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Abstract. We consider the problem of maximizing expected utility from consumption in a con-

strained incomplete semimartingale market with a random endowment process, and establish a

general existence and uniqueness result using techniques from convex duality. The notion of “as-

ymptotic elasticity” of Kramkov and Schachermayer is extended to the time-dependent case. By

imposing no smoothness requirements on the utility function in the temporal argument, we can

treat both pure consumption and combined consumption/terminal wealth problems, in a com-

mon framework. To make the duality approach possible, we provide a detailed characterization of

the enlarged dual domain which is reminiscent of the enlargement of L1 to its topological bidual

(L∞)∗, a space of finitely-additive measures. As an application, we treat a constrained Itô-process

market-model, as well as a “totally incomplete” model.

1. Introduction

Both modern and classical theories of economic behavior use utility functions to describe the

amount of “satisfaction” of financial agents from wealth or from consumption. Starting with an

initial endowment, an agent is faced with the problem of distributing wealth among financial assets

with different degrees of uncertainty. If the market is arbitrage-free, the agent can never “beat the

market”, but may still invest in such a way as to maximize expected utility. A considerable body

of literature has been devoted to this subject. First to consider the utility maximization problem in

continuous-time stochastic financial market models was Merton in [Mer69], [Mer71]. He used a strong

assumption (usually not justified in practice) that stock-prices are governed by Markovian dynamics

with constant coëfficients. In this way he could use the methods of stochastic dynamic programming

and, in particular, the Hamilton-Jacobi-Bellman equation. More recently, a “martingale” approach

to the problem in complete Itô-process markets was introduced by Pliska [Pli86], Karatzas, Lehoczky

and Shreve [KLS87] and Cox and Huang [CH89], [CH91]. They related the marginal utility from the

terminal wealth of the optimal portfolio to the density of the (unique) martingale measure, using

powerful convex-duality techniques.

Difficulties with this approach arise in incomplete markets. The main idea here is to use the

convex nature of the problem, to formulate and solve a dual variational problem, and then proceed

as in the complete case. In discrete-time and on a finite probability space, the problem was studied

by He and Pearson [HP91a], and in a continuous-time model by G.-L.Xu in his doctoral dissertation

[Xu90], and by Karatzas, Lehoczky, Shreve and Xu [KLSX91], He and Pearson [HP91b]. In the
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paper [KS99], Kramkov and Schachermayer solve the problem in the context of a general incomplete

semimartingale financial market. They show that a necessary and sufficient condition for the exis-

tence of an optimal solution is the so-called reasonable asymptotic elasticity of the utility function

at infinity. These authors also show that the set of densities of local martingale measures is too

small to host the solutions of the dual problem. Thus, they enlarge it to a suitably chosen set Y∗ of

supermartingales, in a manner reminiscent of enlarging L1 to its topological bidual (L∞)∗. Although

these supermartingales cannot be used directly as pricing rules for derivative securities, Kramkov

and Schachermayer show that this is possible under an appropriate change of numéraire.

When, in addition to initial wealth, the agent faces an uncertain random intertemporal endow-

ment, the situation becomes technically much more demanding and the gap between complete and

incomplete markets even more apparent. In the complete market setting, the entire uncertain en-

dowment can be “hedged away” in the market, and the problem becomes equivalent to the one where

the entire endowment process is replaced by its present value, in the form of an augmented initial

wealth. A self-contained treatment of this situation, in Itô-process models for financial markets, can

be found in Section 4.4 of the monograph by Karatzas and Shreve [KS98]. An otherwise complete

market with random endowment, where the incompleteness is introduced through prohibition of

borrowing against future income, is studied in [KJP98].

In incomplete markets, several authors consider this problem in various degrees of generality. We

mention Cuoco who deals with a cone-constrained Itô-process market with random endowment in

[Cuo97] - he attacks directly the primal problem circumventing the duality approach altogether, at

the cost of rather strict restrictions on the utility function. A definitive solution to the problem

of maximizing of utility from terminal wealth in incomplete (though not constrained in a more

general way) semimartingale markets with random endowment is offered in [CSW01]. The main

contribution of that paper is the introduction of finitely-additive measures into the realm of optimal

stochastic control problems encountered in mathematical finance. The essential difference between

utility maximization with and without random endowment is probably best described in [CSW01]:

“ it was not important in the analysis of [KS99] where the ‘singular mass of Q̂ has

disappeared to’. In the present paper this becomes very important . . . [it] acts on the

accumulated random endowment and can be located in (L∞)∗”.

We finally mention [Sch00] as an extensive survey of the optimal investment theory.

The present paper advances the existing results in several ways. First, we incorporate inter-

temporal consumption in the optimization problem. We are dealing with an agent investing in an

incomplete market, where prices are modelled by an arbitrary semimartingale with right-continuous

and left-limited paths. From the present moment to some finite time-horizon T , our agent is not

only deciding how to manage a portfolio by dynamically readjusting the positions in various financial

assets, but also choosing a portion of wealth to be consumed and not further reinvested. The agent

also has to take into account the uncertainty in the random endowment stream. It is from this

consumption, or from consumption and terminal wealth, that utility is derived. We allow the utility

function to be random, reflecting the changes in agent’s risk-preferences from one time to another.

In a departure from existing theory, we do not impose any smoothness on the utility function
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in its temporal argument. As a result, we have a common framework for problems that involve

consumption only and for problems that involve both consumption and terminal wealth. In addition

to dealing with an inherently incomplete semimartingale market-model, we impose convex cone

constraints on the investment choices the agent is facing. In this way we can model incompleteness

and prohibition of short-sales, to name only two.

For utility functions we formulate the concept of asymptotic elasticity and, under an appropri-

ate condition of “reasonable asymptotic elasticity”, we establish the existence and uniqueness of

optimal consumption/investment strategies. In [KS99] it was only the terminal value of a dual pro-

cess that appeared in the analysis, the dual domain {YT : Y ∈ Y} ⊆ L0
+ being endowed with the

topology of convergence in probability on the space L0
+ of nonnegative, measurable functions. The

more difficult situation in [CSW01] required the dual domain to be extended to the closure of the

set of all equivalent martingale measures in (L∞)∗ - a space whose elements are finitely-additive

set-functions. Abusing terminology slightly, we shall call such set-functions “finitelly-additive mea-

sures”. In our case, we have to mimic the natural correspondence between measures and uniformly

integrable martingales in the finitely-additive world. It turns out that the right choice consists of

a dual domain, inhabited on the one hand by finitely-additive measures, and on the other hand by

“coupled” supermartingales that correspond to the Radon-Nikodým derivatives of the regular parts

of these measures. We prove rigorously that these supermartingales essentially correspond to the

supermartingales in the set Y∗ of (2.9) below, defined in [KS99]. The main tool in this endeavor is

the Filtered Bipolar Theorem of [Žit02].

As applications of our results, we treat two special cases: a constrained Itô-process market, where

we prove that the optimal dual process is always a local martingale; and a “totally incomplete”

market as in [LS91], where the agent is not allowed to invest in the stock-market at all.

We should stress that an important motivation behind this work, is the rôle it plays as a necessary

step for an offensive on the problem of existence and uniqueness for equilibrium in continuous-time

incomplete markets with random endowments, a task we plan to attempt in future research.

The part of our analysis dealing with duality, and especially the structure of the proof of the

main result, is closely based on and inspired by the expositions in [KS99] and [CSW01]. In Section

2 we set up the market-model, and present a characterization of admissible consumption strategies.

Section 3 displays our main result and Appendix A its proof. In Section 4 we give an application of

our results through two examples.

2. The model

2.1. The financial market. We introduce a model for a financial market consisting of

(i) a positive, adapted process B = (Bt)t∈[0,T ] with paths that are RCLL (Right-Continuous on

[0, T ), with Left-Limits everywhere on (0, T ]) and uniformly bounded from above and away

from zero. We interpret B as the numéraire asset - a bond, for example.

(ii) a RCLL-semimartingale S = (St)t∈[0,T ] taking values in Rd; its component processes repre-

sent the prices of d risky assets, discounted in terms of the numéraire B.



RANDOM ENDOWMENT 4

All processes are defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with a finite time

horizon T > 0, and the filtration F , (Ft)t∈[0,T ] satisfies the “usual conditions” of right-continuity

and augmentation by P−negligible sets; F0 is the completion of the trivial σ-algebra.

We consider a financial agent endowed with initial wealth x > 0 and a random cumulative

endowment process E = (Et)t∈[0,T ] – here Et is the total (cumulative) amount of endowment

received by time t. We assume that E0 = 0 and E is nondecreasing, F-adapted, RCLL and uniformly

bounded from above, i.e., ET ∈ L∞+ (P). Similarly to the price-process S, we assume that E is already

discounted (denominated in terms of B). Faced with inherent uncertainty about future endowment,

the agent dynamically adjusts positions in different financial assets and designates a part of wealth

for immediate consumption, in the following manner:

(a) The agent chooses an S-integrable and F-predictable process H taking values in Rd. The

process H has a natural interpretation as portfolio process; in other words, the ith component

of the random vector Ht is the number of shares of stock i held at time t. To exclude pathologies

such as doubling schemes, we choose to impose the condition of admissibility on the agent’s choice

of portfolio process H, by requiring that the gains process t 7→
∫ t

0
H
′

u dSu be uniformly bounded

from below by some real constant. 1 Moreover, we ask our agent to obey the investment restrictions

imposed on the structure of the market, by choosing the portfolio process H in a closed, convex

cone K ⊆ Rd. The set K represents constraints on portfolio choice; it can be used to model, for

example, short-sale constraints (K = [0,∞)d) or the unavailability of some stocks for investment in

an incomplete market (K = Rn × {0} × · · · × {0}, for some n = 1, · · · , d− 1).

(b) Apart from the choice of portfolio process, the agent chooses a nonnegative, nondecreasing and

F-adapted RCLL cumulative consumption process C = (Ct)t∈[0,T ]. The random variable Ct

represents the total amount (just like St and Et, already discounted by Bt) spent on consumption,

up to and including time t.

A pair (H,C) that satisfies (a) and (b) above, is called an investment-consumption strategy.

The wealth of an agent that employs the investment-consumption strategy (H,C) is given by

(2.1) WH,C
t , x+ Et +

∫ t

0

H
′

u dSu − Ct, 0 ≤ t ≤ T.

If (H,C) is such that the corresponding wealth process of (2.1) satisfies WH,C
T ≥ 0 a.s., we say that

(H,C) is an admissible strategy. If, for a consumption process C, we can find a portfolio process

H such that (H,C) is admissible, we call C an admissible consumption process, and say that

C can be financed by x+ E and H. Let µ be an admissible measure, i.e., a probability measure

on [0, T ], diffuse on [0, T ), such that µ([0, t]) < 1 for all t < T . For such a measure we define the

support suppµ to be [0, T ] if µ charges {T}, and [0, T ) otherwise.

We shall be mostly interested in admissible consumption processes C that can be expressed as

Ct =
∫ t

0

c(u)µ(du), 0 ≤ t ≤ T .

1For the theory of stochastic integration with respect to RCLL semimartingales, and the related notions of inte-

grability, the reader may consult [Pro90].
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The set of all densities c(·) of such processes will be denoted by Aµ(x + E). We allow for bulk

consumption at the terminal time in order to be able to deal later on with utility from the terminal

wealth and/or from consumption, in the same framework. The following notation will be used:

X ,
{
x+

∫ ·

0

H
′

u dSu : H is predictable and S-integrable; Ht ∈ K a.s.

for every t ∈ [0, T ]; x ≥ 0; and X(·) = x+
∫ ·

0

H
′

u dSu is nonnegative
}
.(2.2)

Remark 1. Even though we allow debt to incur before time T , the agent must invest in such a

way as to be able to post a non-negative wealth by the end of the trading horizon, with certainty.

