : p′(w) → z′|U be an isomorphism. We may write w = (U, x, z, α) for some object
x of X over U and object z of Z over U and isomorphism α : p(x) → q(z). Note
that p′(w) = z hence δ : z → z|U . Set y′ = q(z′) and γ = q(δ) ◦ α : p(x) → y′|U .
As p is formally smooth on objects there exists an object x′ of X over U ′ as well
as isomorphisms β : x′|U → x and γ′ : p(x′) → y′ such that (6.0.1) commutes.
Then we consider the object w = (U ′, x′, z′, γ′) of X ×Y Z over U ′ and define
isomorphisms

w′|U = (U, x′|U , z′|U , γ′|U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(w′) = z′ id−→ z′.

These combine to give a solution to the problem. □

Lemma 6.2.06D2 Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are formally smooth on objects, then so
is the composition q ◦ p.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes
over S, let z′ be an object of Z over U ′, let x be an object of X over U , and let
γ : q(p(x)) → z′|U be an isomorphism. As q is formally smooth on objects there
exist an object y′ of Y over U ′, an isomorphism β : y′|U → p(x), and an isomorphism

https://stacks.math.columbia.edu/tag/06D1
https://stacks.math.columbia.edu/tag/06D2
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γ′ : q(y′) → z′ such that (6.0.1) is commutative. As p is formally smooth on
objects there exist an object x′ of X over U ′, an isomorphism β′ : x′|U → x, and
an isomorphism γ′′ : p(x′) → y′ such that (6.0.1) is commutative. The solution is
to take x′ over U ′ with isomorphism

q(p(x′)) q(γ′′)−−−→ q(y′) γ′

−→ z′

and isomorphism β′ : x′|U → x. We omit the verification that (6.0.1) is commuta-
tive. □

Note that the class of formally smooth morphisms of algebraic spaces is stable
under arbitrary base change and local on the target in the fpqc topology, see More
on Morphisms of Spaces, Lemma 19.3 and 19.11. Hence condition (2) in the lemma
below makes sense.

Lemma 6.3.06D3 Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is formally smooth on objects, and
(2) p is formally smooth (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). Let U ⊂ U ′ be a first order thickening of affine schemes
over S, let y′ be an object of Y over U ′, let x be an object of X over U , and let
γ : p(x) → y′|U be an isomorphism. Let Xy′ denote an algebraic space over U ′

representing the 2-fibre product

(Sch/U ′)fppf ×y′,Y,p X .

Note that ξ = (U,U → U ′, x, γ−1) defines an object of this 2-fibre product over U .
Via the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xy′ over U ′. As
Xy′ → U ′ is formally smooth by assumption there exists a morphism f ′ : U ′ → Xy′

such that fξ is the composition of f ′ and the morphism U → U ′. Also, the 2-
Yoneda lemma tells us that f ′ corresponds to an object ξ′ = (U ′, U ′ → U ′, x′, α)
of the displayed 2-fibre product over U ′ whose restriction to U recovers ξ. In
particular we obtain an isomorphism γ : x′|U → x. Note that α : y′ → p(x′).
Hence we see that taking x′, the isomorphism γ : x′|U → x, and the isomorphism
β = α−1 : p(x′) → y′ is a solution to the problem.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy be
an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,pX . We
have to show that Xy → T is formally smooth. Hence it suffices to show that given
a first order thickening U ⊂ U ′ of affine schemes over T , then Xy(U ′) → Xy(U ′) is
surjective (morphisms in the category of algebraic spaces over T ). Set y′ = y|U ′ .
By the 2-Yoneda lemma morphisms U → Xy over T correspond bijectively to
isomorphism classes of pairs (x, α) where x is an object of X over U and α : y|U →
p(x) is an isomorphism. Of course giving α is, up to an inverse, the same thing as
giving an isomorphism γ : p(x) → y′|U . Similarly for morphisms U ′ → Xy over T .
Hence (1) guarantees the surjectivity of Xy(U ′) → Xy(U ′) in this situation and we
win. □

https://stacks.math.columbia.edu/tag/06D3
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7. Surjective on objects

06D4 Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . We will say that p is surjective on objects if the
following condition holds: Given any data consisting of

(1) a field k over S, and
(2) an object y of Y over Spec(k),

then there exists an extension K/k of fields over S, an object x of X over Spec(K)
such that p(x) ∼= y|Spec(K).

Lemma 7.1.06D5 Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p : X → Y is surjective on objects, then so is the
base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let z be an object of Z over a field k. As p is surjective
on objects there exists an extension K/k and an object x of X over K and an
isomorphism α : p(x) → q(z)|Spec(K). Then w = (Spec(K), x, z|Spec(K), α) is an
object of X ×Y Z over K with p′(w) = z|Spec(K). □

Lemma 7.2.06D6 Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are surjective on objects, then so is the
composition q ◦ p.

Proof. This is formal. Let z be an object of Z over a field k. As q is surjective on
objects there exists a field extension K/k and an object y of Y over K such that
q(y) ∼= x|Spec(K). As p is surjective on objects there exists a field extension L/K
and an object x of X over L such that p(x) ∼= y|Spec(L). Then the field extension
L/k and the object x of X over L satisfy q(p(x)) ∼= z|Spec(L) as desired. □

Lemma 7.3.06D7 Let p : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If p is representable by algebraic spaces, then the following are
equivalent:

(1) p is surjective on objects, and
(2) p is surjective (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). Let k be a field and let y be an object of Y over k. Let Xy

denote an algebraic space over k representing the 2-fibre product

(Sch/ Spec(k))fppf ×y,Y,p X .

As we’ve assumed that p is surjective we see that Xy is not empty. Hence we
can find a field extension K/k and a K-valued point x of Xy. Via the 2-Yoneda
lemma this corresponds to an object x of X over K together with an isomorphism
p(x) ∼= y|Spec(K) and we see that (1) holds.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y. Let Xy

be an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,p X .
We have to show that Xy → T is surjective. By Morphisms of Spaces, Definition
5.2 we have to show that |Xy| → |T | is surjective. This means exactly that given a
field k over T and a morphism t : Spec(k) → T there exists a field extension K/k

https://stacks.math.columbia.edu/tag/06D5
https://stacks.math.columbia.edu/tag/06D6
https://stacks.math.columbia.edu/tag/06D7
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and a morphism x : Spec(K) → Xy such that

Spec(K)

��

x
// Xy

��
Spec(k) t // T

commutes. By the 2-Yoneda lemma this means exactly that we have to find k ⊂ K
and an object x of X over K such that p(x) ∼= t∗y|Spec(K). Hence (1) guarantees
that this is the case and we win. □

8. Algebraic morphisms

05XX The following notion is occasionally useful.

Definition 8.1.06CF Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . We say that F is algebraic if for every scheme T and
every object ξ of Y over T the 2-fibre product

(Sch/T )fppf ×ξ,Y X
is an algebraic stack over S.

With this terminology in place we have the following result that generalizes Alge-
braic Stacks, Lemma 15.4.

Lemma 8.2.05XY Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) Y is an algebraic stack, and
(2) F is algebraic (see above),

then X is an algebraic stack.

Proof. By assumption (1) there exists a scheme T and an object ξ of Y over
T such that the corresponding 1-morphism ξ : (Sch/T )fppf → Y is smooth an
surjective. Then U = (Sch/T )fppf ×ξ,Y X is an algebraic stack by assumption (2).
Choose a scheme U and a surjective smooth 1-morphism (Sch/U)fppf → U . The
projection U −→ X is, as the base change of the morphism ξ : (Sch/T )fppf → Y,
surjective and smooth, see Algebraic Stacks, Lemma 10.6. Then the composition
(Sch/U)fppf → U → X is surjective and smooth as a composition of surjective and
smooth morphisms, see Algebraic Stacks, Lemma 10.5. Hence X is an algebraic
stack by Algebraic Stacks, Lemma 15.3. □

Lemma 8.3.06CG Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If X is an algebraic stack and ∆ : Y → Y × Y is
representable by algebraic spaces, then F is algebraic.

Proof. Choose a representable stack in groupoids U and a surjective smooth 1-
morphism U → X . Let T be a scheme and let ξ be an object of Y over T . The
morphism of 2-fibre products

(Sch/T )fppf ×ξ,Y U −→ (Sch/T )fppf ×ξ,Y X
is representable by algebraic spaces, surjective, and smooth as a base change of U →
X , see Algebraic Stacks, Lemmas 9.7 and 10.6. By our condition on the diagonal of
Y we see that the source of this morphism is representable by an algebraic space, see

https://stacks.math.columbia.edu/tag/06CF
https://stacks.math.columbia.edu/tag/05XY
https://stacks.math.columbia.edu/tag/06CG
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Algebraic Stacks, Lemma 10.11. Hence the target is an algebraic stack by Algebraic
Stacks, Lemma 15.3. □

Lemma 8.4.0D3R Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If F is algebraic and ∆ : Y → Y × Y is representable
by algebraic spaces, then ∆ : X → X × X is representable by algebraic spaces.

