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Introduction

Physics Problem

Quantum field theories used to describe elementary particles have a
symmetry under an infinite dimensional group, the “gauge group”. How
does one handle this?
“BRST”: Technology using anticommuting variables, developed early
1970s by physicists Becchi, Rouet, Stora and Tyutin.

New Ideas in Representation Theory

Algebraic approach to representations of semi-simple Lie algebras: use
Casimir operators and their action on reps. (Harish-Chandra
homomorphism) to characterize irreducible reps. Lie algebra cohomology.
New approach: introduce a Clifford algebra, spinors, and take a “square
root” of the Casimir. This is a sort of “Dirac operator”, use to construct a
“Dirac cohomology” that will characterize representations.
Highly recommended reference: Dirac Operators in Representation Theory,
Huang and Pandzic, Birkhauser 2006.

Idea on sale here: think of BRST as Dirac cohomology
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Representation Theory and Quantum Mechanics

Quantum Mechanics

Quantum mechanics has two basic structures:

I: States

The state of a physical system is given by a vector |ψ > in a Hilbert space
H.

II: Observables

To each observable quantity Q of a physical system corresponds a
self-adjoint operator OQ on H. If

OQ |ψ >= q|ψ >

(i.e. |ψ > is an eigenvector of OQ with eigenvalue q) then the observed
value of Q in the state |ψ > will be q.
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Representation Theory and Quantum Mechanics

Lie Groups and Lie Algebras

Let G be a Lie group, with Lie algebra (g, [·, ·]).

Crucial Example

G = SU(2), the group of 2 by 2 unitary matrices of determinant one.
su(2) is trace-less 2 x 2 skew-Hermitian matrices (X † = −X , tr X = 0).
Physicists like the basis of “Pauli matrices” i

2~σ with

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Geometric point of view: G is a manifold (S3 for SU(2)), and elements
X ∈ g are left-invariant vectors fields on G , i.e. left-invariant first-order
differential operators.

Universal Enveloping Algebra

The universal enveloping algebra U(g) is the associative algebra over C of
left-invariant differential operators (of ALL orders).
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Representation Theory and Quantum Mechanics

Representations and Quantum Mechanics

A representation of a Lie algebra g is just a module for the algebra U(g).
Such a module is given by a complex vector space V , and a
homomorphism π : g→ End(V ) satisfying

[π(X1), π(X2)] = π([X1,X2])

Explicitly, for each X ∈ g we get a linear operator π(X ) and π takes the
Lie bracket to the commutator. If V is a Hilbert space, and π is a unitary
representation, then the π(X ) are skew-Hermitian operators (these
exponentiate to give unitary operators on V ).

Implications

To any unitary representation (π,V ) of a Lie algebra g corresponds a
quantum system with state space V and algebra of observables U(g).

Any quantum system with a symmetry group G gives a unitary
representation of g
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Representation Theory and Quantum Mechanics

Examples

Translations in space: G = R3. ~X ∈ g = R3 acts as the momentum
operators π(~X ) = i~P. Eigenvalues of ~P are ~p, components of the
momentum vector.

Translation in time: G = R. X ∈ g = R acts as the energy
(Hamiltonian) operator π(X ) = iH. Eigenvalue is the energy E . This
is the Schrödinger equation i d

dt |ψ >= H|ψ >.

Rotations in space: G = Spin(3) = SU(2), ~X ∈ so(3) ' su(2) acts as
the angular momentum operators π(~X ) = i~J. Note: the components
of ~J are not simultaneously diagonalizable, can’t characterize a state
by an angular momentum vector.

Phase transformations of |ψ >: G = U(1) and there is an integral
lattice of points in g = R that exponentiate to the identity in G . If L
is a generator of this lattice, on a 1-d representation,
π(L)|ψ >= i2πQ|ψ > for some integer Q, the “charge” of the state.
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Representation Theory and Quantum Mechanics

Semi-Simple Lie Algebras and Casimir Operators

For G = U(1) irreducible representations are one dimensional,
characterized by an integer Q (“weight” to mathematicians, “charge” to
physicists). What about larger, non-Abelian Lie groups such as SU(2)?

Casimir Operators

For semi-simple Lie groups G , one has a bi-invariant quadratic element C
in U(g) called the ”Casimir element”. It is in the center of U(g), so it acts
by a scalar on irreducible representations (Schur’s lemma).

Example: SU(2)

For G = SU(2), the Casimir element is J2
1 + J2

2 + J2
3 and its eigenvalues

are given by j(j + 1), where j is called the “spin” and takes values
j = 0, 1/2, 1, 3/2, . . ..

Note: as a second-order differential operator on the manifold G , the
Casimir is just the Laplacian operator.
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Gauge Symmetry and BRST

Gauge Symmetry

Geometrical framework of modern quantum field theory:

A principal bundle P over 3+1d spacetime M, with fiber a Lie group
G (in Standard Model, G = SU(3)xSU(2)xU(1)).