Furthermore, the boundedness of the process E = (Et)t∈[0,T ] guarantees that the negative part of

the wealth will remain bounded by a constant (a weak form of “constrained borrowing”).

2.2. The optimization problem. Let us introduce now a preliminary version of the optimization

problem, and lay out an outline of its solution. The goal is to find a consumption-rate process ĉx(·),
financed by the initial wealth x and the random endowment E , which maximizes the expected utility

from consumption - the “average felicity” of an agent who follows the consumption strategy ĉx(·).
The expected utility from a consumption-rate process c(·) is given by

E

[∫ T

0

U(t, c(t))µ(dt)

]
,

where U denotes a (random) utility function and µ a utility measure. We postpone discussion of

the definition and regularity properties of U until Section 3. In this notation,

(2.3) ĉx(·) = argmaxc∈Aµ(x+E) E

[∫ T

0

U(t, c(t))µ(dt)

]
.

As is customary in the duality approach to stochastic optimization, we introduce a problem dual to

(2.3) by setting

Y Q̂y

= argminQ∈D

[
E
∫ T

0

V (t, yY Q
t )µ(dt) + y〈Q, ET 〉

]
.

Here D denotes the domain for the dual problem; it is the closure of the set of all supermartingale

measures for the stock-price process S, and its elements are finitely-additive measures. The process

Y Q is a supermartingale version for the density process of Qr, the regular part of Q, and V is the

convex conjugate of U .

In the following subsection, we describe the dual domain D in detail, and establish some of its

properties - the prominent one being weak * compactness. It is precisely this property that will

ensure the existence of a solution to the dual problem and then, through standard tools of convex

duality, the existence of an optimal consumption process ĉx(·), for any initial wealth x > 0.

2.3. Connections with Stochastic Control Theory. The portfolio process H serves as the

analogue of the control-process in Stochastic Control Theory. It is important, though, to stress that

we are not dealing here with a partially (incompletely) observed problem (a terminology borrowed

again from Control Theory). Incomplete markets in Mathematical Finance correspond to a setting,

in which the controller has full information about many aspects of the system (the market), but

various exogenously imposed constraints (taxation, transaction costs, bad credit rating, legislature,
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etc.) prevent him/her from choosing the control (portfolio) outside a given constraint set. In fact,

even without government-imposed portfolio constraints, financial markets will typically not offer

tradeable assets corresponding to a variety of sources of uncertainty (weather conditions, non-listed

companies, etc.) The financial agent will still observe many of these sources, as their uncertainty

evolves, but will typically not be able to “trade in all of them”, as it were.

This fundamental nature of financial markets is reflected in our modelling: in Sections 1, 2 and

3, we allow the filtration F (with respect to which the controls are adapted) to be possibly larger

that the filtration generated by the stock-price process S. The only requirement we impose, in the

next subsection, is the one of absence of arbitrage, the fulfilment of which depends heavily on the

choice of filtration F. To sum up, the observables in financial modelling constitute a much larger

class than the mere stocks we are allowed to invest in. With such an understanding, our portfolios

are adapted only to the observables of the system. Such a setting corresponds to the well-established

control-theoretic notion of admitting “open loop” controls in our analysis.

In the more specialized setup of Section 4, the filtration F is taken as the augmentation of the

filtration generated by the Brownian motions driving the stock-prices, assuming as we do in the

beginning of Subsection 4.1 that the volatility matrix process σ(t) is non-singular a.s., for each t. At

the level of generality considered in the paper, the filtration corresponding to the stock prices will be

smaller than the filtration generated by the Brownian motion. But the two filtrations are actually

the same, when interest-rates, volatilities and appreciation-rates are functions of past-and-present

stock prices; this includes the case of Markovian or deterministic coefficients. In this case, “open

loop” and “closed loop” (i.e., S-adapted) controls, actually coincide.

Finally, we would like to stress that market incompleteness is the main source of technical and

conceptual problems we had to overcome in this work, whereas the case of complete markets has

been well studied by many authors before; see, for instance, Chapters 3 and 4 in [KS98]. All of our

results concerning the structure of the dual domain (as well as the introduction of the dual domain

in the first place) are consequences of the incompleteness of the market. We are actually allowing

for two separate sources of incompleteness - the general structure of the stock-prices, as well as the

portfolio constraints in the form of the cone K. By choosing K = Rn × {0} × · · · × {0} for some

n = 1, · · · d − 1, we capture exactly the setting of an incomplete market with n stocks, and with

d > n sources of randomness that affect the coefficients in the model.

2.4. Absence of arbitrage, finitely-additive set-functions, and the dual domain. In order

to make possible a meaningful mathematical treatment of the optimization problem, we excise

arbitrage opportunities by postulating the existence of an equivalent supermartingale measure,

i.e., a probability measure on (Ω,F), equivalent to P, under which the elements of the set X in (2.2)

become supermartingales. The set of all equivalent supermartingale probability measures will be

denoted byM, and we shall assume throughout thatM 6= ∅. A detailed treatment of the connections

between various notions of arbitrage and the existence of equivalent martingale (local martingale,

supermartingale) measures, culminating with the “Fundamental Theorem of Asset Pricing”, can be

found in [DS93] and [DS98].
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As was pointed out in [CSW01], the duality treatment of utility maximization requires a nontrivial

enlargement of M: this space turns out to be too small, in terms of closedness and compactness

properties, for a treatment of the problem at hand. Accordingly, we define D to be the σ((L∞)∗,L∞)-

closure 2 of M in (L∞)∗ – the topological dual of L∞ – where M is canonically identified with its

embedding into (L∞)∗. We shall denote by (L∞)∗+ the set of non-negative elements in (L∞)∗.

The following proposition collects some properties of the spaces (L∞)∗, (L∞)∗+ , and D; more

information about (L∞)∗ can be found in [BB83].

Proposition 2.1. (i) The space (L∞)∗ consists of finitely-additive measures on F , which are

finite and assign the value zero to P−null subsets of F .

(ii) Under the canonical pairing 〈 , 〉 : (L∞)∗ × L∞ → R, the relation 〈Q, 1〉 = 1 holds for all

Q ∈ D. In other words, with the notation Q(A) , 〈Q, 1A〉 for A ∈ F and Q ∈ (L∞)∗, we

have Q(Ω) = 1 for all Q ∈ D.

(iii) D is convex, and weak * (i.e., σ((L∞)∗,L∞)) – compact.

(iv) Every element Q of (L∞)∗+ admits a unique decomposition of the form

Q = Qr + Qs, with Qr,Qs ∈ (L∞)∗+ ,

where the regular part Qr is countably-additive (it is the maximal countably-additive mea-

sure on F that is dominated by Q), and the singular part Qs is purely finitely-additive

(i.e., does not dominate any nontrivial countably-additive measure).

(v) Q ∈ (L∞)∗+ is purely finitely additive (i.e., Qr ≡ 0), if and only if for every ε > 0 there

exists Aε ∈ F such that P(Aε) > 1− ε and Q(Aε) = 0.

(vi) Suppose a bounded sequence {Qn}n∈N in (L∞)∗+ is such that dQr
n

dP → f a.s., for some f ≥ 0.

Then any weak * cluster point Q of {Qn}n∈N satisfies dQr

dP = f a.s., where Qr denotes

the regular part of Q.

(vii) The regular-part operator Q 7→ Qr is additive on (L∞)∗+.

Proof. (i) See [BB83], Corollary 4.7.11.

(ii) Follows from the density of M in D.

(iii) This is the content of Alaoglu’s theorem (see [Woj96], Theorem 2.A.9).

(iv) See Theorem 10.2.1 in [BB83].

(v) See Lemma A.1 in [CSW01].

(vi) See Proposition A.1 in [CSW01].

(vii) Let Q1 and Q2 be elements of (L∞)∗+. It is enough to show that (Q1 + Q2)− (Qr
1 + Qr

2) =

Qs
1 + Qs

2 is singular. Thanks to (v), for any ε > 0 we can find sets Aε and Bε such that

P (Aε) > 1 − ε
2 , P (Bε) > 1 − ε

2 and Qs
1(Aε) = Qs

2(Bε) = 0. With Cε , Aε ∩ Bε we have

P (Cε) > 1− ε and (Qs
1 + Qs

2)(Cε) = 0 ; this completes the proof, by appeal to (v). �

Remark 2. In light of the properties (i) and (ii), we may interpret the elements of D as finitely-

additive probability measures on F , weakly absolutely continuous with respect to P. And for later

2In the terminology of control theory, we are “relaxing” the set of controls over which the optimization is to be

carried out in the dual problem; see (3.3) below, as well as the text following it.
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usage, we shall extend the pairing-notation, by setting 〈Q, X〉 , limn→∞ 〈Q, X ∧ n〉 for any Q ∈
(L∞)∗+ , X ∈ L0

+.

Our analysis will necessitate associating, to every Q ∈ D, a nonnegative, RCLL supermartingale

Y Q = (Y Q
t )t∈[0,T ] . For Q ∈ M, this process is just the RCLL-modification of the martingale

(E[dQ
dP |Ft])t∈[0,T ]. For arbitrary Q ∈ (L∞)∗+, the construction of Y Q is rather delicate (see (2.4),

(2.5) below). To make headway on this issue, we let Qr denote the regular part of Q and, for

any σ-algebra G ⊆ F , denote by Q|G the restriction of the set-function Q to G. Since the regular-

part operator Q 7→ Qr depends nontrivially on the domain of Q, we stress that (Q|G)r stands

for a countably-additive measure on G and, in general, does not equal Qr|G : the regular-part and

restriction operations do not commute. In fact, we have the following result:

Proposition 2.2. For any two sub-σ-algebras G ⊆ H of F , and every Q ∈ (L∞)∗, we have (Q|G)r ≥
(Q|H)r|G . In particular, (Q|G)r ≥ Qr|G .

Proof. By Proposition 2.1(iv), (Q|G)r is the maximal countably-additive measure on G dominated

by Q, so it must dominate (Q|H)r|G – another countably-additive measure on G dominated by Q. �

For each Q ∈ D, Proposition 2.2 shows that the process

(2.4) LQ
t ,

d(Q|Ft)
r

d(P|Ft
)
, t ∈ [0, T ]

is a supermartingale, and Proposition 1.3.14, p.16 in [KS91] shows that the “regularization”

(2.5) Y Q
t , lim inf

q↘t, q rational
LQ

q , 0 ≤ t < T , Y Q
T , LQ

T

of LQ, is a supermartingale with RCLL paths. When Q ∈M, the process Y Q = (Y Q
t )t∈[0,T ] of (2.5)

is the RCLL-modification of the martingale (E[dQ
dP |Ft])t∈[0,T ]. We define also the two sets

(2.6) YM ,
{
Y Q : Q ∈M

}
and YD ,

{
Y Q : Q ∈ D

}
k YM .

The following proposition examines some properties of the elements of YD. It shows that the

regularization (2.5) of the process LQ of (2.4) is, in fact, a harmless operation.

Proposition 2.3. (a) For every Q ∈ D, there exists a countable set K ⊆ [0, T ), such that

Y Q
t = LQ

t for all t ∈ [0, T ] \K, almost surely. In particular, Y Q = LQ (µ⊗ P)-a.e., for any

admissible measure µ.

(b) For every stopping time S, we have Y Q
S ≤ LQ

S , a.s.