Proof. Assume F is algebraic and ∆ : Y → Y × Y is representable by algebraic
spaces. Take a scheme U over S and two objects x1, x2 of X over U . We have to
show that Isom(x1, x2) is an algebraic space over U , see Algebraic Stacks, Lemma
10.11. Set yi = F (xi). We have a morphism of sheaves of sets

f : Isom(x1, x2) → Isom(y1, y2)

and the target is an algebraic space by assumption. Thus it suffices to show that
f is representable by algebraic spaces, see Bootstrap, Lemma 3.6. Thus we can
choose a scheme V over U and an isomorphism β : y1,V → y2,V and we have to
show the functor

(Sch/V )fppf → Sets, T/V 7→ {α : x1,T → x2,T in XT | F (α) = β|T }

is an algebraic space. Consider the objects z1 = (V, x1,V , id) and z2 = (V, x2,V , β)
of

Z = (Sch/V )fppf ×y1,V ,Y X
Then it is straightforward to verify that the functor above is equal to Isom(z1, z2)
on (Sch/V )fppf . Hence this is an algebraic space by our assumption that F is
algebraic (and the definition of algebraic stacks). □

9. Spaces of sections

05XZ Given morphisms W → Z → U we can consider the functor that associates to a
scheme U ′ over U the set of sections σ : ZU ′ → WU ′ of the base change WU ′ → ZU ′

of the morphism W → Z. In this section we prove some preliminary lemmas on
this functor.

Lemma 9.1.05XQ Let Z → U be a finite morphism of schemes. Let W be an algebraic
space and let W → Z be a surjective étale morphism. Then there exists a surjective
étale morphism U ′ → U and a section

σ : ZU ′ → WU ′

of the morphism WU ′ → ZU ′ .

Proof. We may choose a separated scheme W ′ and a surjective étale morphism
W ′ → W . Hence after replacing W by W ′ we may assume that W is a separated
scheme. Write f : W → Z and π : Z → U . Note that f ◦ π : W → U is
separated as W is separated (see Schemes, Lemma 21.13). Let u ∈ U be a point.
Clearly it suffices to find an étale neighbourhood (U ′, u′) of (U, u) such that a
section σ exists over U ′. Let z1, . . . , zr be the points of Z lying above u. For each
i choose a point wi ∈ W which maps to zi. We may pick an étale neighbourhood
(U ′, u′) → (U, u) such that the conclusions of More on Morphisms, Lemma 41.5 hold
for both Z → U and the points z1, . . . , zr and W → U and the points w1, . . . , wr.
Hence, after replacing (U, u) by (U ′, u′) and relabeling, we may assume that all the

https://stacks.math.columbia.edu/tag/0D3R
https://stacks.math.columbia.edu/tag/05XQ
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field extensions κ(zi)/κ(u) and κ(wi)/κ(u) are purely inseparable, and moreover
that there exist disjoint union decompositions

Z = V1 ⨿ . . .⨿ Vr ⨿A, W = W1 ⨿ . . .⨿Wr ⨿B

by open and closed subschemes with zi ∈ Vi, wi ∈ Wi and Vi → U , Wi → U finite.
After replacing U by U \ π(A) we may assume that A = ∅, i.e., Z = V1 ⨿ . . .⨿ Vr.
After replacing Wi by Wi ∩ f−1(Vi) and B by B ∪

⋃
Wi ∩ f−1(Z \ Vi) we may

assume that f maps Wi into Vi. Then fi = f |Wi
: Wi → Vi is a morphism

of schemes finite over U , hence finite (see Morphisms, Lemma 44.14). It is also
étale (by assumption), f−1

i ({zi}) = wi, and induces an isomorphism of residue
fields κ(zi) = κ(wi) (because both are purely inseparable extensions of κ(u) and
κ(wi)/κ(zi) is separable as f is étale). Hence by Étale Morphisms, Lemma 14.2
we see that fi is an isomorphism in a neighbourhood V ′

i of zi. Since π : Z → U is
closed, after shrinking U , we may assume that Wi → Vi is an isomorphism. This
proves the lemma. □

Lemma 9.2.05XR Let Z → U be a finite locally free morphism of schemes. Let W be
an algebraic space and let W → Z be an étale morphism. Then the functor

F : (Sch/U)opp
fppf −→ Sets,

defined by the rule
U ′ 7−→ F (U ′) = {σ : ZU ′ → WU ′ section of WU ′ → ZU ′}

is an algebraic space and the morphism F → U is étale.

Proof. Assume first that W → Z is also separated. Let U ′ be a scheme over U and
let σ ∈ F (U ′). By Morphisms of Spaces, Lemma 4.7 the morphism σ is a closed
immersion. Moreover, σ is étale by Properties of Spaces, Lemma 16.6. Hence σ is
also an open immersion, see Morphisms of Spaces, Lemma 51.2. In other words,
Zσ = σ(ZU ′) ⊂ WU ′ is an open subspace such that the morphism Zσ → ZU ′ is an
isomorphism. In particular, the morphism Zσ → U ′ is finite. Hence we obtain a
transformation of functors

F −→ (W/U)fin, σ 7−→ (U ′ → U,Zσ)
where (W/U)fin is the finite part of the morphism W → U introduced in More on
Groupoids in Spaces, Section 12. It is clear that this transformation of functors
is injective (since we can recover σ from Zσ as the inverse of the isomorphism
Zσ → ZU ′). By More on Groupoids in Spaces, Proposition 12.11 we know that
(W/U)fin is an algebraic space étale over U . Hence to finish the proof in this case
it suffices to show that F → (W/U)fin is representable and an open immersion.
To see this suppose that we are given a morphism of schemes U ′ → U and an open
subspace Z ′ ⊂ WU ′ such that Z ′ → U ′ is finite. Then it suffices to show that there
exists an open subscheme U ′′ ⊂ U ′ such that a morphism T → U ′ factors through
U ′′ if and only if Z ′ ×U ′ T maps isomorphically to Z×U ′ T . This follows from More
on Morphisms of Spaces, Lemma 49.6 (here we use that Z → B is flat and locally
of finite presentation as well as finite). Hence we have proved the lemma in case
W → Z is separated as well as étale.
In the general case we choose a separated scheme W ′ and a surjective étale mor-
phism W ′ → W . Note that the morphisms W ′ → W and W → Z are separated as
their source is separated. Denote F ′ the functor associated to W ′ → Z → U as in

https://stacks.math.columbia.edu/tag/05XR
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the lemma. In the first paragraph of the proof we showed that F ′ is representable
by an algebraic space étale over U . By Lemma 9.1 the map of functors F ′ → F
is surjective for the étale topology on Sch/U . Moreover, if U ′ and σ : ZU ′ → WU ′

define a point ξ ∈ F (U ′), then the fibre product
F ′′ = F ′ ×F,ξ U

′

is the functor on Sch/U ′ associated to the morphisms
W ′

U ′ ×WU′ ,σ ZU ′ → ZU ′ → U ′.

Since the first morphism is separated as a base change of a separated morphism, we
see that F ′′ is an algebraic space étale over U ′ by the result of the first paragraph.
It follows that F ′ → F is a surjective étale transformation of functors, which is
representable by algebraic spaces. Hence F is an algebraic space by Bootstrap,
Theorem 10.1. Since F ′ → F is an étale surjective morphism of algebraic spaces it
follows that F → U is étale because F ′ → U is étale. □

10. Relative morphisms

05Y0 We continue the discussion started in More on Morphisms, Section 68.
Let S be a scheme. Let Z → B and X → B be morphisms of algebraic spaces over
S. Given a scheme T we can consider pairs (a, b) where a : T → B is a morphism
and b : T ×a,B Z → T ×a,B X is a morphism over T . Picture

(10.0.1)05Y1

T ×a,B Z

$$

b
// T ×a,B X

zz

Z

��

X

��
T

a // B

Of course, we can also think of b as a morphism b : T ×a,B Z → X such that

T ×a,B Z //

��

b **
Z

��

X

��
T

a // B

commutes. In this situation we can define a functor
(10.0.2)05Y2 MorB(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.

Lemma 10.1.05Y3 Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. Then

(1) MorB(Z,X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,MorB(Z,X)) = {(a, b) as in (10.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of
T (as in Topologies on Spaces, Section 7). Suppose that (ai, bi) ∈ MorB(Z,X)(Ti)
such that (ai, bi)|Ti×T Tj = (aj , bj)|Ti×T Tj for all i, j. Then by Descent on Spaces,
Lemma 7.2 there exists a unique morphism a : T → B such that ai is the composi-
tion of Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering too and

https://stacks.math.columbia.edu/tag/05Y3
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the same lemma implies there exists a unique morphism b : T ×a,B Z → T ×a,B X
such that bi is the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈
MorB(Z,X)(T ) restricts to (ai, bi) over Ti for all i.
Note that the result of the preceding paragraph in particular implies (1).
Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (10.0.1).
Let v : T → MorB(Z,X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ MorB(Z,X)(U) corresponds
to a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As
v is a transformation of functors we see that the pullbacks of (aU , bU ) by s and t
agree. Hence, since {U → T} is an fppf covering, we may apply the result of the
first paragraph that deduce that there exists a unique pair (a, b) over T .
Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → MorB(Z,X) by the Yoneda lemma (Categories, Lemma 3.5). As the two
pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two maps
ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces, Lemma 9.1
and since MorB(Z,X) is an fppf sheaf by (1) we conclude that v factors through a
map T → MorB(Z,X).
We omit the verification that the two constructions above are mutually inverse. □

