GROUPS AND REPRESENTATIONS II: SYLLABUS

- Survey and History of Representation theory; Generalities about Quantization and Representation Theory
- Lie Algebras and Their Relation to Lie Groups
 - Exponential mapping and its Jacobian
 - Adjoint and co-adjoint representation
 - Baker-Campbell-Hausdorff formula
- Representations of Compact Lie Groups: Cartan-Weyl Highest Weight Theory
 - Review of Peter-Weyl theorem
 - Maximal Tori: Existence, Uniqueness up to Conjugation, every element is in a maximal torus. Examples for classical groups
 - Topology and geometry of G/T
 - Weyl group, action on maximal torus and on its Lie algebra
 - Roots: positive roots, dominant alcove
 - Dynkin diagrams and classification of root systems.
 - SU(2) representations and their applications in Physics
 - Weight spaces, dominant weights
 - Highest weight theorem
 - SU(3) representations
 - Weyl integral formula, character formula and dimension formula
- Homogeneous Vector Bundles
 - Induced representations
 - Frobenius Reciprocity
 - Spherical Harmonics
- Representations of Compact Lie Groups: Borel-Weil Theorem and Geometric Theory
 - Review of Peter-Weyl Theorem
 - Borel-Weil theorem
 - Examples, representations on homogeneous polynomials
 - Borel and parabolic subgroups, flag manifolds
- The Borel-Weil-Bott theorem

- Lie algebra cohomology, cohomology of Lie groups
- Borel-Weil-Bott theorem
- Weyl character formula and Euler characteristics
- Hamiltonian mechanics, symplectic geometry, geometric quantization and the orbit method
- Projective representations
- The Spinor Representation
 - Spin(2n) as a double cover of SO(2n)
 - Projective representations
 - The Clifford Algebra, Canonical Anticommutation Relations
- The Metaplectic Representation
 - The Heisenberg algebra and group, Canonical Commutation Relations
 - Stone-von Neumann Theorem.
 - The Metaplectic double cover of $\operatorname{Sp}(2n)$ and the Metaplectic Representation
 - Theta functions
- Correspondence between representations of GL(n) and S_n
- Kac Moody algebras, the Virasoro algebra and their highest weight representations(?)