Proof. (a) Let K be the set of discontinuity points of the decreasing function t 7→ E[LQ
t ] =

(Q|Ft)
r(Ω), on [0, T ); this set is at most countable. For every t < T , Fatou’s lemma gives

(2.7) Y Q
t ≤ lim inf

q↘t, q rational
E[LQ

q |Ft] ≤ LQ
t , a.s.

On the other hand, for any sequence of rationals {qn}n∈N with qn ↘ t, the random sequence{
LQ

qn

}
n∈N is a backward supermartingale and bounded in L1, so that LQ

qn
→ Y Q

t both in

L1 and a.s., thanks to the Backward Supermartingale Convergence Theorem (see [Chu74],
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Theorem 9.4.7, page 338). For each t ∈ [0, T ] \ K we have thus E[Y Q
t ] = E[LQ

t ] which,

together with (2.7) and the fact that K is at most countable, completes the proof of (a).

(b) For an arbitrary stopping time S, and n ∈ N, we put Sn = (2−nb2nS + 1c) ∧ T , so that

S ≤ Sn ≤ S+2−n. Therefore, {Sn}n∈N is a sequence of stopping times with finite range, a.s.

decreasing to S. By the definition (2.5) of Y Q we have Y Q
S = lim infn L

Q
Sn . If

{
tn1 , . . . , t

n
mn

}
is the range of Sn, then for any event A ∈ FS (⊆ FSn , ∀n ∈ N ) we have

E[Y Q
S 1A] = E[lim inf

n
LQ

Sn · 1A] ≤ lim inf
n

E[LQ
Sn · 1A] = lim inf

n

mn∑
k=1

E[LQ
tn
k
· 1A∩{Sn=tn

k}]

= lim inf
n

mn∑
k=1

(
Q|Ftn

k

)r

(A ∩ {Sn = tnk}) ≤ lim inf
n

mn∑
k=1

〈Q,1A∩{Sn=tn
k}〉 = 〈Q,1A〉.

Therefore, Y Q
S is the density of a (countably-additive) measure dominated by Q on FS , and

we conclude that Y Q
S ≤ d(Q|FS

)r

d(P|FS
) = LQ

S , holds almost surely. �

The next results, useful for the duality treatment and interesting in their own right, introduce

the notion of Fatou-convergence and relate it to the more familiar notion of weak * convergence.

Fatou-convergence is analogous to a.s.-convergence in the context of RCLL-processes, and was used

for example in [Kra96], [FK97] and [DS99].

Definition 2.4. Let {Y (n)}n∈N be a sequence of nonnegative, F-adapted processes with RCLL

paths. We say that {Y (n)}n∈N Fatou-converges to an F-adapted process Y with RCLL-paths, if

there is a countable, dense subset T of [0, T ], such that

Yt = lim inf
s↓t,s∈T

(
lim inf

n
Y (n)

s

)
= lim sup

s↓t,s∈T

(
lim sup

n
Y (n)

s

)
, a.s.(2.8)

holds for every t ∈ [0, T ]; we interpret (2.8) to mean Yt = limn Y
(n)
t a.s. for t = T . A set of

nonnegative RCLL-supermartingales is called Fatou-closed, if it is closed with respect to Fatou-

convergence.

Before stating the next proposition we need a technical result - see Lemma 8 in [Žit02].

Lemma 2.5. Let
{
Y (n)

}
n∈N be a sequence of nonnegative RCLL-supermartingales, Fatou-converging

to a nonnegative RCLL-supermartingale Y . There is a countable set K ⊆ [0, T ) such that Yt =

lim infn Y
(n)
t for all t ∈ [0, T ] \K, almost surely.

Proposition 2.6. Let µ be a probability measure on [0, T ], diffuse on [0, T ). Suppose that {Q(n)}n∈N ⊆
D has a weak * cluster-point Q∗ ∈ D, and that the sequence of supermartingales {Y Q(n)}n∈N con-

verges, both (µ⊗P)-a.e. and in the Fatou sense. Then the Fatou-limit Y coincides with the (µ⊗P)-

limit, up to a.e.-equivalence, and both are equal to Y Q∗ .

Proof. The two limits are the same (µ⊗ P)-a.e., by Lemma 2.5. By Proposition 2.3, there exists a

sequence {Kn}n∈N of countable subsets of [0, T ), and a µ-null set K ′, such that

Yt = lim
n
Y Q(n)

t = lim
n
LQ(n)

t , for all t ∈ [0, T ] \K
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holds almost surely, where K , K ′ ∪
⋃

n∈N Kn. By Proposition 2.1(vi), (2.4), and Proposition 2.3,

there is a µ-null set K̂ k K such that

Yt = Y Q∗
t = LQ∗

t , for all t ∈ [0, T ] \ K̂

holds almost surely. Since [0, T ] \ K̂ is dense in [0, T ], the right-continuous processes Y and Y Q∗ are

indistinguishable. �

2.5. On a Filtered Version of the Bipolar Theorem. In [KS99], p.909, the authors define a set

Y∗ of supermartingales, which enlarges for the set of densities of equivalent martingale measures;

they then use the elements of Y∗ as “dual variables” for the convex-duality approach to utility

maximization in incomplete markets. In the setup of [KS99] there is no endowment after time

t = 0, no portfolio constraint, and utility comes from terminal wealth only. In terms of the set X of

stochastic integrals in (2.2), the set Y∗ under question is defined as

Y∗ ,
{
Y : Y is an adapted nonnegative RCLL process such that Y0 ≤ 1 and(

XtYt

)
t∈[0,T ]

is a supermartingale for each process X ∈ X
}
.(2.9)

Obviously, the elements of Y∗ are supermartingales (just take H = 0, thus X ≡ x, in (2.2)), and

Y∗ contains the set YM of (2.6): indeed, from the definition of M in subsection 2.3, the process

X of (2.2) is a Q−supermartingale, and thus XY Q is a P−supermartingale, for every Q ∈ M.

Except in trivial cases, however, Y∗ is a true enlargement of YM; see (2.10) below. An attempt to

study the structure of Y∗ was made in [Žit02], by establishing and applying a generalization of the

Bipolar Theorem for Subsets of L0
+ (see [BS99]); this is a non-locally-convex version of the classical

Bipolar Theorem of Functional Analysis. The generalization comes in the form of the Filtered Bipolar

Theorem, whose statement and relevant definitions we recall now from [Žit02].

Definition 2.7. A set of Y of nonnegative, F-adapted processes with RCLL paths, is said to be

(1) (process-) solid, if for each Y ∈ Y and each nonincreasing F-adapted process B with RCLL

paths and B0 ≤ 1, we have Y B ∈ Y;

(2) fork-convex, if for any s ∈ (0, T ], any h ∈ L0
+(Fs) with h ≤ 1 a.s., and any Y (1), Y (2), Y (3) ∈

Y, we also have Y ∈ Y, where

Yt ,


Y

(1)
t , 0 ≤ t < s

Y
(1)
s

(
h

Y
(2)

t

Y
(2)

s

+ (1− h)Y
(3)

t

Y
(3)

s

)
, s ≤ t ≤ T

 .

Definition 2.8. Let Y be a set of nonnegative, F-adapted processes with RCLL paths. The

(process)-polar of Y, is the set Y× of all nonnegative, F-adapted processes X with RCLL paths,

such that XY = (XtYt)t∈[0,T ] is a supermartingale with (XY )0 ≤ 1 for all Y ∈ Y.

We can now state a mild extension of the main result in [Žit02]. The additional statement (last

sentence of Theorem 2.9 below) follows directly from the proof of the original version.

Theorem 2.9. [Filtered Bipolar Theorem] Let Y be a set of nonnegative and F-adapted processes

with RCLL paths, with Y0 ≤ 1 for each Y ∈ Y, and with YT > 0 a.s. for at least one Y ∈ Y. The
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process-bipolar Y×× = (Y×)× of Y is the smallest Fatou-closed, fork-convex and solid set of F-

adapted processes Y with RCLL paths and Y0 ≤ 1 that contains Y. Furthermore, every element of

Y×× can be obtained as the Fatou-limit of a sequence in the solid and fork-convex hull of Y.

2.6. Structural Properties of the Sets in (2.6), (2.9). Now let us revisit the sets YD, YM and

Y∗ of (2.6), (2.9). From Theorem 4 in [Žit02]), we know that the set

(2.10) YM of (2.6) is fork-convex, and its process-bipolar is the set of (2.9): Y∗ =
(
YM

)××
.

It follows from Theorem 2.9 and (2.10) that Y∗ is the solid and Fatou-closed hull of YM. The task

we undertake in this subsection, is to formulate and establish formally the statement put forth by

the authors in [CSW01], to the effect that

. . . the idea of passing from M to D (introduced in [CSW01]) had already been im-

plicitly present in [KS99] (disguised in the definition of Y∗).

Namely, we shall show that YD ⊆ Y∗ (in other words, YM ⊆ YD ⊆ Y∗), and that YD already

contains all maximal elements of Y∗. More precisely, we have the following result.

Theorem 2.10. The set YD in (2.6) is fork-convex and Fatou-closed, and its solid hull is the set

Y∗ of (2.9).

Proof. Since Y∗ is the process-bipolar of YM from (2.10), and YM is already contained in YD, by

the Filtered Bipolar Theorem 2.9 it is enough to show that YD is contained in Y∗, and is fork-convex

and Fatou-closed.

• We prove first the inclusion YD ⊆ Y∗. Let X ∈ X be such that X0 = 1, and let Y ∈ YD. By the

definition (2.9) of Y∗, it will be enough to show that XY is a supermartingale, and by Proposition

2.3 it is enough to prove that XLQ is a supermartingale, with LQ defined in (??). Equivalently,

we have to prove 〈(Q|Fs
)r, Xs1A〉 ≥ 〈(Q|Ft

)r, Xt1A〉, for all 0 ≤ s < t ≤ T , A ∈ Fs (notation of

Remark 2); without loss of generality, we may assume that Xs is bounded on A.

Recall that, for Q ∈M, the process X is a nonnegative Q−supermartingale. By the density of M
in D, we easily conclude that 〈Q, Xs1A〉 ≥ 〈Q, (Xt ∧m)1A〉 holds for every Q ∈ D and m ∈ (0,∞)

large enough. The singular-part operator is positive, so we have

〈(Q|Fs
)r, Xs1A〉+ 〈(Q|Fs

)s, Xs1A〉 ≥ 〈(Q|Ft
)r, (Xt ∧m)1A〉, ∀m ∈ (0,∞).

Proposition 2.1(v) guarantees the existence of a sequence of sets {An}n∈N in Fs such that P[An] >

1− 2−n and (Q|Fs
)s(An) = 0. We get

〈(Q|Fs)
r, Xs1A∩An〉 ≥ 〈(Q|Ft)

r, (Xt ∧m)1A∩An〉, ∀m ∈ (0,∞), n ∈ N,

and the claim follows by letting m,n→∞.

• The fork-convexity of YD follows from the fork-convexity of YM, and from the fact (Theorem

2.9) that every Y ∈ YD ⊆ Y∗ can be Fatou-approximated by a sequence in YM.

• As for Fatou-closedness, we take a sequence {Y (n)}n∈N ⊆ YD, Fatou-converging towards a super-

martingale Y . Let λ stand for normalized Lebesgue measure on [0, T ]. By Komlós’s theorem (see

[Ko67], [Sch86]) and the convexity of YD, we can assume that {Y (n)}n∈N converges (λ ⊗ P)−a.e.,
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by passing if necessary to a sequence of convex combinations (note that this operation preserves the

Fatou-limit). Let {Qn}n∈N ⊆ D be a sequence such that Y (n) = Y Qn

. By the weak * compactness

of D from Proposition 2.1(iii), the sequence {Qn}n∈N possesses a cluster point Q∗. Proposition 2.6

now yields Y = Y Q∗ , implying the Fatou-closedness of YD. �

For future use, we restate the result of Theorem 2.10 in the following terms.