Lemma 10.2.05Y4 Let S be a scheme. Let Z → B, X → B, and B′ → B be morphisms
of algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X. Then

MorB′(Z ′, X ′) = B′ ×B MorB(Z,X)
in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 10.1 and the fact that a fibre product of sheaves is the same as the corre-
sponding fibre product of pre-sheaves (i.e., functors). □

Lemma 10.3.05Y5 Let S be a scheme. Let Z → B and X ′ → X → B be morphisms
of algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then MorB(Z,X ′) → MorB(Z,X) is representable by algebraic spaces and étale.
If X ′ → X is also surjective, then MorB(Z,X ′) → MorB(Z,X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of MorB(Z,X)(U). We
have to prove that the functor

hU ×ξ,MorB(Z,X) MorB(Z,X ′)
is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 9.1
which guarantees that F → U is surjective in the situation above. □

https://stacks.math.columbia.edu/tag/05Y4
https://stacks.math.columbia.edu/tag/05Y5
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Proposition 10.4.05Y7 Let S be a scheme. Let Z → B and X → B be morphisms
of algebraic spaces over S. If Z → B is finite locally free then MorB(Z,X) is an
algebraic space.
Proof. Choose a scheme B′ =

∐
B′

i which is a disjoint union of affine schemes B′
i

and an étale surjective morphism B′ → B. We may also assume that B′
i ×BZ is the

spectrum of a ring which is finite free as a Γ(B′
i,OB′

i
)-module. By Lemma 10.2 and

Spaces, Lemma 5.5 the morphism MorB′(Z ′, X ′) → MorB(Z,X) is surjective étale.
Hence by Bootstrap, Theorem 10.1 it suffices to prove the proposition when B = B′

is a disjoint union of affine schemes B′
i so that each B′

i ×B Z is finite free over B′
i.

Then it actually suffices to prove the result for the restriction to each B′
i. Thus we

may assume that B is affine and that Γ(Z,OZ) is a finite free Γ(B,OB)-module.
Choose a scheme X ′ which is a disjoint union of affine schemes and a surjective étale
morphism X ′ → X. By Lemma 10.3 the morphism MorB(Z,X ′) → MorB(Z,X)
is representable by algebraic spaces, étale, and surjective. Hence by Bootstrap,
Theorem 10.1 it suffices to prove the proposition when X is a disjoint union of
affine schemes. This reduces us to the case discussed in the next paragraph.
Assume X =

∐
i∈I Xi is a disjoint union of affine schemes, B is affine, and that

Γ(Z,OZ) is a finite free Γ(B,OB)-module. For any finite subset E ⊂ I set

FE = MorB(Z,
∐

i∈E
Xi).

By More on Morphisms, Lemma 68.1 we see that FE is an algebraic space. Consider
the morphism ∐

E⊂I finite
FE −→ MorB(Z,X)

Each of the morphisms FE → MorB(Z,X) is an open immersion, because it is
simply the locus parametrizing pairs (a, b) where b maps into the open subscheme∐

i∈E Xi of X. Moreover, if T is quasi-compact, then for any pair (a, b) the image
of b is contained in

∐
i∈E Xi for some E ⊂ I finite. Hence the displayed arrow is in

fact an open covering and we win3 by Spaces, Lemma 8.5. □

11. Restriction of scalars

05Y8 Suppose X → Z → B are morphisms of algebraic spaces over S. Given a scheme T
we can consider pairs (a, b) where a : T → B is a morphism and b : T ×a,B Z → X
is a morphism over Z. Picture

(11.0.1)05Y9

X

��
T ×a,B Z

��

b

::

// Z

��
T

a // B

In this situation we can define a functor
(11.0.2)05YA ResZ/B(X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}

3Modulo some set theoretic arguments. Namely, we have to show that
∐
FE is an algebraic

space. This follows because |I| ≤ size(X) and size(FE) ≤ size(X) as follows from the explicit
description of FE in the proof of More on Morphisms, Lemma 68.1. Some details omitted.

https://stacks.math.columbia.edu/tag/05Y7
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Sometimes we think of this as a functor defined on the category of schemes over B,
in which case we drop a from the notation.

Lemma 11.1.05YB Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. Then

(1) ResZ/B(X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T,ResZ/B(X)) = {(a, b) as in (11.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 7). Suppose that (ai, bi) ∈ ResZ/B(X)(Ti) such
that (ai, bi)|Ti×T Tj = (aj , bj)|Ti×T Tj for all i, j. Then by Descent on Spaces, Lemma
7.2 there exists a unique morphism a : T → B such that ai is the composition of
Ti → T and a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering too and the same
lemma implies there exists a unique morphism b : T ×a,B Z → X such that bi is
the composition of Ti ×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈ ResZ/B(X)(T )
restricts to (ai, bi) over Ti for all i.
Note that the result of the preceding paragraph in particular implies (1).
Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair (a, b) fitting into (11.0.1).
Let v : T → ResZ/B(X) be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ ResZ/B(X)(U) corresponds to
a pair (aU , bU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , bU ) by s and t agree.
Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, b) over T .
Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors
v : hU → ResZ/B(X) by the Yoneda lemma (Categories, Lemma 3.5). As the two
pullbacks s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two maps
ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces, Lemma 9.1
and since ResZ/B(X) is an fppf sheaf by (1) we conclude that v factors through a
map T → ResZ/B(X).
We omit the verification that the two constructions above are mutually inverse. □

Of course the sheaf ResZ/B(X) comes with a natural transformation of functors
ResZ/B(X) → B. We will use this without further mention in the following.

Lemma 11.2.05YC Let S be a scheme. Let X → Z → B and B′ → B be morphisms
of algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X. Then

ResZ′/B′(X ′) = B′ ×B ResZ/B(X)
in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The
equality as sheaves follows from this because both sides are sheaves according to
Lemma 11.1 and the fact that a fibre product of sheaves is the same as the corre-
sponding fibre product of pre-sheaves (i.e., functors). □

https://stacks.math.columbia.edu/tag/05YB
https://stacks.math.columbia.edu/tag/05YC
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Lemma 11.3.05YD Let S be a scheme. Let X ′ → X → Z → B be morphisms of
algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then ResZ/B(X ′) → ResZ/B(X) is representable by algebraic spaces and étale. If
X ′ → X is also surjective, then ResZ/B(X ′) → ResZ/B(X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of ResZ/B(X)(U). We
have to prove that the functor

hU ×ξ,ResZ/B(X) ResZ/B(X ′)

is representable by an algebraic space étale over U . Set ZU = U ×a,B Z and
W = ZU ×b,X X ′. Then W → ZU → U is as in Lemma 9.2 and the sheaf F
defined there is identified with the fibre product displayed above. Hence the first
assertion of the lemma. The second assertion follows from this and Lemma 9.1
which guarantees that F → U is surjective in the situation above. □

At this point we can use the lemmas above to prove that ResZ/B(X) is an algebraic
space whenever Z → B is finite locally free in almost exactly the same way as in the
proof that MorB(Z,X) is an algebraic spaces, see Proposition 10.4. Instead we will
directly deduce this result from the following lemma and the fact that MorB(Z,X)
is an algebraic space.

Lemma 11.4.05YE Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. The following diagram

MorB(Z,X) // MorB(Z,Z)

ResZ/B(X) //

OO

B

idZ

OO

is a cartesian diagram of sheaves on (Sch/S)fppf .

Proof. Omitted. Hint: Exercise in the functorial point of view in algebraic geom-
etry. □

Proposition 11.5.05YF Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. If Z → B is finite locally free then ResZ/B(X) is an algebraic space.

Proof. By Proposition 10.4 the functors MorB(Z,X) and MorB(Z,Z) are alge-
braic spaces. Hence this follows from the cartesian diagram of Lemma 11.4 and the
fact that fibre products of algebraic spaces exist and are given by the fibre product
in the underlying category of sheaves of sets (see Spaces, Lemma 7.2). □

12. Finite Hilbert stacks

05XM In this section we prove some results concerning the finite Hilbert stacks Hd(X/Y)
introduced in Examples of Stacks, Section 18.

https://stacks.math.columbia.edu/tag/05YD
https://stacks.math.columbia.edu/tag/05YE
https://stacks.math.columbia.edu/tag/05YF
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Lemma 12.1.05XN Consider a 2-commutative diagram

X ′
G
//

F ′

��

X

F

��
Y ′ H // Y

of stacks in groupoids over (Sch/S)fppf with a given 2-isomorphism γ : H ◦ F ′ →
F ◦G. In this situation we obtain a canonical 1-morphism Hd(X ′/Y ′) → Hd(X/Y).
This morphism is compatible with the forgetful 1-morphisms of Examples of Stacks,
Equation (18.2.1).

Proof. We map the object (U,Z, y′, x′, α′) to the object (U,Z,H(y′), G(x′), γ ⋆
idH ⋆ α′) where ⋆ denotes horizontal composition of 2-morphisms, see Categories,
Definition 28.1. To a morphism (f, g, b, a) : (U1, Z1, y

′
1, x

′
1, α

′
1) → (U2, Z2, y

′
2, x

′
2, α

′
2)

we assign (f, g,H(b), G(a)). We omit the verification that this defines a functor
between categories over (Sch/S)fppf . □

Lemma 12.2.05XP In the situation of Lemma 12.1 assume that the given square is
2-cartesian. Then the diagram

Hd(X ′/Y ′) //

��

Hd(X/Y)

��
Y ′ // Y

is 2-cartesian.