Connections A on P (physics interpretation: a field with photons,
gluons, etc. as quanta). The space A is an inf. dim. linear space.

Vector bundles on M, constructed from P and a representation of G .
Sections of these vector bundles are field with quanta electrons,
quarks, neutrinos, etc.

The gauge group G
The infinite dimensional group of automorphisms of P that preserve the
fibers is called the gauge group G. Locally on M, G = Map(M,G ). It acts
on the above structures.
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Gauge Symmetry and BRST

Conventional Wisdom

By general philosophy of quantum systems, the state space H of a gauge
theory should carry a unitary representation of G.

Mathematical Problem

For dim(M) > 1, little is known about the irreducible unitary reps of G.

Conventional Wisdom

This doesn’t matter. G is just a symmetry of change of coordinates on a
geometric structure, all physics should be invariant under this. The
physical states should just transform as the trivial representation of G.
The observable corresponding to the Lie algebra of G should be an
operator G that gives “Gauss’s law”: G|ψ >= 0 for every physical state.
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Gauge Symmetry and BRST

The BRST Formalism

In quantum field theory, one would like to have a “covariant” formalism,
with space and time treated on the same footing, the Lorentz symmetry
group SO(3, 1) acting manifestly. But in such a formalism, one can show
that there are no invariant states: G|ψ >= 0⇒ |ψ >= 0

Gupta-Bleuler, 1950

Write G = G+ + G−, only enforce G+|ψ >= 0. This requires that H have
an indefinite inner product. A suitable decomposition exists for U(1)
gauge theory, but not for the non-abelian case.

BRST (Becchi-Rouet-Stora-Tyutin), 1975

Extend H to H⊗ Λ∗(Lie G). Construct operators Q,N on this space such
that N has integer eigenvalues and gives a Z grading, and Q is a
differential:Q2 = 0. Then define the physical Hilbert space as the
degree-zero part of

Hphys = KerQ/ImQ
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Gauge Symmetry and BRST

A Toy Model: Gauge theory in 0+1 dimensions

Simplest possible situation: 0 space and 1 time dimensions (M = S1). G a
connected simple compact Lie group, V an irreducible representation.
Physical interpretation: quantum mechanics of the internal degrees of
freedom of an infinitely massive particle, coupled to a gauge field.

Connections on S1

For G connected, all principal G -bundles P on S1 are trivial. Choose a
trivialization P ' G × S1.
Gauge-transformations: changes of trivialization, φ ∈ Maps(S1,G ).
Connections: Use trivialization to pull-back connections from P to S1,
then A(t) ∈ Map(S1, g). Under a gauge transformation

A→ φ−1Aφ+ φ−1 d

dt
φ
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Gauge Symmetry and BRST

Choosing a Gauge

Standard tactic in quantum gauge theory: use gauge freedom to reduce to
a smaller set of variables before “quantizing”, imposing some “gauge
condition”.
In our toy model, can always find a gauge transformation that makes
A(t) = const., so impose d

dt A(t) = 0.

Residual Gauge Symmetry

In this gauge, space of connections is just g, gauge transformations are
φ ∈ G acting on connections by the adjoint action

A→ φ−1Aφ

Want to fix gauge by demanding A ∈ t (Lie algebra of maximal torus), no
component in g/t.
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Highest Weight Theory and Lie Algebra Cohomology

Complex Semi-simple Lie algebras

Under the adjoint action g = t⊕ g/t where t is the Lie algebra of a
maximal torus T . T acts trivially on t, non-trivially (by “roots”) on
g/t⊗ C and

g/t⊗ C = n+ ⊕ n−

n+ is the sum of the “positive root spaces”, a Lie subalgebra of g⊗ C.
g/t is a real even dim. vector space, which can be given various invariant
complex structures, one for each choice of “positive” roots. The set of
these choices is permuted by the Weyl group W .

Example: SU(2)

t = span

(
1 0
0 −1

)
n+ = span

(
0 1
0 0

)
n− = span

(
0 0
1 0

)
W = Z2, interchanges n+ ↔ n−
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Highest Weight Theory and Lie Algebra Cohomology

Highest Weight Theory of g Representations

Given a choice of n+, finite dimensional representations V are classified by

V n+
= {v ∈ V : π(X )v = 0 ∀X ∈ n+}

For V irreducible, V n+
is 1-dimensional, carries a representation of t, the

“highest weight”.
Irreducible reps. can be characterized by

Eigenvalue of the Casimir operator C. Indep. of choice of n+

Highest weight. Depends on choice of n+.