Corollary 2.11. Every Y ∈ Y∗ can be written as Y = Y QB for some Q ∈ D in the notation of

(2.5), where B is a nonincreasing, F-adapted process with 0 ≤ BT ≤ B0 ≤ 1 and RCLL paths. The

process Y Q ∈ YD can be obtained as the Fatou-limit of a sequence of martingales in YM.

Let us also state the following consequence of Theorem 2.10, which is of some independent prob-

abilistic interest; it establishes a one-to-one correspondence between positive supermartingales and

finite, positive, finitely-additive measures.

Corollary 2.12. Suppose the filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
satisfies the “usual

conditions”, and F0 = {∅,Ω} mod. P. Then every non-negative supermartingale Y with RCLL

paths is of the form Y = Y Q in (2.5), for some non-negative, finitely-additive measure Q.

2.7. A Characterization Of Admissible Consumption Processes. The enlargement of the

dual domain from M to D necessitates a reformulation of certain old results in the new setting.

As given in subsection 2.1, the definition of an admissible consumption process is not very intuitive

or useful. To remedy this situation, we establish a budget-constraint characterization of admissible

consumption processes, analogous to Theorem 3.6 on p.166 of [KS98].

Proposition 2.13. A nondecreasing, right-continuous and F-adapted process C with C0 = 0, is an

admissible cumulative consumption process, if and only if

(2.11) E

[∫ T

0

Y Q
t dCt

]
≤ x+ 〈Q, ET 〉, for all Q ∈ D.

Proof. Let C be a nondecreasing, adapted and right-continuous process, satisfying C0 = 0 and (2.11).

By the left-continuity and the existence of right-limits for the process t 7→ Ct−, the stochastic integral

Mt ,
∫ t

0
Cu− dY

Q
u , 0 ≤ t ≤ T is a local martingale ([Pro90], Theorem III. 17), so we can find a

non-decreasing sequence of stopping times {Tn}n∈N, such that the processes MTn
· ≡ M·∧Tn are

uniformly integrable martingales for each n ∈ N, and P[Tn = T ] → 1 as n→∞. By the assumption

(2.11) and the integration-by-parts formula, we have

x+EQ(ET ) = x+〈Q, ET 〉 ≥ E
∫ T

0

Y Q
t dCt = lim

n
E
∫ Tn

0

Y Q
t dCt = lim

n
E

∫ Tn

0

Y Q
t− dCt +

∑
s≤Tn

∆Y Q
s ∆Cs



(2.12) = lim
n

E

(
Y Q

Tn
CTn

−
∫ Tn

0

Ct− dY
Q
t

)
= lim

n
EQ[CTn

] = EQ(CT ),

for every Q ∈M. Let us define

Zt , esssupQ∈MEQ[CT − ET |Ft] , 0 ≤ t ≤ T.
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From Theorem 2.1.1 in [KQ95], the process Z is a supermartingale under each Q ∈ M, with a

RCLL modification. Choose this RCLL version for Z. Moreover, Z is uniformly bounded from

below and Z0 ≤ x; this is because EQ[CT − ET ] ≤ x for every Q ∈ M, thanks to (2.12). Applying

the Constrained Version of the Optional Decomposition Theorem (see [FK97], Theorem 4.1) to Z,

we can assert the existence of an admissible portfolio Ĥ and of a nondecreasing optional process F

with F0 = x− Z0 ≥ 0, such that Zt = X̂t − Ft, where X̂t , x+
∫ t

0
Ĥ
′

u dSu. On the other hand, by

the increase of C we have

X̂t − Ft = Zt ≥ Ct − essinfQ∈MEQ[ET |Ft], t ∈ [0, T ],

so that in the notation of (2.1) we have W Ĥ,C
T = X̂T − CT + ET ≥ FT ≥ F0 ≥ 0 a.s.; this implies

the admissibility of the strategy (Ĥ, C).

Conversely, let C be an admissible consumption process; there exists then an admissible porfolio

process H, such that the process X· , x+
∫ ·
0
H
′

u dSu satisfies XT−CT +ET ≥ 0. By the supermartin-

gale property of X under every Q ∈ M, we see that x = EQ(X0) ≥ EQ(XT ) ≥ EQ(CT ) − EQ(ET )

and conclude 〈Q, CT 〉 ≤ x+ 〈Q, ET 〉, ∀Q ∈M.

To go from this inequality to (2.11), suppose first that C is uniformly bounded from above by a

constant M , and define its right-continuous inverse

Ds , inf { t ≥ 0 : Ct > s} ∈ [0,∞] for 0 ≤ s <∞.

For arbitrary but fixed Q ∈ D, Theorem 55 in [DM82] and Fubini’s theorem, give

E

[∫ T

0

Y Q
t dCt

]
= E

[∫ M

0

Y Q
Ds

1{Ds<∞} ds

]
=
∫ M

0

φ(s) ds , where φ(s) := E[Y Q
Ds

1{Ds<∞}].

By the supermartingale property of Y Q and the increase of D, the function φ(·) is nonincreasing, so

we can find a countable set K, dense in [0,M ], that contains all discontinuity points of φ(·). For an

enumeration {sk}k∈N of K, the topology on D induced by

d(Q1,Q2) = |〈Q1 −Q2, CT 〉|+
∑

k

2−n|〈Q1 −Q2,1{Dsk
<∞}〉|

is coarser than the weak * topology on D, so we can find a sequence {Qn}n∈N ⊆M such that

〈Qn, CT 〉 → 〈Q, CT 〉 and 〈Qn,1{Ds<∞}〉 → 〈Q,1{Ds<∞}〉, as n→∞,

for every s ∈ K. Such choice for the sequence {Qn}n∈N implies that φn(s) = EQn

[1{Ds<∞}] converges

to 〈Q,1{Ds<∞}〉 for every s ∈ K. Using again Theorem 55 in [DM82], the integration-by-parts

formula from the first part of the proof, and the Dominated Convergence Theorem, we get

x+ 〈Q, ET 〉 = x+ lim
n
〈Qn, ET 〉 ≥ lim

n
〈Qn, CT 〉 = lim

n
E

[∫ T

0

Y Qn

t dCt

]

= lim
n

∫ M

0

φn(s) =
∫ M

0

〈Q,1{Ds<∞}〉 ds.

As Ds is a stopping time, Proposition 2.3(b) yields∫ M

0

〈Q,1{Ds<∞}〉 ds ≥
∫ M

0

E
[
d(Q|FDs

)r

d(P|FDs
)

1{Ds<∞}

]
ds ≥

∫ M

0

E[Y Q
Ds

1{Ds<∞}] ds = E
∫ T

0

Y Q
t dCt,
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which establishes that (2.11) holds for C bounded.

We turn now to the case of C which is not necessarily bounded. For each M ∈ N, the truncated

consumption process CM = C ∧M is admissible, and we have just shown that (2.11) holds with C

replaced by C ∧M . Passing to the limit as M → ∞ on the left-hand side of (2.11) is justified by

the increase of the trajectories of C and the Monotone Convergence Theorem. �

Remark 3. The reason for the rather lengthy and technical proof of this result (to be more precise: for

the authors’ inability to find a shorter one), comes from two rather “unpleasant” facts. First, (L∞)∗

is not metrizable; and secondly, Fubini’s theorem fails in the setting of finitely-additive measures;

see [YH52], Theorem 3.3, p. 57 for such a counterexample.

3. The optimization problem

3.1. The Preference Structure. Apart from external factors, such as market conditions and

the randomness of the endowment process E , it is important to describe the agent’s “preference

structure” (or idiosyncratic rapport with risk). We shall adopt the von Neyman-Morgenstern utility

approach to risk-aversion, and proceed to define a utility random field U : [0, T ]× Ω× R+ → R.

We shall impose no smoothness conditions in the time parameter. Instead, we shall control the

range of the marginal utility. As seen in [KS99] (in the setting of an incomplete semimartingale

market, with initial endowment only, and utility from terminal wealth), a condition of reasonable

asymptotic elasticity is both necessary and sufficient for the existence of an optimal investment

policy. This is the reason for extending the notion of asymptotic elasticity to the time-dependent

case, and for restricting our analysis to reasonably elastic utilities only.

Definition 3.1. A jointly measurable function U : [0, T ] × Ω × R+ → R is called a (reasonably

elastic) utility random field, if it has the following properties (unless specified otherwise, all

these properties are assumed to hold almost surely, and the argument ω ∈ Ω will be consistently

suppressed):

(1) For a fixed t ∈ [0, T ], U(t, ·) is strictly concave, increasing, of class C1, and satisfies the

so-called “Inada conditions” ∂2U(t, 0+) = ∞ and ∂2U(t,∞) = 0, a.s. In other words, U(t, ·)
is a utility function.

(2) There are continuous, strictly decreasing (non-random) functions K1 : R+ → R+ and K2 :

R+ → R+ such that for all t ∈ [0, T ] and x > 0, we have K1(x) ≤ ∂2U(t, x) ≤ K2(x), and

lim supx→∞

(
K2(x)
K1(x)

)
<∞.

(3) The function t 7→ U(t, 1) is uniformly bounded, and limx→∞(essinft,ωU(t, x)) > 0.

(4) U is reasonably elastic, i.e., its asymptotic elasticity satisfies AE[U ] < 1 a.s., where

AE[U ] := lim sup
x→∞

(
esssupt,ω

x∂2U(t, x)
U(t, x)

)
.

(5) For every x > 0, the stochastic process U(·, x) is F-progressively measurable.

Remark 4. Condition 3 is the least restrictive - in fact, it serves only to simplify the analysis, by

excluding some trivial cases and ensuring that the expression AE[U ] of part 4 well-defined. It is an
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immediate consequence of Conditions 2 and 3 that the function t 7→ U(x0, t) is bounded, for every

x0 > 0, a.s. Also, the function U(t,∞) is either bounded, or we have U(t,∞) = ∞ for all t, a.s.

Example 3.2. Let Û : R+ → R+ be a utility function as in Definition 3.1(1), with Û(∞) > 0 and

lim supx→∞

(
xÛ ′(x)

Û(x)

)
< 1. Let ψ be a measurable function of [0, T ] such that 0 < inft∈[0,T ] ψ(t) ≤

supt∈[0,T ] ψ(t) <∞. Then it is easy to see that U(t, x) , ψ(t)Û(x) is a reasonably elastic utility ran-

dom field. In particular, this example includes so-called discounted time-dependent utility functions

of the form U(t, x) = e−βtÛ(x).

Example 3.3. Let U1 : [0, T ]×R+ → R be a deterministic utility field with corresponding K1 and

K2 as in Definition 3.1,(2). Further, let U2 : R+ → R be a utility function satisfying

U2(∞) > 0, lim sup
x→∞

(
xU ′2(x)
U2(x)

)
< 1 and 0 < lim inf

x→∞

(
U ′2(x)
K1(x)

)
≤ lim sup

x→∞

(
U ′2(x)
K1(x)

)
<∞.

One can check then the requirements of Definition 3.1 to see that

U(t, x) :=

 U1(t, x), t < T

U2(x), t = T


is a reasonably elastic utility random field.