Proof. We get a 2-commutative diagram by Lemma 12.1 and hence we get a 1-
morphism (i.e., a functor)

Hd(X ′/Y ′) −→ Y ′ ×Y Hd(X/Y)
We indicate why this functor is essentially surjective. Namely, an object of the
category on the right hand side is given by a scheme U over S, an object y′ of Y ′

U ,
an object (U,Z, y, x, α) of Hd(X/Y) over U and an isomorphism H(y′) → y in YU .
The assumption means exactly that there exists an object x′ of X ′

Z such that there
exist isomorphisms G(x′) ∼= x and α′ : y′|Z → F ′(x′) compatible with α. Then we
see that (U,Z, y′, x′, α′) is an object of Hd(X ′/Y ′) over U . Details omitted. □

Lemma 12.3.05YG In the situation of Lemma 12.1 assume
(1) Y ′ = Y and H = idY ,
(2) G is representable by algebraic spaces and étale.

Then Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. If G
is also surjective, then Hd(X ′/Y) → Hd(X/Y) is surjective.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product
(12.3.1)05XT (Sch/U)fppf ×ξ,Hd(X /Y) Hd(X ′/Y)
is representable by an algebraic space étale over U . An object of this over U ′

corresponds to an object x′ in the fibre category of X ′ over ZU ′ such that G(x′) ∼=
x|ZU′ . By assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

https://stacks.math.columbia.edu/tag/05XN
https://stacks.math.columbia.edu/tag/05XP
https://stacks.math.columbia.edu/tag/05YG
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is representable by an algebraic space W such that the projection W → Z is étale.
Then (12.3.1) is representable by the algebraic space F parametrizing sections of
W → Z over U introduced in Lemma 9.2. Since F → U is étale we conclude that
Hd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. Finally, if
X ′ → X is surjective also, then W → Z is surjective, and hence F → U is surjective
by Lemma 9.1. Thus in this case Hd(X ′/Y) → Hd(X/Y) is also surjective. □

Lemma 12.4.05XS In the situation of Lemma 12.1. Assume that G, H are rep-
resentable by algebraic spaces and étale. Then Hd(X ′/Y ′) → Hd(X/Y) is rep-
resentable by algebraic spaces and étale. If also H is surjective and the induced
functor X ′ → Y ′ ×Y X is surjective, then Hd(X ′/Y ′) → Hd(X/Y) is surjective.

Proof. Set X ′′ = Y ′ ×Y X . By Lemma 4.1 the 1-morphism X ′ → X ′′ is repre-
sentable by algebraic spaces and étale (in particular the condition in the second
statement of the lemma that X ′ → X ′′ be surjective makes sense). We obtain a
2-commutative diagram

X ′ //

��

X ′′ //

��

X

��
Y ′ // Y ′ // Y

It follows from Lemma 12.2 that Hd(X ′′/Y ′) is the base change of Hd(X/Y) by
Y ′ → Y. In particular we see that Hd(X ′′/Y ′) → Hd(X/Y) is representable by
algebraic spaces and étale, see Algebraic Stacks, Lemma 10.6. Moreover, it is also
surjective if H is. Hence if we can show that the result holds for the left square
in the diagram, then we’re done. In this way we reduce to the case where Y ′ = Y
which is the content of Lemma 12.3. □

Lemma 12.5.05YH Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume that ∆ : Y → Y × Y is representable by algebraic spaces.
Then

Hd(X/Y) −→ Hd(X ) × Y
see Examples of Stacks, Equation (18.2.1) is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, p, x, 1) be an object of Hd(X ) =
Hd(X/S) over U . Here p is just the structure morphism of U . The fifth component
1 exists and is unique since everything is over S. Also, let y be an object of Y over
U . We have to show the 2-fibre product

(12.5.1)05YI (Sch/U)fppf ×ξ×y,Hd(X )×Y Hd(X/Y)

is representable by an algebraic space. To explain why this is so we introduce

I = IsomY(y|Z , F (x))

which is an algebraic space over Z by assumption. Let a : U ′ → U be a scheme
over U . What does it mean to give an object of the fibre category of (12.5.1) over
U ′? Well, it means that we have an object ξ′ = (U ′, Z ′, y′, x′, α′) of Hd(X/Y) over
U ′ and isomorphisms (U ′, Z ′, p′, x′, 1) ∼= (U,Z, p, x, 1)|U ′ and y′ ∼= y|U ′ . Thus ξ′ is
isomorphic to (U ′, U ′ ×a,U Z, a∗y, x|U ′×a,U Z , α) for some morphism

α : a∗y|U ′×a,U Z −→ F (x|U ′×a,U Z)

https://stacks.math.columbia.edu/tag/05XS
https://stacks.math.columbia.edu/tag/05YH
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in the fibre category of Y over U ′ ×a,U Z. Hence we can view α as a morphism
b : U ′ ×a,U Z → I. In this way we see that (12.5.1) is representable by ResZ/U (I)
which is an algebraic space by Proposition 11.5. □

The following lemma is a (partial) generalization of Lemma 12.3.

Lemma 12.6.05YJ Let F : X → Y and G : X ′ → X be 1-morphisms of stacks in
groupoids over (Sch/S)fppf . If G is representable by algebraic spaces, then the
1-morphism

Hd(X ′/Y) −→ Hd(X/Y)
is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object of Hd(X/Y) over
U . We have to prove that the 2-fibre product

(12.6.1)05YK (Sch/U)fppf ×ξ,Hd(X /Y) Hd(X ′/Y)

is representable by an algebraic space étale over U . An object of this over a : U ′ → U
corresponds to an object x′ of X ′ over U ′ ×a,U Z such that G(x′) ∼= x|U ′×a,U Z . By
assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space X over Z. It follows that (12.6.1) is repre-
sentable by ResZ/U (X), which is an algebraic space by Proposition 11.5. □

Lemma 12.7.06CH Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces and locally of finite
presentation. Then

p : Hd(X/Y) → Y
is limit preserving on objects.

Proof. This means we have to show the following: Given
(1) an affine scheme U = limi Ui which is written as the directed limit of affine

schemes Ui over S,
(2) an object yi of Y over Ui for some i, and
(3) an object Ξ = (U,Z, y, x, α) of Hd(X/Y) over U such that y = yi|U ,

then there exists an i′ ≥ i and an object Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) of Hd(X/Y)
over Ui′ with Ξi′ |U = Ξ and yi′ = yi|Ui′ . Namely, the last two equalities will take
care of the commutativity of (5.0.1).

Let Xyi
→ Ui be an algebraic space representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,F X .

Note that Xyi
→ Ui is locally of finite presentation by our assumption on F . Write

Ξ. It is clear that ξ = (Z,Z → Ui, x, α) is an object of the 2-fibre product displayed
above, hence ξ gives rise to a morphism fξ : Z → Xyi of algebraic spaces over Ui

(since Xyi is the functor of isomorphisms classes of objects of (Sch/Ui)fppf ×y,Y,F X ,
see Algebraic Stacks, Lemma 8.2). By Limits, Lemmas 10.1 and 8.8 there exists an
i′ ≥ i and a finite locally free morphism Zi′ → Ui′ of degree d whose base change

https://stacks.math.columbia.edu/tag/05YJ
https://stacks.math.columbia.edu/tag/06CH
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to U is Z. By Limits of Spaces, Proposition 3.10 we may, after replacing i′ by a
bigger index, assume there exists a morphism fi′ : Zi′ → Xyi such that

Z

��

//

fξ

((
Zi′

��

fi′
// Xyi

��
U // Ui′ // Ui

is commutative. We set Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) where
(1) yi′ is the object of Y over Ui′ which is the pullback of yi to Ui′ ,
(2) xi′ is the object of X over Zi′ corresponding via the 2-Yoneda lemma to

the 1-morphism

(Sch/Zi′)fppf → SXyi
→ (Sch/Ui)fppf ×yi,Y,F X → X

where the middle arrow is the equivalence which defines Xyi (notation as
in Algebraic Stacks, Sections 8 and 7).

(3) αi′ : yi′ |Zi′ → F (xi′) is the isomorphism coming from the 2-commutativity
of the diagram

(Sch/Zi′)fppf
//

))

(Sch/Ui)fppf ×yi,Y,F X //

��

X

F

��
(Sch/Ui′)fppf

// Y

Recall that fξ : Z → Xyi
was the morphism corresponding to the object ξ =

(Z,Z → Ui, x, α) of (Sch/Ui)fppf ×yi,Y,F X over Z. By construction fi′ is the
morphism corresponding to the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′). As fξ =
fi′ ◦ (Z → Zi′) we see that the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′) pulls back to ξ
over Z. Thus xi′ pulls back to x and αi′ pulls back to α. This means that Ξi′ pulls
back to Ξ over U and we win. □

13. The finite Hilbert stack of a point

05YL Let d ≥ 1 be an integer. In Examples of Stacks, Definition 18.2 we defined a stack
in groupoids Hd. In this section we prove that Hd is an algebraic stack. We will
throughout assume that S = Spec(Z). The general case will follow from this by
base change. Recall that the fibre category of Hd over a scheme T is the category
of finite locally free morphisms π : Z → T of degree d. Instead of classifying these
directly we first study the quasi-coherent sheaves of algebras π∗OZ .