Example: SU(2)

Irreducible spin j rep. labeled by

j = 0, 1/2, 1, 3/2, . . ., the eigenvalue of π( i
2σ3) on V n+

j(j + 1), the eigenvalue of C on V .
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Highest Weight Theory and Lie Algebra Cohomology

Lie Algebra Cohomology and BRST

Motivation for homological algebra: study a module V over an algebra by
replacing it by a complex of free modules using a “resolution”

0→ ( · · ·F2
∂→ F1

∂→ F0)
∂→ V → 0

where ∂2 = 0 and Im ∂ = Ker ∂ (an “exact sequence”).
Apply (·)→ (·)g = HomU(g)((·),C) to this resolution, get a new sequence,
with differential d induced by ∂.
New sequence is not exact: Ker d/Im d = H∗(g,V ).
Using a standard resolution (Chevalley-Eilenberg) of V ,

BRST cohomology Ker Q/Im Q is just Lie algebra cohomology H∗(g,V )

Note: BRST wants just V g = H0(g,V ), but we get more.
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Highest Weight Theory and Lie Algebra Cohomology

Examples

Lie algebra g of a compact Lie group G

H∗(g,C) = H∗deRham(G ) (for G = SU(2), H3(g,C) = H0(g,C) = C).
H∗(g,V ) = H∗(g,C )⊗ V g

n+-cohomology

(Bott-Kostant) get highest weight space H0(n+,V ) = V n+
, but also, for

each w ∈W , 6= 1, copies in H l(w)(n+,V ).
The Euler characteristic χ(H∗(n+,V )) (alternating sum of H∗) does not
depend on the choice of n+. As a T representation

χ(H∗(n+,V ))

χ(H∗(n+,C))

gives the Weyl character formula for the character of V .
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Dirac Cohomology

Dirac Operators

Discovery of Dirac:
Given a Laplacian ∆, take its “square root”, a Dirac operator D : D2 = ∆
To get a square root of

∆ = −(
∂2

∂x2
1

+ · · · ∂
2

∂x2
n

)

need to introduce γi that satisfy γ2
i = −1, γiγj = −γjγi . These generate

a Clifford algebra Cliff (Rn).
Then the Dirac operator is

D =
∑
i=1,n

γi
∂

∂xi

Index theory is based on the Dirac operator, which generates all
topological classes of operators (Bott periodicity).
Can find a Dirac operator on G such that D2 = C + const.. Gives analog
of H∗(g,V )
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Dirac Cohomology

The Dirac Operator: case of g/t

More interesting case, algebraic analog of Dirac operator on G/T . Will
give analog of H∗(n+,V ).

Clifford algebra Cliff (g/t)

Algebra generated by {γi} an orthonormal basis of g/t, relations
γiγj = −γjγi for i 6= j , γ2

i = −1.

Spinor space S

Unique irreducible module for Cliff (g/t).
Choosing a complex structure on (g/t), i.e. (g/t)⊗ C = n+ + n−,
Cliff (g/t)⊗ C = End(Λ∗(n+))
S ' Λ∗(n+) up to a projective factor (“

√
Λtop(n−)”).

(Kostant) One can construct an appropriate D ∈ U(g)⊗ Cliff (g/t), acts
on V ⊗ S .
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Dirac Cohomology

Dirac Cohomology

Two versions of “Dirac Cohomology”, on operators and on states.

Operators

D acts on U(g)⊗ Cliff (g/t) by Z2-graded commutator (da = [D, a]).
D2 = C + const. is central so d2 = 0. Ker d/Im d = U(t).

States

D acts on V ⊗ S . One can define the Dirac cohomology HD(V ) as
Ker D/(Im D ∩ Ker D), even though D2 6= 0. Actually, in this case, D is
skew self-adjoint, so Im D ∩ Ker D = 0, and HD(V ) = Ker D.
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Dirac Cohomology

New Features of Dirac Cohomology

On operators, get a genuine differential (d2 = 0), on states D2 not
zero, but an element of the center of U(g).

Everything is Z2-graded, not Z-graded

Does not depend on a choice of complex structure on g/t

g/t is not a subalgebra. Dirac cohomology can be defined in contexts
where there is no Lie algebra cohomology.

Generalization

Pick ANY orthogonal decomposition g = r⊕ s, r a subalgebra, but s not.
Then can define a Dirac operator D ∈ U(g)⊗ Cliff (s).
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Conclusions

Relation to Hecke Algebras?

A general context for Dirac cohomology:
In many cases of interest in representation theory, given a group G and a
subgroup K , one can characterize G representations V by considering V K ,
the subspace of K -invariants, together with an action on V K by an algebra
Hecke(G ,K ), a Hecke algebra.

Examples

Hecke(G (Fq),B(Fq)), G an algebraic group, B a Borel subgroup

Hecke(G (Qp),G (Zp)) ' RepCG∨ Satake isomorphism

Hecke(G (Fp((t)),G (Fp[[t]]))

Replacing Fp by C in the last one is part of the geometric Langlands story.
Representations of loop groups parametrized by connections appear, as
well as a version of BRST....
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Conclusions

Conclusions

Work in progress....
Possible applications:

Better non-perturbative understanding of how to handle gauge
symmetry in quantum gauge theories, including in 3+1 dimensions.

Insight into the correct framework for studying representations of
gauge groups in d > 1.

Geometric Langlands?
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