Example 3.4. Let U1 : [0, T ]×R+ → R be any deterministic reasonably elastic utility field, and let

Bt be a adapted process uniformly bounded from above and away from zero. To model a stochastic

discount factor, we define U(t, x) , U1(t, Btx). Such a utility random field arises when the agent

accrues utility from nominal, instead of real, value of consumption.

With a utility random field U we associate a random field V : Ω× [0, T ]× R+ → R defined by

(3.1) V (t, y) , sup
x>0

[U(t, x)− xy], 0 < y <∞,

the conjugate of U . We also define the random field I : Ω × [0, T ] × R+ → R, by I(t, y) =

(∂2U(t, ·))−1(y), the inverse marginal utility of U . The following proposition lists some impor-

tant, though technical, properties of these random fields and their conjugates. They will be used

extensively in the sequel. We leave their proofs to the care of the diligent reader.

Proposition 3.5. Let U be a utility random field and V its conjugate.

(1) There are (deterministic) utility functions U and U such that we have, a.s.:

U(x) ≤ U(t, x) ≤ U(x) for all x > 0 and all t ∈ [0, T ] .

(2) For a given t ∈ [0, T ], the function V (t, ·) is finite valued, strictly decreasing, strictly convex

and continuously differentiable.

(3) The convex conjugates V and V of U and U satisfy a.s.

V (y) ≤ V (t, y) ≤ V (y) for all y > 0, and all t ∈ [0, T ] .

In particular, the function t 7→ V (t, y) is uniformly bounded, for any y ∈ (0,∞).
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Definition 3.6. Any utility functions (i.e., strictly concave, strictly increasing, and continuously

differentiable functions that satisfy the Inada conditions) U : R+ → R and U : R+ → R, such that

U(x) ≤ U(t, x) ≤ U(x) for all x > 0 and t ∈ [0, T ], are called a minorant and a majorant of U ,

respectively. Functions V : R+ → R and V : R+ → R, that are convex conjugates of some minorant

and majorant of U , are called a minorant and a majorant of V , respectively.

Remark 5. It follows immediately from the definition of convex conjugation, that for any minorant

and majorant V and V of V , we have V (y) ≤ V (t, y) ≤ V (y), for all y > 0 and t ∈ [0, T ].

Finally, we state a technical result stemming from the reasonable-asymptotic-elasticity condition;

its proof is, mutatis mutandis, identical to the proof leading to Corollary 6.3., page 994 of [KS99].

Proposition 3.7. Let U be a utility random field. If we define the random sets

Γ1 =
{
γ > 0 : ∃x0 > 0, ∀ t ∈ [0, T ], ∀λ > 1, ∀x ≥ x0, U(t, λx) < λγU(t, x)

}
Γ2 =

{
γ > 0 : ∃x0 > 0, ∀ t ∈ [0, T ], ∀x ≥ x0, ∂2U(t, x) < γ

U(t, x)
x

}
Γ3 =

{
γ > 0 : ∃ y0 > 0, ∀ t ∈ [0, T ], ∀ 0 < ρ < 1, ∀ 0 < y ≤ y0, V (t, ρy) < ρ−

γ
1−γ V (t, y)

}
Γ4 =

{
γ > 0 : ∃ y0 > 0, ∀ t ∈ [0, T ], ∀ 0 < y ≤ y0, −∂2V (t, y) <

γ

1− γ

V (t, y)
y

}
,

then inf Γ1 = inf Γ2 = inf Γ3 = inf Γ4 = AE[U ], a.s.

3.2. The Optimization Problem and the Main Result. The principal task our agent is facing,

is how to control investment and consumption, in order to achieve maximal expected utility. At this

point we have defined all notions necessary to cast this question in precise mathematical terms.

Problem 3.8. Let U be a utility random field, E a cumulative endowment process, and µ an

admissible measure on [0, T ] as defined in subsection 2.1. For any given initial capital x > 0, we are

to characterize the value function

(3.2) U(x) , sup
c∈Aµ(x+E)

E

[∫ T

0

U(t, c(t))µ(dt)

]
(Primal problem).

Remark 6. When the above (µ⊗P)−integral fails to exist, we set its value to be−∞. This convention

is equivalent to the approach taken in [KS98] where the authors consider only consumption processes

such that the negative part U−(t, c(t)) is (µ⊗ P)−integrable. To avoid trivial situations, we adopt

the following assumption throughout.

Standing Assumption 3.9. There exists x > 0 such that U(x) <∞.

Remark 7. Due to the boundedness of ET , the Standing Assumption 3.9 will hold under any con-

ditions that guarantee the finiteness of the value function U, when ET ≡ 0. One such condition is

given by 0 ≤ U(t, x) ≤ κ(1 + xα), ∀x > 0, t ∈ [0, T ], for some constants κ > 0 and α ∈ (0, 1). For

details, see Remark 3.9, p.274 in [KS98], and compare with [KLSX91] and [Xu90].
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Together with the Primal Problem of (3.2), we set up the Dual Problem with value function

(3.3)

V(y) , inf
Q∈D

J(y,Q), where J(y,Q) , E
∫ T

0

V (t, yY Q
t )µ(dt) + y〈Q, ET 〉, y > 0 (Dual problem).

It will be shown below that this Dual Problem is in fact well-posed, i.e., the integral in its

definition always exists in R̄. Minimizing in (3.3) over the class D, rather than over the smaller class

M, corresponds to the control-theoretic idea of “relaxing” the class of controls for the dual problem.

This relaxation will guarantee that the infimum in (3.3) is attained, and this in turn will lead to a

consumption-rate process that attains the supremum in the primal problem of (3.2). This is the gist

of the main result of the paper, which can be stated as follows:

Theorem 3.10. Let E = (Et)t∈[0,T ] be a cumulative endowment process, and µ an admissible

measure. Furthermore, let U be a utility random field, let V be its conjugate, and let U and V be the

value functions of the Primal and the Dual Problem, respectively. Under the Standing Assumption

3.9, the following assertions hold:

(i) |U(x)| < ∞ for all x > 0 and |V(y)| < ∞ for all y > 0, i.e., the value functions are finite

throughout their domains.

(ii) The value functions U and V are continuously differentiable, U is strictly concave, and V is

strictly convex.

(iii) U(x) = infy>0[V(y) + xy], and V(y) = supx>0[U(x) − xy] for x, y > 0, i.e. U and V are

convex conjugates of each other.

(iv) The derivatives U′ and V′ of the value functions satisfy limy→∞V′(y) = limx→∞ U′(x) = 0,

lim
y→0

(−V′(y)) = lim
x→0

U′(x) ∈
[

inf
Q∈D

〈Q, ET 〉, sup
Q∈D

〈Q, ET 〉
]
.

(v) Both Primal and Dual Problem have solutions ĉx(·) ∈ Aµ(x+ E) and Q̂y ∈ D, respectively,

for all x, y > 0. For x > 0 and y > 0 related by U′(x) = y, we have

ĉx(t) = I(t, yY Q̂y

t ), 0 ≤ t ≤ T,

where Q̂y is a solution to the Dual problem corresponding to y. Furthermore, ĉx(·) is the

unique optimal consumption-rate process, and Q̂y is determined uniquely as far as the process

Y Q̂y

and the action of Q̂y on ET are concerned.

(vi) With Q̂y ∈ D as in (v), the derivative V′(y) satisfies

V′(y) = 〈Q̂y, ET 〉 − E

[∫ T

0

Y Q̂y

t I(t, yY Q̂y

t )µ(dt)

]
.

Example 3.11. Let U1 be a utility random field and U2 a utility function. Consider the problem

of maximizing expected utility from consumption and terminal wealth

(3.4) U(x) := sup

(
E

[∫ T

0

U1(t, c(t))dt+ U2(XT )

])
,

where the supremum is taken over all admissible investment-consumption strategies. This problem

can be regarded as a special case of our Primal problem. Indeed, if we view the terminal wealth as
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being consumed instantaneously, we can translate (3.4) into

U(x) = sup
c∈Aµ(x+E)

E

[∫ T

0

U(t, c(t))µ(dt)

]
,

where µ = 1
2T λ+ 1

2δ{T}, λ denotes the Lebesgue measure on [0, T ], and

U(t, x) :=

 2TU1(t, x
2T ) t < T

2U2(x
2 ) t = T

 ,

provided U1 and U2 satisfy the requirements of Example 3.3. In this context, CT − CT− = 1
2c(T )

plays the role of terminal wealth.

4. Examples

4.1. The Itô-process model. We specialize the specifications of our model as follows:

Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space supporting a d-dimensional Brownian

motion W = (Wt)t∈[0,T ], and assume that F , (Ft)t∈[0,T ] is the augmentation of the filtration

generated by W . The market coëfficients are given by a bounded real-valued interest rate process

r, a bounded appreciation rate process b taking values in Rd, and a (d×d)-matrix valued volatility

process σ. We assume that r, b and σ are progressively measurable and σ(t) is a symmetric non-

singular matrix for each t, with all eigenvalues uniformly bounded from above and away from zero,

almost surely. 3 The dynamics of the money-market (numéraire) B and the stock-prices S are

(4.1)

 dBt = Btr(t)dt, B0 = 1

dSt = diag(St) [b(t)dt+ σ(t)dWt] , S0 = s0 ∈ Rd
++.

With the d-dimensional vector 1d , (1, 1, . . . , 1)′, we define the market price of risk

θ(t) = σ−1(t) [b(t)− r(t)1d] .

The equations in (4.1) specify a complete market model which, however, becomes incomplete when

the cone K of portfolio constraints is introduced. Then the set YM of (2.10) satisfies

YM ⊆ {Zν(·) : ν ∈ K, and Zν(·) is a positive martingale} ;

see [KLSX91], p.712; [CK92], p.777; [KQ95], p.50. Here K is the set of all progressively measurable

processes ν : [0, T ]× Ω → Rd, such that∫ T

0

||ν(t)||2 dt <∞ and ν(t)′p ≥ 0, ∀ p ∈ K, t ∈ [0, T ]

hold almost surely (i.e., ν takes values in the barrier cone of −K), and

Zν(·) , exp
(
−
∫ ·

0

(θ(t) + σ−1(t)ν(t))′ dWt −
1
2

∫ ·

0

||θ(t) + σ−1(t)ν(t)||2 dt
)
.

Let us recall also the sets YD, YM of (2.6). In the following proposition we characterize the

subset YDmax of the dual domain YD, consisting of processes that are strictly positive on the support

3When r(t), b(t), σ(t) are non-anticipative functionals of past and present stock-prices (S(u))u∈[0,t] for each t ∈

[0, T ], and the resulting stochastic differential equation of (4.1) for S has a strong solution, the non-degeneracy of σ(t)

implies that S and the driving Brownian motion W generate the same filtration. In this case consumption/investement

decisions are based solely on observations of (past and present) stock-prices.
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suppµ, and maximal – i.e., not dominated by any other process in YD. We recall that suppµ is

defined to be [0, T ] if µ charges {T}, and [0, T ) otherwise.

Proposition 4.1. The elements of YDmax are local martingales of the form P[Yt = Zν(t), ∀ t ∈
suppµ] = 1, for some ν ∈ K.

Proof. For simplicity of notation, and without loss of generality, we shall assume in this proof that

r(·), b(·) are identically equal to zero in (4.1), that the volatility σ(·) is the identity matrix, and that

suppµ = [0, T ].