Let R be a ring. Let us temporarily make the following definition: A free d-
dimensional algebra over R is given by a commutative R-algebra structure m on
R⊕d such that e1 = (1, 0, . . . , 0) is a unit4. We think of m as an R-linear map

m : R⊕d ⊗R R⊕d −→ R⊕d

4It may be better to think of this as a pair consisting of a multiplication map m : R⊕d ⊗R

R⊕d → R⊕d and a ring map ψ : R → R⊕d satisfying a bunch of axioms.
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such that m(e1, x) = m(x, e1) = x and such that m defines a commutative and
associative ring structure. If we write m(ei, ej) =

∑
ak

ijek then we see this boils
down to the conditions

∑
l a

l
ija

m
lk =

∑
l a

m
il a

l
jk ∀i, j, k,m

ak
ij = ak

ji ∀i, j, k
aj

i1 = δij ∀i, j
where δij is the Kronecker δ-function. OK, so let’s define

Runiv = Z[ak
ij ]/J

where the ideal J is the ideal generated by the relations displayed above. Denote
muniv : R⊕d

univ ⊗Runiv
R⊕d

univ −→ R⊕d
univ

the free d-dimensional algebra m over Runiv whose structure constants are the
classes of ak

ij modulo J . Then it is clear that given any free d-dimensional algebra
m over a ring R there exists a unique Z-algebra homomorphism ψ : Runiv → R
such that ψ∗muniv = m (this means that m is what you get by applying the base
change functor − ⊗Runiv R to muniv). In other words, setting X = Spec(Runiv) we
obtain a canonical identification

X(T ) = {free d-dimensional algebras m over R}
for varying T = Spec(R). By Zariski localization we obtain the following seemingly
more general identification
(13.0.1)05YM X(T ) = {free d-dimensional algebras m over Γ(T,OT )}
for any scheme T .
Next we talk a little bit about isomorphisms of free d-dimensional R-algebras.
Namely, suppose that m, m′ are two free d-dimensional algebras over a ring R. An
isomorphism from m to m′ is given by an invertible R-linear map

φ : R⊕d −→ R⊕d

such that φ(e1) = e1 and such that
m ◦ φ⊗ φ = φ ◦m′.

Note that we can compose these so that the collection of free d-dimensional algebras
over R becomes a category. In this way we obtain a functor
(13.0.2)05YN FAd : Schopp

fppf −→ Groupoids

from the category of schemes to groupoids: to a scheme T we associate the set of
free d-dimensional algebras over Γ(T,OT ) endowed with the structure of a category
using the notion of isomorphisms just defined.
The above suggests we consider the functor G in groups which associates to any
scheme T the group

G(T ) = {g ∈ GLd(Γ(T,OT )) | g(e1) = e1}
It is clear that G ⊂ GLd (see Groupoids, Example 5.4) is the closed subgroup
scheme cut out by the equations x11 = 1 and xi1 = 0 for i > 1. Hence G is a
smooth affine group scheme over Spec(Z). Consider the action

a : G×Spec(Z) X −→ X
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which associates to a T -valued point (g,m) with T = Spec(R) on the left hand side
the free d-dimensional algebra over R given by

a(g,m) = g−1 ◦m ◦ g ⊗ g.

Note that this means that g defines an isomorphism m → a(g,m) of d-dimensional
free R-algebras. We omit the verification that a indeed defines an action of the
group scheme G on the scheme X.

Lemma 13.1.05YP The functor in groupoids FAd defined in (13.0.2) is isomorphic (!)
to the functor in groupoids which associates to a scheme T the category with

(1) set of objects is X(T ),
(2) set of morphisms is G(T ) ×X(T ),
(3) s : G(T ) ×X(T ) → X(T ) is the projection map,
(4) t : G(T ) ×X(T ) → X(T ) is a(T ), and
(5) composition G(T ) ×X(T ) ×s,X(T ),t G(T ) ×X(T ) → G(T ) ×X(T ) is given

by ((g,m), (g′,m′)) 7→ (gg′,m′).

Proof. We have seen the rule on objects in (13.0.1). We have also seen above that
g ∈ G(T ) can be viewed as a morphism from m to a(g,m) for any free d-dimensional
algebra m. Conversely, any morphism m → m′ is given by an invertible linear map
φ which corresponds to an element g ∈ G(T ) such that m′ = a(g,m). □

In fact the groupoid (X,G×X, s, t, c) described in the lemma above is the groupoid
associated to the action a : G×X → X as defined in Groupoids, Lemma 16.1. Since
G is smooth over Spec(Z) we see that the two morphisms s, t : G × X → X are
smooth: by symmetry it suffices to prove that one of them is, and s is the base
change of G → Spec(Z). Hence (G × X,X, s, t, c) is a smooth groupoid scheme,
and the quotient stack [X/G] is an algebraic stack by Algebraic Stacks, Theorem
17.3.

Proposition 13.2.05YQ The stack Hd is equivalent to the quotient stack [X/G] de-
scribed above. In particular Hd is an algebraic stack.

Proof. Note that by Groupoids in Spaces, Definition 20.1 the quotient stack [X/G]
is the stackification of the category fibred in groupoids associated to the “presheaf
in groupoids” which associates to a scheme T the groupoid

(X(T ), G(T ) ×X(T ), s, t, c).

Since this “presheaf in groupoids” is isomorphic to FAd by Lemma 13.1 it suffices to
prove that the Hd is the stackification of (the category fibred in groupoids associated
to the “presheaf in groupoids”) FAd. To do this we first define a functor

Spec : FAd −→ Hd

Recall that the fibre category of Hd over a scheme T is the category of finite locally
free morphisms Z → T of degree d. Thus given a scheme T and a free d-dimensional
Γ(T,OT )-algebra m we may assign to this the object

Z = Spec
T

(A)

of Hd,T where A = O⊕d
T endowed with a OT -algebra structure via m. Moreover, if

m′ is a second such free d-dimensional Γ(T,OT )-algebra and if φ : m → m′ is an

https://stacks.math.columbia.edu/tag/05YP
https://stacks.math.columbia.edu/tag/05YQ
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isomorphism of these, then the induced OT -linear map φ : O⊕d
T → O⊕d

T induces an
isomorphism

φ : A′ −→ A
of quasi-coherent OT -algebras. Hence

Spec
T

(φ) : Spec
T

(A) −→ Spec
T

(A′)
is a morphism in the fibre category Hd,T . We omit the verification that this con-
struction is compatible with base change so we get indeed a functor Spec : FAd →
Hd as claimed above.
To show that Spec : FAd → Hd induces an equivalence between the stackification
of FAd and Hd it suffices to check that

(1) Isom(m,m′) = Isom(Spec(m),Spec(m′)) for any m,m′ ∈ FAd(T ).
(2) for any scheme T and any object Z → T of Hd,T there exists a covering

{Ti → T} such that Z|Ti is isomorphic to Spec(m) for some m ∈ FAd(Ti),
and

see Stacks, Lemma 9.1. The first statement follows from the observation that any
isomorphism

Spec
T

(A) −→ Spec
T

(A′)
is necessarily given by a global invertible matrix g when A = A′ = O⊕d

T as modules.
To prove the second statement let π : Z → T be a finite locally free morphism of
degree d. Then A is a locally free sheaf OT -modules of rank d. Consider the
element 1 ∈ Γ(T,A). This element is nonzero in A ⊗OT,t

κ(t) for every t ∈ T since
the scheme Zt = Spec(A ⊗OT,t

κ(t)) is nonempty being of degree d > 0 over κ(t).
Thus 1 : OT → A can locally be used as the first basis element (for example you can
use Algebra, Lemma 79.4 parts (1) and (2) to see this). Thus, after localizing on T
we may assume that there exists an isomorphism φ : A → O⊕d

T such that 1 ∈ Γ(A)
corresponds to the first basis element. In this situation the multiplication map
A ⊗OT

A → A translates via φ into a free d-dimensional algebra m over Γ(T,OT ).
This finishes the proof. □

14. Finite Hilbert stacks of spaces

05YR The finite Hilbert stack of an algebraic space is an algebraic stack.

Lemma 14.1.05YS Let S be a scheme. Let X be an algebraic space over S. Then
Hd(X) is an algebraic stack.

Proof. The 1-morphism
Hd(X) −→ Hd

is representable by algebraic spaces according to Lemma 12.6. The stack Hd is an
algebraic stack according to Proposition 13.2. Hence Hd(X) is an algebraic stack
by Algebraic Stacks, Lemma 15.4. □

This lemma allows us to bootstrap.

Lemma 14.2.06CI Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf such that

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat, and locally of finite

presentation.

https://stacks.math.columbia.edu/tag/05YS
https://stacks.math.columbia.edu/tag/06CI
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Then Hd(X/Y) is an algebraic stack.

Proof. Choose a representable stack in groupoids U over S and a 1-morphism
f : U → Hd(X ) which is representable by algebraic spaces, smooth, and surjective.
This is possible because Hd(X ) is an algebraic stack by Lemma 14.1. Consider the
2-fibre product

W = Hd(X/Y) ×Hd(X ),f U .
Since U is representable (in particular a stack in setoids) it follows from Examples
of Stacks, Lemma 18.3 and Stacks, Lemma 6.7 that W is a stack in setoids. The
1-morphism W → Hd(X/Y) is representable by algebraic spaces, smooth, and
surjective as a base change of the morphism f (see Algebraic Stacks, Lemmas 9.7
and 10.6). Thus, if we can show that W is representable by an algebraic space,
then the lemma follows from Algebraic Stacks, Lemma 15.3.
The diagonal of Y is representable by algebraic spaces according to Lemma 4.3. We
may apply Lemma 12.5 to see that the 1-morphism

Hd(X/Y) −→ Hd(X ) × Y
is representable by algebraic spaces. Consider the 2-fibre product

V = Hd(X/Y) ×(Hd(X )×Y),f×F (U × X ).
The projection morphism V → U × X is representable by algebraic spaces as a
base change of the last displayed morphism. Hence V is an algebraic space (see
Bootstrap, Lemma 3.6 or Algebraic Stacks, Lemma 9.8). The 1-morphism V → U
fits into the following 2-cartesian diagram

V

��

// X

F

��
W // Y

because
Hd(X/Y) ×(Hd(X )×Y),f×F (U × X ) = (Hd(X/Y) ×Hd(X ),f U) ×Y,F X .

Hence V → W is representable by algebraic spaces, surjective, flat, and locally of
finite presentation as a base change of F . It follows that the same thing is true
for the corresponding sheaves of sets associated to V and W, see Algebraic Stacks,
Lemma 10.4. Thus we conclude that the sheaf associated to W is an algebraic space
by Bootstrap, Theorem 10.1. □

15. LCI locus in the Hilbert stack

06CJ Please consult Examples of Stacks, Section 18 for notation. Fix a 1-morphism F :
X −→ Y of stacks in groupoids over (Sch/S)fppf . Assume that F is representable
by algebraic spaces. Fix d ≥ 1. Consider an object (U,Z, y, x, α) of Hd. There is
an induced 1-morphism

(Sch/Z)fppf −→ (Sch/U)fppf ×y,Y,F X
(by the universal property of 2-fibre products) which is representable by a morphism
of algebraic spaces over U . Namely, since F is representable by algebraic spaces,
we may choose an algebraic space Xy over U which represents the 2-fibre product
(Sch/U)fppf ×y,Y,F X . Since α : y|Z → F (x) is an isomorphism we see that
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ξ = (Z,Z → U, x, α) is an object of the 2-fibre product (Sch/U)fppf ×y,Y,F X over
Z. Hence ξ gives rise to a morphism xα : Z → Xy of algebraic spaces over U as
Xy is the functor of isomorphisms classes of objects of (Sch/U)fppf ×y,Y,F X , see
Algebraic Stacks, Lemma 8.2. Here is a picture

(15.0.1)06CK

Z
xα

//

  

Xy

��
U

(Sch/Z)fppf

))

x,α
// (Sch/U)fppf ×y,Y,F X //

��

X

F

��
(Sch/U)fppf

y // Y

We remark that if (f, g, b, a) : (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is a morphism
between objects of Hd, then the morphism x′

α′ : Z ′ → X ′
y′ is the base change of the

morphism xα by the morphism g : U ′ → U (details omitted).

Now assume moreover that F is flat and locally of finite presentation. In this
situation we define a full subcategory

Hd,lci(X/Y) ⊂ Hd(X/Y)

consisting of those objects (U,Z, y, x, α) of Hd(X/Y) such that the corresponding
morphism xα : Z → Xy is unramified and a local complete intersection morphism
(see Morphisms of Spaces, Definition 38.1 and More on Morphisms of Spaces, Def-
inition 48.1 for definitions).

Lemma 15.1.06CL Let S be a scheme. Fix a 1-morphism F : X −→ Y of stacks in
groupoids over (Sch/S)fppf . Assume F is representable by algebraic spaces, flat,
and locally of finite presentation. Then Hd,lci(X/Y) is a stack in groupoids and the
inclusion functor

Hd,lci(X/Y) −→ Hd(X/Y)
is representable and an open immersion.

Proof. Let Ξ = (U,Z, y, x, α) be an object of Hd. It follows from the remark
following (15.0.1) that the pullback of Ξ by U ′ → U belongs to Hd,lci(X/Y) if
and only if the base change of xα is unramified and a local complete intersection
morphism. Note that Z → U is finite locally free (hence flat, locally of finite
presentation and universally closed) and that Xy → U is flat and locally of finite
presentation by our assumption on F . Then More on Morphisms of Spaces, Lemmas
49.1 and 49.7 imply exists an open subschemeW ⊂ U such that a morphism U ′ → U
factors through W if and only if the base change of xα via U ′ → U is unramified
and a local complete intersection morphism. This implies that

(Sch/U)fppf ×Ξ,Hd(X /Y) Hd,lci(X/Y)

is representable by W . Hence the final statement of the lemma holds. The first
statement (that Hd,lci(X/Y) is a stack in groupoids) follows from this and Algebraic
Stacks, Lemma 15.5. □

Local complete intersection morphisms are “locally unobstructed”. This holds in
much greater generality than the special case that we need in this chapter here.

Lemma 15.2.06D8 Let U ⊂ U ′ be a first order thickening of affine schemes. Let X ′ be
an algebraic space flat over U ′. Set X = U ×U ′ X ′. Let Z → U be finite locally free

https://stacks.math.columbia.edu/tag/06CL
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of degree d. Finally, let f : Z → X be unramified and a local complete intersection
morphism. Then there exists a commutative diagram

(Z ⊂ Z ′)

&&

(f,f ′)
// (X ⊂ X ′)

xx
(U ⊂ U ′)

of algebraic spaces over U ′ such that Z ′ → U ′ is finite locally free of degree d and
Z = U ×U ′ Z ′.

Proof. By More on Morphisms of Spaces, Lemma 48.12 the conormal sheaf CZ/X

of the unramified morphism Z → X is a finite locally free OZ-module and by More
on Morphisms of Spaces, Lemma 48.13 we have an exact sequence

0 → i∗CX/X′ → CZ/X′ → CZ/X → 0
of conormal sheaves. Since Z is affine this sequence is split. Choose a splitting

CZ/X′ = i∗CX/X′ ⊕ CZ/X

Let Z ⊂ Z ′′ be the universal first order thickening of Z over X ′ (see More on
Morphisms of Spaces, Section 15). Denote I ⊂ OZ′′ the quasi-coherent sheaf of
ideals corresponding to Z ⊂ Z ′′. By definition we have CZ/X′ is I viewed as a sheaf
on Z. Hence the splitting above determines a splitting

I = i∗CX/X′ ⊕ CZ/X

Let Z ′ ⊂ Z ′′ be the closed subscheme cut out by CZ/X ⊂ I viewed as a quasi-
coherent sheaf of ideals on Z ′′. It is clear that Z ′ is a first order thickening of
Z and that we obtain a commutative diagram of first order thickenings as in the
statement of the lemma.
Since X ′ → U ′ is flat and since X = U ×U ′ X ′ we see that CX/X′ is the pullback
of CU/U ′ to X, see More on Morphisms of Spaces, Lemma 18.1. Note that by
construction CZ/Z′ = i∗CX/X′ hence we conclude that CZ/Z′ is isomorphic to the
pullback of CU/U ′ to Z. Applying More on Morphisms of Spaces, Lemma 18.1
once again (or its analogue for schemes, see More on Morphisms, Lemma 10.1) we
conclude that Z ′ → U ′ is flat and that Z = U ×U ′ Z ′. Finally, More on Morphisms,
Lemma 10.3 shows that Z ′ → U ′ is finite locally free of degree d. □

Lemma 15.3.06D9 Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, and locally of
finite presentation. Then

p : Hd,lci(X/Y) → Y
is formally smooth on objects.

Proof. We have to show the following: Given
(1) an object (U,Z, y, x, α) of Hd,lci(X/Y) over an affine scheme U ,
(2) a first order thickening U ⊂ U ′, and
(3) an object y′ of Y over U ′ such that y′|U = y,

then there exists an object (U ′, Z ′, y′, x′, α′) of Hd,lci(X/Y) over U ′ with Z =
U ×U ′ Z ′, with x = x′|Z , and with α = α′|U . Namely, the last two equalities will
take care of the commutativity of (6.0.1).

https://stacks.math.columbia.edu/tag/06D9


CRITERIA FOR REPRESENTABILITY 29

Consider the morphism xα : Z → Xy constructed in Equation (15.0.1). De-
note similarly X ′

y′ the algebraic space over U ′ representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism X ′

y′ → U ′ is flat (and lo-
cally of finite presentation). As y′|U = y we see that Xy = U ×U ′ X ′

y′ . Hence
we may apply Lemma 15.2 to find Z ′ → U ′ finite locally free of degree d with
Z = U ×U ′ Z ′ and with Z ′ → X ′

y′ extending xα. By construction the morphism
Z ′ → X ′

y′ corresponds to a pair (x′, α′). It is clear that (U ′, Z ′, y′, x′, α′) is an
object of Hd(X/Y) over U ′ with Z = U ×U ′ Z ′, with x = x′|Z , and with α = α′|U .
As we’ve seen in Lemma 15.1 that Hd,lci(X/Y) ⊂ Hd(X/Y) is an “open substack”
it follows that (U ′, Z ′, y′, x′, α′) is an object of Hd,lci(X/Y) as desired. □

Lemma 15.4.06DA Let F : X → Y be a 1-morphism of stacks in groupoids over
(Sch/S)fppf . Assume F is representable by algebraic spaces, flat, surjective, and
locally of finite presentation. Then∐

d≥1
Hd,lci(X/Y) −→ Y

is surjective on objects.