Let Y ∈ YDmax be a maximal element of the “dual domain” YD. From the multiplicative decom-

position theorem for positive special semimartingales (see [Jac79], Propositions 6.19 and 6.20) there

exist a continuous local martingale M with M0 = 1, and a nonincreasing, predictable process D

with RCLL paths, D0 = 1 and DT > 0 a.s., such that Yt = Mt ·Dt , 0 ≤ t ≤ T . By the martingale

representation theorem for the Brownian filtration (see [KS91], Theorem 3.4.15 and Problem 3.4.16),

there is an F-progressively measurable process ν : [0, T ] × Ω → Rd with
∫ T

0
||ν(s)||2 ds < ∞ a.s.,

such that

Mt = Zν(t) ≡ exp
(
−
∫ t

0

ν(s)′ dW (s)− 1
2

∫ t

0

||ν(s)||2 ds
)
, 0 ≤ t ≤ T.

For any admissible trading strategy H and x > 0 such that

(4.2) Xx,H
t , x+

∫ t

0

H ′
u diag(Su) dWu ≥ 0, ∀ t ∈ [0, T ]

holds almost surely, the process Y Xx,H is a supermartingale by Theorem 2.10.

By Itô’s formula (e.g. [Pro90], Section II.7) we have d(YtX
x,H
t ) = Xx,H

t dYt + Yt− dX
x,H
t +

d[Xx,H , Y ]t and dYt = Mt dDt+Dt− dMt+ d[M,D]t. SinceM is continuous andD is predictable and

of finite variation, d[M,D]t ≡ 0, so dYt = Mt dDt−Dt−Mtν(t) dWt, because dMt = −Mtν(t)′ dWt.

Furthermore, d[Xx,H , Y ]t = −Dt−MtH
′
t(diagSt)ν(t) dt from (4.2). It follows that

(4.3) d(YtX
x,H
t ) = dLt +Mt

[
Xx,H

t dDt −Dt−H
′
t diag(St) ν(t) dt

]
,

where L is a local martingale.

Now we prove that ν ∈ K. To do that, let us assume per contra that ν fails to satisfy the relation:

(4.4) ν(t)′p ≥ 0 for all p ∈ K, λ⊗ P-a.s.

Then, we can find a constant ε > 0, a predictable set A such that (λ ⊗ P)(A) > 0, and a bounded

predictable process Ĥ taking values in K, such that Ĥ = 0 off A and

(4.5) Dt−ν(t)′ diag(St) Ĥt ≤ −ε on A.

We can also assume that ||diag(St) Ĥt|| = 1 on A, (λ ⊗ P)-a.s. For any x > 0, we introduce the

first hitting time T x , inf{t ∈ [0, T ) : Xx,Ĥ
t = 0} ∧ T , and the process Hx

t , Ĥt1[[0,T x]](t), so that

Xx,Hx

t ≥ 0 for all t ∈ [0, T ], a.s. Now we have all the ingredients to define the family of signed

measures {ϕx}x>0, given by

(4.6) ϕx(B) , E

(∫ T

0

1B(t)Xx,Hx

t dDt + ε

∫ T

0

1B(t) dt

)
,
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on the σ−algebra of F-predictable subsets of [0, T ]×Ω. By the supermartingale property of Y Xx,Hx

,

the relations (4.3) and (4.5), and the strict positivity of the process M , we have ϕx(B) ≤ 0, for

any x > 0 and any F-predictable set B ⊆ A ∩ [[0, T x]]. Due to the fact that Hx is zero off A, the

set A ∩ [[0, T x]] is still of positive (µ ⊗ P)-measure. By Theorem 2.1 of [DS95]), there exists an

F-predictable process g : [0, T ]× Ω → R and an F-predictable set N ⊆ [0, T ]× Ω such that

(4.7) Dt =
∫ t

0

g(u) du+
∫ t

0

1N (s) dDu and
∫ t

0

1N (u) du = 0 for all t ∈ [0, T ]

and
∫ T

0
g(u) du ≤ DT ≤ 1, hold almost surely. From the definition (4.6) of ϕx and the decomposition

(4.7), for any x > 0 and any predictable B ⊆ (A ∩ [[0, T x]]) \N , we have

0 ≥ ϕx(B) = E
∫ T

0

(
Xx,Hx

t g(t) + ε
)
1B(t) dt .

The equation (4.7) asserts (λ ⊗ P)(N) = 0 for all x > 0, so the above inequality implies that

Xx,Hx

t g(t) + ε ≤ 0 holds (λ ⊗ P)-a.e. on A ∩ [[0, T x]], for any x > 0. We observe that the right-

continuous inverse Q−1 of the process

(4.8) Qt ,
∫ t

0

1A(u) du =
∫ t

0

||diag(Su) Ĥu||
2
du = [X0,Ĥ , X0,Ĥ ]t , 0 ≤ t ≤ T

is a random time-change, which transforms the process X0,Ĥ into a G−Brownian motion ξs , X0,Ĥ

Q−1
s

on the stochastic interval Θ , [[0, QT )), with Gs , FQ−1
s

(see Theorem 4.6, p.174 and Problem

4.7, p.175 in [KS91]). Let f(s) be the composite process g(Q−1
s ), and let Rx = QT x be the first

hitting time of −x by the G−Brownian motion ξ. Thus, for any x > 0 and any G−predictable set

B ⊆ Θ ∩ [[0, Rx]], we have

(4.9) 1 ≥ −
∫ T

0

1A∩[[0,T x]](t)g(t) dt ≥ −
∫ QT

0

1B(s)f(s) ds ≥ ε

∫ QT

0

1B(s)
1

x+ ξs
ds, a.s.

The relation (4.9) implies that x+ ξs ≥ ε, (λ⊗ P)-a.e. on Θ∩ [[0, Rx]]. This is in contradiction with

the fact that P(x+ ξRx
= 0) > 0 and, for small enough x, P(Rx ∈ Θ) > 0.

Therefore, the relation (4.4) holds, and we know that the process M dominates Y . By truncation,

M can be obtained as the Fatou-limit of a sequence of martingales in YM, so by Theorem 2.9,

M ∈ Y∗. Theorem 2.10 states that M is dominated by an element of YD. Since M is a local

martingale with M0 = 1, and all elements Y ∈ YD are supermartingales with Y0 ≤ 1, we can find a

sequence {Tn}n∈N of stopping times that reduces M , and use it to conclude that M ∈ YDmax ⊆ YD

and Y = M . �

Because the optimal solution of the dual problem must be positive on suppµ, we have the follow-

ing:

Corollary 4.2. In the setting of an Itô-process model, the primal problem has

(4.10) c(t) = I(t, yZν(t)Dt), 0 ≤ t ≤ T

as the optimal consumption-rate process, for some constant y > 0, some predictable process ν with

values in the barrier cone of −K and
∫ T

0
||ν(s)||2 ds < ∞ a.s., and some positive, non-increasing

and F-predictable process D with D0 ≤ 1. Both processes Zν and ZνD are in YD.
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Remark 8. Note that Corollary 4.2 answers affirmatively a question posed in Remark 5.8, p.290 of

[KS98], where it was stressed that the problem of maximizing expected utility from consumption only

“is not well-understood” in an incomplete/constrained market, even with deterministic endowment.

Corollary 4.3. Suppose that the terminal value of the endowment process is “attainable”: ET =

XT = x +
∫ T

0
H ′

u dSu for some X ∈ X as in (2.2). This is the case, for instance, if the market-

model is complete, or if ET is non-random. Then the optimal consumption process of (4.10) takes

the simple form

c(t) = I(t, yZν(t)), 0 ≤ t ≤ T.

This is because we have then 〈Q, ET 〉 = x for every Q ∈ D (cf. Remark 4.4 in [CSW01]), and thus

the dual objective function Q 7→ J(y,Q) = E
∫ T

0
V (t, yY Q

t )µ(dt) + xy of (3.3) becomes monotone

in Y Q; as a result, the optimal consumption in (4.10) has D ≡ 1. It would be very interesting, to

find more general conditions guaranteeing an optimal consumption process c(·) of this simple form.

4.2. Optimal Consumption of a Random Endowment. In this example we consider a situation

in which the agent must optimally consume an uncertain future endowment stream, without any

possibility of hedging the uncertainty in a financial market. This problem was studied by [LS91] in

the special case of a point-process setting. We shall consider the following general version:

Problem 4.4. Let (Ω,F , (F)t∈[0,T ],P) be a filtered probability space satisfying the usual hypotheses,

and let ε(·) be a nonnegative progressively measurable process such that ET =
∫ T

0
ε(t) dt is uniformly

bounded away from both zero and infinity. With a given utility function U , the question is to find a

progressively measurable, nonnegative consumption-rate process c(·) so as to maximize the expected

utility E
∫ T

0
U(c(t)) dt , subject to the stringent budget-constraint

(4.11)
∫ T

0

c(t) dt ≤
∫ T

0

ε(t) dt , a.s.

The following theorem was proved in [LS91]. We include a proof for the reader’s convenience,

and denote by I(·) the inverse marginal utility: I(y) = (U ′)−1(y), for 0 < y <∞.

Theorem 4.5. Suppose there exists a positive F-martingale Y such that

(4.12)
∫ T

0

I(Yt) dt =
∫ T

0

ε(t) dt ,

holds almost surely. Then an optimal consumption process is given by

(4.13) ĉ(t) = I(Yt), 0 ≤ t ≤ T.

Proof. From the inequality U(I(y)) ≥ U(c) + yI(y)− yc, valid for y > 0, and c > 0, we obtain

U(I(Yt)) ≥ U(c(t)) + YtI(Yt)− Ytc(t),

for every positive, adapted process c(·). Therefore,

E
∫ T

0

U(ĉ(t)) dt ≥ E
∫ T

0

U(c(t)) dt + E
∫ T

0

YtI(Yt) dt − E
∫ T

0

Ytc(t) dt,
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and the optimality of the process ĉ(·) in (4.13), amongst those that satisfy (4.11), will follow once

we have shown that this latter constraint implies

(4.14) E
∫ T

0

YtI(Yt) dt ≥ E
∫ T

0

Ytc(t) dt.

To do that, it suffices to introduce the probability measure P̃(A) , 1
y E[YT 1A] for A ∈ FT , where

y = E[Y0] ∈ (0,∞). This measure is equivalent to P; thus, the martingale property of Y , and the

equations (4.12), (4.11), lead to (4.14), because

E
∫ T

0

YtI(Yt) dt = y · Ẽ
∫ T

0

I(Yt) dt = y · Ẽ
∫ T

0

ε(t) dt ≥ y · Ẽ
∫ T

0

c(t) dt = E
∫ T

0

Yt c(t) dt .

�

We prove the following existence result, which is a partial converse of Theorem 4.5:

Proposition 4.6. When the utility function U(·) satisfies the “reasonable asymptotic elasticity”

condition of Definition 3.1(4), the optimization Problem 4.4 has a unique solution which is of the

form ĉ(t) = I(Yt), 0 ≤ t ≤ T , for some positive, RCLL supermartingale Y ; this process satisfies

(4.15)
∫ T

0

I(Yt) dt =
∫ T

0

ε(t) dt , a.s.

Proof. We note first that Problem 4.4 is a special case of our Primal Problem with a one-dimensional

“stock price” process St ≡ 1 and trivial bond-price process Bt ≡ 1. In this case all measures equiva-

lent to P are equivalent supermartingale measures, and by Theorem 2.10 any RCLL-supermartingale

Y with Y0 ≤ 1 is in Y∗. By the Main Theorem 3.10, the unique optimal consumption-rate process

is given by ĉ(t) = I(yY Q̂
t ), 0 ≤ t ≤ T, for some y > 0 and some Q̂ ∈ D. To finish the proof we

define Yt = yY Q̂
t , and note that Proposition 2.13 implies

(4.16)
∫ T

0

ĉ(t) dt ≤
∫ T

0

ε(t) dt , a.s.

because every measure equivalent to P is in M. From the Main Theorem 3.10 (v) and (vi), it follows

that, for the optimal solution Q̂ ∈ D of the dual problem, we have

(4.17) E
∫ T

0

Y Q̂
T ĉ(t) dt =

〈
Q̂,
∫ T

0

ĉ(t) dt

〉
≥

〈
Q̂,
∫ T

0

ε(t) dt

〉
= E

∫ T

0

Y Q̂
T ε(t) dt .