Proof. It suffices to prove the following: For any field k and object y of Y over
Spec(k) there exists an integer d ≥ 1 and an object (U,Z, y, x, α) of Hd,lci(X/Y)
with U = Spec(k). Namely, in this case we see that p is surjective on objects in the
strong sense that an extension of the field is not needed.
Denote Xy the algebraic space over U = Spec(k) representing the 2-fibre product
(Sch/U ′)fppf ×y′,Y,F X . By assumption the morphism Xy → Spec(k) is surjective
and locally of finite presentation (and flat). In particular Xy is nonempty. Choose a
nonempty affine scheme V and an étale morphism V → Xy. Note that V → Spec(k)
is (flat), surjective, and locally of finite presentation (by Morphisms of Spaces,
Definition 28.1). Pick a closed point v ∈ V where V → Spec(k) is Cohen-Macaulay
(i.e., V is Cohen-Macaulay at v), see More on Morphisms, Lemma 22.7. Applying
More on Morphisms, Lemma 23.4 we find a regular immersion Z → V with Z = {v}.
This implies Z → V is a closed immersion. Moreover, it follows that Z → Spec(k) is
finite (for example by Algebra, Lemma 122.1). Hence Z → Spec(k) is finite locally
free of some degree d. Now Z → Xy is unramified as the composition of a closed
immersion followed by an étale morphism (see Morphisms of Spaces, Lemmas 38.3,
39.10, and 38.8). Finally, Z → Xy is a local complete intersection morphism as a
composition of a regular immersion of schemes and an étale morphism of algebraic
spaces (see More on Morphisms, Lemma 62.9 and Morphisms of Spaces, Lemmas
39.6 and 37.8 and More on Morphisms of Spaces, Lemmas 48.6 and 48.5). The
morphism Z → Xy corresponds to an object x of X over Z together with an
isomorphism α : y|Z → F (x). We obtain an object (U,Z, y, x, α) of Hd(X/Y). By
what was said above about the morphism Z → Xy we see that it actually is an
object of the subcategory Hd,lci(X/Y) and we win. □

16. Bootstrapping algebraic stacks

06DB The following theorem is one of the main results of this chapter.

Theorem 16.1.06DC Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) X is representable by an algebraic space, and

https://stacks.math.columbia.edu/tag/06DA
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(2) F is representable by algebraic spaces, surjective, flat and locally of finite
presentation,

then Y is an algebraic stack.

Proof. By Lemma 4.3 we see that the diagonal of Y is representable by algebraic
spaces. Hence we only need to verify the existence of a 1-morphism f : V → Y
of stacks in groupoids over (Sch/S)fppf with V representable and f surjective and
smooth. By Lemma 14.2 we know that∐

d≥1
Hd(X/Y)

is an algebraic stack. It follows from Lemma 15.1 and Algebraic Stacks, Lemma
15.5 that ∐

d≥1
Hd,lci(X/Y)

is an algebraic stack as well. Choose a representable stack in groupoids V over
(Sch/S)fppf and a surjective and smooth 1-morphism

V −→
∐

d≥1
Hd,lci(X/Y).

We claim that the composition

V −→
∐

d≥1
Hd,lci(X/Y) −→ Y

is smooth and surjective which finishes the proof of the theorem. In fact, the
smoothness will be a consequence of Lemmas 12.7 and 15.3 and the surjectivity a
consequence of Lemma 15.4. We spell out the details in the following paragraph.

By construction V →
∐

d≥1 Hd,lci(X/Y) is representable by algebraic spaces, sur-
jective, and smooth (and hence also locally of finite presentation and formally
smooth by the general principle Algebraic Stacks, Lemma 10.9 and More on Mor-
phisms of Spaces, Lemma 19.6). Applying Lemmas 5.3, 6.3, and 7.3 we see that
V →

∐
d≥1 Hd,lci(X/Y) is limit preserving on objects, formally smooth on objects,

and surjective on objects. The 1-morphism
∐

d≥1 Hd,lci(X/Y) → Y is
(1) limit preserving on objects: this is Lemma 12.7 for Hd(X/Y) → Y and we

combine it with Lemmas 15.1, 5.4, and 5.2 to get it for Hd,lci(X/Y) → Y,
(2) formally smooth on objects by Lemma 15.3, and
(3) surjective on objects by Lemma 15.4.

Using Lemmas 5.2, 6.2, and 7.2 we conclude that the composition V → Y is limit
preserving on objects, formally smooth on objects, and surjective on objects. Us-
ing Lemmas 5.3, 6.3, and 7.3 we see that V → Y is locally of finite presentation,
formally smooth, and surjective. Finally, using (via the general principle Alge-
braic Stacks, Lemma 10.9) the infinitesimal lifting criterion (More on Morphisms
of Spaces, Lemma 19.6) we see that V → Y is smooth and we win. □

17. Applications

06FG Our first task is to show that the quotient stack [U/R] associated to a “flat and
locally finitely presented groupoid” is an algebraic stack. See Groupoids in Spaces,
Definition 20.1 for the definition of the quotient stack. The following lemma is
preliminary and is the analogue of Algebraic Stacks, Lemma 17.2.
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Lemma 17.1.06FH Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite pre-
sentation. Then the morphism SU → [U/R] is flat, locally of finite presentation,
and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf

is surjective, flat, and locally of finite presentation. We already know that the left
hand side is representable by an algebraic space F , see Algebraic Stacks, Lemmas
17.1 and 10.11. Hence we have to show the corresponding morphism F → T of
algebraic spaces is surjective, locally of finite presentation, and flat. Since we are
working with properties of morphisms of algebraic spaces which are local on the
target in the fppf topology we may check this fppf locally on T . By construction,
there exists an fppf covering {Ti → T} of T such that x|(Sch/Ti)fppf

comes from
a morphism xi : Ti → U . (Note that F ×T Ti represents the 2-fibre product
SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change via Ti →
T .) Hence we may assume that x comes from x : T → U . In this case we see that

SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU ) ×SU
(Sch/T )fppf = SR ×SU

(Sch/T )fppf

The first equality by Categories, Lemma 31.10 and the second equality by Groupoids
in Spaces, Lemma 22.2. Clearly the last 2-fibre product is represented by the
algebraic space F = R ×s,U,x T and the projection R ×s,U,x T → T is flat and
locally of finite presentation as the base change of the flat locally finitely presented
morphism of algebraic spaces s : R → U . It is also surjective as s has a section
(namely the identity e : U → R of the groupoid). This proves the lemma. □

Here is the first main result of this section.

Theorem 17.2.06FI Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be
a groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite
presentation. Then the quotient stack [U/R] is an algebraic stack over S.

Proof. We check the two conditions of Theorem 16.1 for the morphism

(Sch/U)fppf −→ [U/R].

The first is trivial (as U is an algebraic space). The second is Lemma 17.1. □

18. When is a quotient stack algebraic?

06PI In Groupoids in Spaces, Section 20 we have defined the quotient stack [U/R] asso-
ciated to a groupoid (U,R, s, t, c) in algebraic spaces. Note that [U/R] is a stack
in groupoids whose diagonal is representable by algebraic spaces (see Bootstrap,
Lemma 11.5 and Algebraic Stacks, Lemma 10.11) and such that there exists an
algebraic space U and a 1-morphism (Sch/U)fppf → [U/R] which is an “fppf sur-
jection” in the sense that it induces a map on presheaves of isomorphism classes of
objects which becomes surjective after sheafification. However, it is not the case
that [U/R] is an algebraic stack in general. This is not a contradiction with The-
orem 16.1 as the 1-morphism (Sch/U)fppf → [U/R] may not be flat and locally of
finite presentation.

https://stacks.math.columbia.edu/tag/06FH
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The easiest way to make examples of non-algebraic quotient stacks is to look at
quotients of the form [S/G] where S is a scheme and G is a group scheme over
S acting trivially on S. Namely, we will see below (Lemma 18.3) that if [S/G] is
algebraic, then G → S has to be flat and locally of finite presentation. An explicit
example can be found in Examples, Section 52.

Lemma 18.1.06PJ Let S be a scheme and let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient stack [U/R]
is an algebraic stack if and only if there exists a morphism of algebraic spaces
g : U ′ → U such that

(1) the composition U ′ ×g,U,t R → R
s−→ U is a surjection of sheaves, and

(2) the morphisms s′, t′ : R′ → U ′ are flat and locally of finite presentation
where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via g.