The random variable Y Q̂
T = LQ̂

T = d(Q̂)r/dP is strictly positive, so the equation (4.15) follows from

(4.16) and (4.17). �

Appendix A. Proof of the main theorem 3.10

In this part we state and prove a number of results leading to the proof of our Main Theorem

3.10. To simplify the notation we do not relabel the indices when passing to a subsequence.
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A.1. Existence in the Dual Problem. We study the dual problem first. In this subsection we

point out some properties of the dual objective function and establish the existence of Q̂ ∈ D which

is optimal in the dual problem of (3.3). The negative part max{0,−V } of the random field V , the

convex cunjugate of U introduced in (3.1), will be denoted by V −. Our first result establishes a

lower-semicontinuity property for the nonlinear part of the dual objective function.

Lemma A.1. For y > 0, the family of random processes {V −(·, yY Q
· ) : Q ∈ D} is uniformly

integrable with respect to the product measure (µ ⊗ P) on [0, T ] × Ω. Furthermore, we have the

lower-semicontinuity relation

E

[∫ T

0

V (t, yY Q
t )µ(dt)

]
≤ lim inf

n
E

[∫ T

0

V (t, yY Q(n)

t )µ(dt)

]
(A.1)

for all {Q(n)}n∈N ⊆ D such that {Y Q(n)} converges (µ⊗ P)-a.e. to a RCLL supermartingale Y Q.

Proof. Let V (·) be a minorant of V (·, ·), as introduced in Definition 3.6. We define ϕ : R+ → R+ to

be the right-continuous inverse of V −(·), i.e. ϕ(x) , inf
{
y ≥ 0 : V −(y) < x

}
, for x ≥ 0. Suppose

first that ϕ(x) is finite for all x ≥ 0. Then, by L’Hôpital’s rule,

lim
x→∞

ϕ(x)
x

= lim
x→∞

ϕ′(x) = lim
y→∞

1
(V −)′(y)

= ∞.

The family
{
ϕ(V −(·, yY Q

· )) : Q ∈ D
}

is bounded in L1(µ⊗ P), because

E

[∫ T

0

ϕ(V −(t, yY Q
t ))µ(dt)

]
≤ E

[∫ T

0

ϕ(V −(yY Q
t ))µ(dt)

]
≤ ϕ(0) + E

[∫ T

0

yY Q
t µ(dt)

]
≤ ϕ(0) + y.

Thus, by the thorem of de la Vallée Poussin (see [Shi96], Lemma II.6.3. p. 190), the family of

processes
{
ϕ(V −(·, yY Q

· )) : Q ∈ D
}

is (µ⊗ P)−uniformly integrable. If ϕ(x) = ∞, for some x > 0,

then V −(·) is a bounded function and uniform integrability follows readily.

Let {Q(n)}n∈N ⊆ D be a sequence such that {Y Q(n)}n∈N converges to a RCLL-supermartingale

Y Q, (µ⊗ P)-a.e. By uniform integrability we have that

(A.2) E

[∫ T

0

V −(t, yY Q(n)

t )µ(dt)

]
−→ E

[∫ T

0

V −(t, yY Q
t )µ(dt)

]
, as n→∞.

As for the positive parts, Fatou’s lemma gives

(A.3) lim inf
n

E

[∫ T

0

V +(t, yY Q(n)

t )µ(dt)

]
≥ E

[∫ T

0

V +(t, yY Q
t )µ(dt)

]
.

The claim now follows from (A.2) and (A.3). �

The following result establishes the existence of a solution to the dual problem.

Proposition A.2. For each y > 0 such that V(y) <∞, there is Q̂ ∈ D such that

V(y) = J(y, Q̂) = E

[∫ T

0

V (t, yY Q̂
t )µ(dt)

]
+ y〈Q̂, ET 〉.
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Proof. We fix y > 0 and let {Q(n)}n∈N be a minimizing sequence for J(y, ·). We first assume that

the sequence {〈Q(n), ET 〉}n∈N converges in R. This can be justified by extracting a subsequence,

if necessary. By Lemma 5.2 in [FK97] we can find a sequence of convex combinations of elements

in {Y Q(n)}n∈N, which converges to a RCLL-supermartingale Y in the Fatou sense. Because of

boundedness in L1(µ ⊗ P), we can pass (thanks to Komlós’s theorem) to a subsequence of convex

combinations, to achieve convergence (µ ⊗ P)-a.e. By Proposition 2.6, the limit is still Y . Because

of the convexity of V (t, ·) and the convergence of the sequence {〈Q(n), ET 〉}n∈N, passing to convex

combinations preserves the property of being a minimizing sequence. By Proposition 2.6, the limit

Y is of the form Y Q̂ for some (and then every) cluster point Q̂ of {Q(n)}n∈N; the existence of such

a cluster point is guaranteed by Alaoglu’s theorem ([Woj96], Theorem 2.A.9). Invoking Lemma A.1

establishes the claim of the proposition. �

A.2. Conjugacy and finiteness of U(·) and V(·). The next step is to establish a conjugacy

relation between U(·) and V(·). The most important tool in this endeavor is the Minimax Theorem.

Lemma A.3. The function V(·) is the convex conjugate of U(·): V(y) = supx>0[U(x) − xy] , for

y > 0.

Proof. For fixed y ∈ (0,∞) and n ∈ N, let Sn denote the set of all nonnegative, progressively

measurable processes c : [0, T ]× Ω → [0, n]. The sets Sn can be viewed as closed subsets of balls in

L∞(µ⊗ P). Thanks to the concavity of U(t, ·), the compactness of Sn (by Alaoglu’s theorem), and

the convexity of D, we can use the Minimax Theorem (see [Str85], Theorem 45.8 and its corollaries)

to obtain

sup
c∈Sn

inf
Q∈D

(
E
∫ T

0

(
U(t, c(t))− yY Q

t c(t)
)
µ(dt) + y〈Q, ET 〉

)
=

inf
Q∈D

sup
c∈Sn

(
E
∫ T

0

(
U(t, c(t))− yY Q

t c(t)
)
µ(dt) + y〈Q, ET 〉

)
,(A.4)

for any n ∈ N, y > 0. Proposition 2.13 guarantees that ∪x>0Aµ(x+ E) = ∪x>0(Aµ)′(x+ E) where

(Aµ)′(x+ E) ,

{
c ∈ Aµ(x+ E) : sup

Q∈D

(
E
∫ T

0

c(t)Y Q
t µ(dt)− 〈Q, ET 〉

)
= x

}
.

Thus, by pointwise approximation of elements of ∪x>0(Aµ)′(x + E) by elements of ∪n∈NSn, we

obtain

lim
n→∞

sup
c∈Sn

inf
Q∈D

(
E
∫ T

0

(
U(t, c(t))− yY Q

t c(t)
)
µ(dt) + y〈Q, ET 〉

)
=

= sup
x>0

sup
c∈(Aµ)′(x+E)

E

[∫ T

0

(U(t, c(t))− xy) µ(dt)

]
= sup

x>0
[U(x)− xy].(A.5)

We define V (n)(t, y) , sup0<x≤n[U(t, x)− xy], and the pointwise maximization yields

inf
Q∈D

sup
c∈Sn

(
E
∫ T

0

(
U(t, c(t))− yY Q

t c(t)
)
µ(dt) + y〈Q, ET 〉

)

= inf
Q∈D

(
E
∫ T

0

V (n)(t, yY Q
t )µ(dt) + y〈Q, ET 〉

)
, V(n)(y).(A.6)
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From (A.4), (A.5) and (A.6) we conclude that limn V(n)(y) = supx>0[U(x)−xy]. To prove the claim

of the lemma it is enough to show that limn→∞V(n)(y) ≥ V(y), since V(n)(y) ≤ V(y) holds for all

y > 0, n ∈ N. For a fixed y > 0, let {Q(n)}n∈N ⊆ D be a sequence such that

lim
n→∞

(
E
∫ T

0

V (n)(t, yY Q(n)

t )µ(dt) + y〈Q(n), ET 〉

)
= lim

n→∞
V(n)(y).

Using the construction from Lemma A.1 we can assume that 〈Q(n), ET 〉 → 〈Q∗, ET 〉 and that Y Q(n) →
Y Q∗ as n → ∞, both in the (µ ⊗ P)-a.e. and in the Fatou sense, where Q∗ is a cluster point of

{Q(n)}n∈N.

Let U(·) be a majorant of U , and V (·) its conjugate. Then it is easy to see that

V (n)(t, y) ≤ V
(n)

(y) := sup
0<x≤n

[U(x)− xy], for all t ∈ [0, T ]

and V
(n)

(y) = V (y) for y ≥ I(1) ≥ I(n) where I(y) := (U
′
(·))−1(y). The argument from Lemma

A.1 takes care of the uniform integrability of the sequence of processes {V (n)(·, Y Q(n)

· )−}n∈N as well

as of the following chain of inequalities

lim
n→∞

(
E
∫ T

0

V (n)(t, Y Q(n)

t )µ(dt) + y〈Q(n), ET 〉

)
≥

(
E
∫ T

0

V (t, Y Q∗
t )µ(dt) + y〈Q∗, ET 〉

)
≥ V(y),

settling the claim of the lemma. �

Remark 9. It is a consequence of the decrease of V(·) and the preservation of properness in the

conjugacy relation (see [Roc70], Theorem 12.2, p. 104 ) that the Standing Assumption 3.9 implies

the existence of y0 > 0 such that V(y) < ∞ for y > y0. Furthermore, the strict convexity of

V (t, ·) allows us to denote by Q̂y the unique (as far as its action on ET and the corresponding

supermartingale Y Q̂y

are concerned) minimizer of the dual problem for y such that V(y) <∞.

Lemma A.4. V(y) ∈ (−∞,∞) for all y > 0.

Proof. Let U(·) be a minorant of U(·, ·). U(·) is a utility function and the convex conjugate V (·)
of U(·) satisfies V (y) ≤ V (t, y) for all t. Let ρ = ||ET ||L∞ . By the convexity of V (·) and Jensen’s

inequality, we have

V(y) = inf
Q∈D

(
E

[∫ T

0

V (t, yY Q
t )µ(dt)

]
+ y〈Q, ET 〉

)
≥ inf

Q∈D
E

[∫ T

0

V (yY Q
t )µ(dt)

]

≥ inf
Q∈D

V

(
E

[∫ T

0

yY Q
t µ(dt)

])
≥ V (y) > −∞.(A.7)

To prove that V(y) is finite, we first choose y > 0 such that V(y) <∞ – its existence is guaranteed

by Remark 9. For some γ ∈ Γ3 ∩ [AE[U ], 1) a.s, and some 0 < ρ < 1, Proposition 3.7 implies that

there exists y0 > 0 such that

V (t, ρy) ≤ C V (t, y), for y ≤ y0
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where C = ρ−γ/(1−γ). By Proposition A.2 there is Q̂y ∈ D such that V(y) = E
[∫ T

0
V (t, yY Q̂y

t )µ(dt)
]
,

so

V(ρy) ≤ E

[∫ T

0

V (t, ρyY Q̂y

t )µ(dt)

]

= E

[∫ T

0

V (t, ρyY Q̂y

t )1{
ρyY Q̂y

t >y0

} µ(dt)

]
+ E

[∫ T

0

V (t, ρyY Q̂y

t )1{
ρyY Q̂y

t ≤y0

} µ(dt)

]

≤ sup
t
V (t, y0) + CE

[∫ T

0

V (t, yY Q̂y

t )1{
ρyY Q̂y

t ≤y0

} µ(dt)

]
<∞.