Proof. First, assume that g : U ′ → U satisfies (1) and (2). Property (1) implies
that [U ′/R′] → [U/R] is an equivalence, see Groupoids in Spaces, Lemma 25.2. By
Theorem 17.2 the quotient stack [U ′/R′] is an algebraic stack. Hence [U/R] is an
algebraic stack too, see Algebraic Stacks, Lemma 12.4.
Conversely, assume that [U/R] is an algebraic stack. We may choose a scheme W
and a surjective smooth 1-morphism

f : (Sch/W )fppf −→ [U/R].
By the 2-Yoneda lemma (Algebraic Stacks, Section 5) this corresponds to an object
ξ of [U/R] over W . By the description of [U/R] in Groupoids in Spaces, Lemma
24.1 we can find a surjective, flat, locally finitely presented morphism b : U ′ → W
of schemes such that ξ′ = b∗ξ corresponds to a morphism g : U ′ → U . Note that
the 1-morphism

f ′ : (Sch/U ′)fppf −→ [U/R].
corresponding to ξ′ is surjective, flat, and locally of finite presentation, see Algebraic
Stacks, Lemma 10.5. Hence (Sch/U ′)fppf ×[U/R] (Sch/U ′)fppf which is represented
by the algebraic space

Isom[U/R](pr∗
0ξ

′,pr∗
1ξ

′) = (U ′ ×S U
′) ×(g◦pr0,g◦pr1),U×SU R = R′

(see Groupoids in Spaces, Lemma 22.1 for the first equality; the second is the
definition of restriction) is flat and locally of finite presentation over U ′ via both
s′ and t′ (by base change, see Algebraic Stacks, Lemma 10.6). By this description
of R′ and by Algebraic Stacks, Lemma 16.1 we obtain a canonical fully faithful 1-
morphism [U ′/R′] → [U/R]. This 1-morphism is essentially surjective because f ′ is
flat, locally of finite presentation, and surjective (see Stacks, Lemma 4.8); another
way to prove this is to use Algebraic Stacks, Remark 16.3. Finally, we can use
Groupoids in Spaces, Lemma 25.2 to conclude that the composition U ′ ×g,U,t R →
R

s−→ U is a surjection of sheaves. □

Lemma 18.2.06PK Let S be a scheme and let B be an algebraic space over S. Let
G be a group algebraic space over B. Let X be an algebraic space over B and let
a : G×B X → X be an action of G on X over B. The quotient stack [X/G] is an
algebraic stack if and only if there exists a morphism of algebraic spaces φ : X ′ → X
such that

(1) G×B X ′ → X, (g, x′) 7→ a(g, φ(x′)) is a surjection of sheaves, and

https://stacks.math.columbia.edu/tag/06PJ
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(2) the two projections X ′′ → X ′ of the algebraic space X ′′ given by the rule
T 7−→ {(x′

1, g, x
′
2) ∈ (X ′ ×B G×B X ′)(T ) | φ(x′

1) = a(g, φ(x′
2))}

are flat and locally of finite presentation.

Proof. This lemma is a special case of Lemma 18.1. Namely, the quotient stack
[X/G] is by Groupoids in Spaces, Definition 20.1 equal to the quotient stack
[X/G×BX] of the groupoid in algebraic spaces (X,G×BX, s, t, c) associated to the
group action in Groupoids in Spaces, Lemma 15.1. There is one small observation
that is needed to get condition (1). Namely, the morphism s : G×B X → X is the
second projection and the morphism t : G ×B X → X is the action morphism a.
Hence the morphism h : U ′ ×g,U,t R → R

s−→ U from Lemma 18.1 corresponds to
the morphism

X ′ ×φ,X,a (G×B X) pr1−−→ X

in the current setting. However, because of the symmetry given by the inverse of
G this morphism is isomorphic to the morphism

(G×B X) ×pr1,X,φ X
′ a−→ X

of the statement of the lemma. Details omitted. □

Lemma 18.3.06PL Let S be a scheme and let B be an algebraic space over S. Let G
be a group algebraic space over B. Endow B with the trivial action of G. Then
the quotient stack [B/G] is an algebraic stack if and only if G is flat and locally of
finite presentation over B.

Proof. If G is flat and locally of finite presentation over B, then [B/G] is an
algebraic stack by Theorem 17.2.
Conversely, assume that [B/G] is an algebraic stack. By Lemma 18.2 and because
the action is trivial, we see there exists an algebraic space B′ and a morphism
B′ → B such that (1) B′ → B is a surjection of sheaves and (2) the projections

B′ ×B G×B B′ → B′

are flat and locally of finite presentation. Note that the base change B′ ×B G ×B

B′ → G ×B B′ of B′ → B is a surjection of sheaves also. Thus it follows from
Descent on Spaces, Lemma 8.1 that the projection G×BB

′ → B′ is flat and locally
of finite presentation. By (1) we can find an fppf covering {Bi → B} such that
Bi → B factors through B′ → B. Hence G×B Bi → Bi is flat and locally of finite
presentation by base change. By Descent on Spaces, Lemmas 11.13 and 11.10 we
conclude that G → B is flat and locally of finite presentation. □

Later we will see that the quotient stack of a smooth S-space by a group algebraic
space G is smooth, even when G is not smooth (Morphisms of Stacks, Lemma 33.7).

19. Algebraic stacks in the étale topology

076U Let S be a scheme. Instead of working with stacks in groupoids over the big fppf
site (Sch/S)fppf we could work with stacks in groupoids over the big étale site
(Sch/S)étale. All of the material in Algebraic Stacks, Sections 4, 5, 6, 7, 8, 9, 10,
and 11 makes sense for categories fibred in groupoids over (Sch/S)étale. Thus we get
a second notion of an algebraic stack by working in the étale topology. This notion
is (a priori) weaker than the notion introduced in Algebraic Stacks, Definition 12.1

https://stacks.math.columbia.edu/tag/06PL
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since a stack in the fppf topology is certainly a stack in the étale topology. However,
the notions are equivalent as is shown by the following lemma.

Lemma 19.1.076V Denote the common underlying category of Schfppf and Schétale

by Schα (see Sheaves on Stacks, Section 4 and Topologies, Remark 11.1). Let S be
an object of Schα. Let

p : X → Schα/S

be a category fibred in groupoids with the following properties:
(1) X is a stack in groupoids over (Sch/S)étale,
(2) the diagonal ∆ : X → X × X is representable by algebraic spaces5, and
(3) there exists U ∈ Ob(Schα/S) and a 1-morphism (Sch/U)étale → X which

is surjective and smooth.
Then X is an algebraic stack in the sense of Algebraic Stacks, Definition 12.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Stacks, Definition 12.1 are independent of the topol-
ogy. This is true because these properties involve only the notion of a 2-fibre
product of categories fibred in groupoids, 1- and 2-morphisms of categories fibred
in groupoids, the notion of a 1-morphism of categories fibred in groupoids repre-
sentable by algebraic spaces, and what it means for such a 1-morphism to be sur-
jective and smooth. Thus all we have to prove is that an étale stack in groupoids
X with properties (2) and (3) is also an fppf stack in groupoids.
Using (2) let R be an algebraic space representing

(Schα/U) ×X (Schα/U)
By (3) the projections s, t : R → U are smooth. Exactly as in the proof of Algebraic
Stacks, Lemma 16.1 there exists a groupoid in spaces (U,R, s, t, c) and a canonical
fully faithful 1-morphism [U/R]étale → X where [U/R]étale is the étale stackification
of presheaf in groupoids

T 7−→ (U(T ), R(T ), s(T ), t(T ), c(T ))
Claim: If V → T is a surjective smooth morphism from an algebraic space V to a
scheme T , then there exists an étale covering {Ti → T} refining the covering {V →
T}. This follows from More on Morphisms, Lemma 38.7 or the more general Sheaves
on Stacks, Lemma 19.10. Using the claim and arguing exactly as in Algebraic
Stacks, Lemma 16.2 it follows that [U/R]étale → X is an equivalence.
Next, let [U/R] denote the quotient stack in the fppf topology which is an algebraic
stack by Algebraic Stacks, Theorem 17.3. Thus we have 1-morphisms

U → [U/R]étale → [U/R].
Both U → [U/R]étale

∼= X and U → [U/R] are surjective and smooth (the
first by assumption and the second by the theorem) and in both cases the fibre
product U ×X U and U ×[U/R] U is representable by R. Hence the 1-morphism
[U/R]étale → [U/R] is fully faithful (since morphisms in the quotient stacks are
given by morphisms into R, see Groupoids in Spaces, Section 24).

5Here we can either mean sheaves in the étale topology whose diagonal is representable and
which have an étale surjective covering by a scheme or algebraic spaces as defined in Algebraic
Spaces, Definition 6.1. Namely, by Bootstrap, Lemma 12.1 there is no difference.
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Finally, for any scheme T and morphism t : T → [U/R] the fibre product V =
T ×U/R U is an algebraic space surjective and smooth over T . By the claim above
there exists an étale covering {Ti → T}i∈I and morphisms Ti → V over T . This
proves that the object t of [U/R] over T comes étale locally from U . We conclude
that [U/R]étale → [U/R] is an equivalence of stacks in groupoids over (Sch/S)étale

by Stacks, Lemma 4.8. This concludes the proof. □
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