We conclude that V(y) <∞ for all y > 0, due to the decrease of V(·). �

Having established the existence and essential uniqueness of the solution, and the finiteness of

the value function for the dual problem, we can apply ideas from the calculus of variations to obtain

the following:

Lemma A.5. For each y > 0 and each Q ∈ D we have

E

[∫ T

0

(Y Q
t − Y Q̂y

t )I(t, yY Q̂y

t )µ(dt)

]
+ 〈Q̂y −Q, ET 〉 ≤ 0,

where Q̂y is the optimal solution to the dual problem of (3.3) (as in Proposition A.2, Remark 9).

Proof. For y > 0, ε ∈ (0, 1) and Qε = (1− ε)Q̂y + εQ, the optimality of Q̂y implies

0 ≤ E

[∫ T

0

(
V (t, yY Qε

t )− V (t, yY Q̂y

t )
)
µ(dt)

]
+ y〈Qε − Q̂y, ET 〉

≤ E

[∫ T

0

y(Y Q̂y

t − Y Qε

t )I(t, yY Qε

t )µ(dt)

]
+ y〈Qε − Q̂, ET 〉

= εy

(
E

[∫ T

0

(Y Q̂y

t − Y Q
t )I(t, yY Qε

t )µ(dt)

]
+ 〈Q̂y −Q, Et〉

)
.

Since (
(Y Q

t − Y Q̂y

t )I(t, yY Qε

t )
)−

≤ Y Q̂y

t I(t, yY Qε

t ) ≤ Y Q̂y

t I(t, y(1− ε)Y Q̂y

t ),

we can follow the same reasoning as in Lemma A.4 to show that the last term is dominated by an

random process on Ω× [0, T ] which is (µ⊗ P)-integrable. Now we can let ε→ 0 and apply Fatou’s

lemma, to obtain the stated inequality. �

A.3. Differentiability of the value functions. We turn our attention the the differentiability

properties of the value functions.

Proposition A.6. The dual value function V(·) is strictly convex and continuously differentiable

on R+; its derivative is given by

V′(y) = 〈Q̂y, ET 〉 − E

[∫ T

0

Y Q̂y

I(t, yY Q̂y

)µ(dt)

]
.
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Proof. The fact that V(·) is strictly convex follows from the strict convexity of V (t, ·). Therefore, to

show that V(·) is continuously differentiable, it is enough (by convexity) to show that its derivative

exists everywhere on (0,∞). We start by fixing y > 0, and defining the function

h(z) , E

[∫ T

0

V (t, zY Q̂y

t )µ(dt)

]
+ z〈Q̂y, ET 〉, z > 0

This function is convex and, by definition of the optimal solution Q̂y of the dual problem, we have

h(z) ≥ V(z) for all z > 0 and h(y) = V(y). Again by convexity, we obtain

∆−h(y) ≤ ∆−V(y) ≤ ∆+V(y) ≤ ∆+h(y),

where ∆+ and ∆− denote right- and left-derivatives, respectively. Now

∆+h(y) = lim
ε→0

h(y + ε)− h(y)
ε

= lim
ε→0

1
ε

E

[∫ T

0

V (t, (y + ε)Y Q̂y

t )− V (t, yY Q̂y

t )µ(dt)

]
+ 〈Q̂y, ET 〉

≤ lim inf
ε→0

(
−1
ε

)
E

[∫ T

0

εY Q̂y

t I(t, (y + ε)Y Q̂y

t )µ(dt)

]
+ 〈Q̂y, ET 〉

= −E

[∫ T

0

Y Q̂y

t I(t, yY Q̂y

t )µ(dt)

]
+ 〈Q̂y, ET 〉

by the Monotone Convergence Theorem. Similarly, we get

∆−h(y) ≥ lim sup
ε→0

E

[
−
∫ T

0

Y Q̂y

t I(t, (y − ε)Y Q̂y

t )µ(dt)

]
+ 〈Q̂y, ET 〉.

Let y0 be the constant from Γ4, Lemma 3.7, corresponding to some AE[U ] ≤ γ < 1 a.s. Then

|Y Q̂y

t I(t, (y − ε)Y Q̂y

t )| ≤ |Y Q̂y

t I(t, (y − ε)Y Q̂y

t )|1{
Y Q̂y

t ≤y0/y
} + |Y Q̂y

t I(t, (y − ε)Y Q̂y

t )|1{
Y Q̂y

t >y0/y
}.

We fix ε0 and observe that for ε < ε0, by Lemma 3.7, the second part is dominated by

(A.8)
1

y − ε0

γ

1− γ
V (t, (y − ε0)Y

Q̂y

t ) ≤ 1
y − ε0

γ

1− γ
CV (t, yY Q̂y

t ),

for some constant C. This last expression is in L1(µ⊗ P), by finiteness of V(·). On the other hand,

the first part in (A.8) is dominated by K1(y−ε0
y ym)Y Q̂y

t , which is in L1(µ⊗P) by the supermartingale

property of Y Q̂y

. Having prepared the ground for the Dominated Convergence Theorem, we can let

ε→ 0 and obtain

∆−h(y) ≥ 〈Q̂y, ET 〉 − E

[∫ T

0

Y Q̂y

t I(t, yY Q̂y

t )µ(dt)

]
,

completing the proof of the proposition. �

Lemma A.7. The dual value function V(·) has the following asymptotic behavior:

(i) V′(0+) = −∞,

(ii) V′(∞) ∈
[
infQ∈D〈Q, ET 〉, supQ∈D〈Q, ET 〉] .

Proof.
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(i) Suppose first there is a minorant V (·) of V (·, ·) such that V (0+) = ∞. Letting y → 0 in

(A.7), we get V(0+) = ∞ and, by convexity, V′(0+) = −∞.

In the case when V (0+) < ∞ for each minorant V (·) of V (·, ·), we can easily construct

a majorant V (·) such that V (0+) < ∞, using the properties of finctions K1 and K2 from

Definition 3.1. We pick such a majorant V (·), a minorant V (·), set I(·) = −V ′(·), D =

V (0+)− V (0+), and choose Q ∈ D. Then, with ρ = ||ET ||L∞ ,

−V′(y) ≥ V(0+)−V(y)
y

≥ 1
y

[
(V (0+)− V (0+)) + V (0+)−V(y)

]
≥ −D − ρy

y
+
V (0+)− E

[∫ T

0
V (yY Q

t )µ(dt)
]

y

≥ −D − ρy

y
+ E

[∫ T

0

Y Q
t I(yY

Q
t )µ(dt)

]
−→∞, as y →∞,

by the Monotone convergence theorem.

(ii) By l’Hôpital’s rule we have

V′(∞) = lim
y→∞

V(y)
y

= lim
y→∞

infQ∈D

(
E
[∫ T

0
V (t, yY Q

t )µ(dt)
]

+ y〈Q, ET 〉
)

y

∈
[
L+ inf

Q∈D
〈Q, ET 〉, L+ sup

Q∈D
< Q, ET >

]
,

where L , limy→∞
1
y infQ∈D E

[∫ T

0
V (t, yY Q

t )µ(dt)
]
. From the Definition 3.1 of the utility

function we read ∂2V (t, y) ≤ −(K1)−1(y) → 0 when y → ∞, so for an ε > 0 we can find

a constant C(ε) such that −V (t, y) ≤ C(ε) + εy for all t ∈ [0, T ] and all y > 0. To finish

the proof, we denote by V0(·) the (strictly convex, decreasing) value function of the dual

optimization problem (3.3) when ET ≡ 0. Then the decrease of V0(·) and L’Hôpital’s rule

imply

0 ≤ −V′
0(∞) = lim

y→∞

−V0(y)
y

= lim
y→∞

sup
Q∈D

1
y

E

[∫ T

0

−V (t, yY Q
t )µ(dt)

]
= −L

≤ lim
y→∞

sup
Q∈D

1
y

E

[∫ T

0

(C(ε) + εyY Q
t )µ(dt)

]
≤ lim

y→∞
E
∫ T

0

(
C(ε)
y

+ ε

)
µ(dt) = ε.

Consequently, L = 0, and the claim follows. �

A.4. Proof of the Main Theorem 3.10. In this subsection we combine the preceding lemmata

and propositions, to complete the proof of Theorem 3.10.

(i) By the concavity of U(t, ·) and the Standing Assumption 3.9, we deduce that U(x) <∞ for

any x > 0. For x > 0 we define c(t) , x, ∀ t ∈ [0, T ]. Then c ∈ Aµ(x + E), because the

constant consumption-rate process c(·) ≡ x can be financed by the trivial portfolio H ≡ 0

and initial wealth only. Since

U(x) ≥ E

[∫ T

0

U(t, c(t))µ(dt)

]
= E

[∫ T

0

U(t, x)µ(dt)

]
≥ E

[∫ T

0

U(x)µ(dt)

]
= U(x) > −∞,

we conclude that |U(x)| < ∞ for all x > 0. The assertion that |V(y)| < ∞ for all y > 0 is

the content of Lemma A.4.
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(ii) V(·) is continuously differentiable by Proposition A.6. From the conjugacy relation in

Lemma A.3 and the properties of convex conjugation (see Theorem 26.5 in [Roc70]), we

deduce the continuous differentiability of U(·).
(iii) Follows from Lemma A.3 and the properties of convex conjugation (see Theorem 12.2. in

[Roc70]).

(iv) The assertion is a direct consequence of Lemma A.6 and the properties of convex conjugation

(see Theorem 26.5. in [Roc70] ).

(vi) Follows from Lemma A.6.

(v) The dual problem has an essentially unique solution Q̂y ∈ D for any y > 0, by Proposition

A.2 and Remark 9. To establish the result for the primal problem, we pick x > 0, a solution

Q̂y of the dual problem corresponding to y = U′(x) and define ĉx(t) , I(t, yY Q̂y

t ), for all

t ∈ [0, T ]. Then the relation −V′(y) = (U′(·))−1(y), y > 0 (see [Roc70], Theorem 26.6) and

Proposition A.6 give

E

[∫ T

0

ĉx(t)Y Q̂y

t µ(dt)

]
= −V′(y) + 〈Q̂y, ET 〉 = x+ 〈Q̂y, ET 〉,

so for any Q ∈ D, by Proposition A.5,

E

[∫ T

0

ĉx(t)Y Q
t µ(dt)

]
≤ E

[∫ T

0

ĉx(t)Y Q̂y

t µ(dt)

]
+ 〈Q, ET 〉 − 〈Q̂y, ET 〉 = x+ 〈Q, ET 〉.

Thus ĉx(·) ∈ A(x+E) by the characterization of admissible consumption processes in Propo-

sition 2.13.

Having established the admissibility of ĉx(·), we note that

E

[∫ T

0

U(t, ĉx(t))µ(dt)

]
= E

[∫ T

0

V (t, yY Q̂y

t )µ(dt)

]
+ E

[∫ T

0

yY Q̂y

t I(t, yY Q̂y

t )µ(dt)

]
= V(y)− yV′(y) = U(x),

by the conjugacy relation (iii), the expression for the derivative of the dual value function

(vi), and the definition of y. This closes the duality gap and proves the optimality of ĉx(·).
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