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Outline

Note: most of what I’m describing is an advertisement for results available
in Meinrenken, Clifford algebras and Lie theory and Huang-Pandzic, Dirac
operators in representation theory + work in progress, paper to appear
later this summer.
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Representation theory and quantum mechanics

Quantum mechanics

Quantum mechanics has two basic structures:

I: States

The state of a physical system is given by a vector |ψ〉 in a Hilbert space
H.

II: Observables

To each observable quantity Q of a physical system corresponds a
self-adjoint operator OQ on H. If

OQ |ψ〉 = q|ψ〉

(i.e. |ψ〉 is an eigenvector of OQ with eigenvalue q) then the observed
value of Q in the state |ψ〉 will be q.
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Representation theory and quantum mechanics

Symmetries give observables

Time translations

There is a distinguished observable corresponding to energy: the
Hamiltonian H. −iH gives the infinitesimal action of the group R of time
translations. This is the Schrödinger equation (for ~ = 1)

d

dt
|ψ〉 = −iH|ψ〉

Note: −iH is skew-adjoint, so the action of time translation is unitary.

Other examples

Spatial translations, group R3, momentum operators Pj

Rotations, group SO(3), angular momentum operators Lj

Phase transformations, group U(1), charge operator Q̂
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Representation theory and quantum mechanics

Symmetry and quantum mechanics

General principle

If a Lie group G acts on a physical system, expect a unitary representation
of G on H, i.e. for g ∈ G have unitary operators π(g) such that

π(g1)π(g2) = π(g1g2)

Differentiating, get a unitary representation of the Lie algebra g on H, i.e.
for X ∈ g have skew-adjoint operators π′(X ) such that

[π′(X1), π′(X2)] = π′([X1,X2])

The iπ′(X ) will give observables (self-adjoint operators). If

[π′(X ),H] = 0

these are “symmetries” and there will be “conservation laws”: states that
are eigenvectors of iπ′(X ) at one time will remain eigenvectors at all
times, with the same eigenvalue.
But: can have interesting groups acting on a physical system that don’t
commute with time translation.
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Representation theory and quantum mechanics

Example: SU(2)

SU(2) and su(2)

The group G = SU(2) (2 by 2 unitary matrices with determinant 1) has
Lie algebra su(2) = R3, with Lie bracket the cross-product.

Representations of SU(2) and su(2)

Corresponding to elements of a basis Xj ∈ su(2) have “spin” observables
Sj = iπ′(Xj). These act on a state space H that is a representation of
SU(2). All such representations will be a sum of copies of irreducible
representations. The irreducible representations are labeled by
n = 0, 1, 2, . . ., and called by physicists the representations of “spin n/2”,
of dimension n + 1.
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Representation theory and quantum mechanics

Example: canonical quantization and the Heisenberg Lie
algebra

Main way to create quantum systems (Dirac). Start with phase space R2n,
coordinates qj , pj and Poisson bracket satisfying

{qj , pj} = 1

The 1, qj , pj are a basis of a Lie algebra, the Heisenberg Lie algebra h2n+1,
with Poisson bracket the Lie bracket. This is the Lie algebra of a group,
the Heisenberg Lie group.
“Canonical quantization” is given by operators Qj ,Pj , satisfying the
Heisenberg commutation relations (for ~ = 1).

[−iQj ,−iPj ] = −i1

Stone von-Neumann theorem

Up to unitary equivalence, there is only one non-trivial representation of
the Heisenberg group
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Representation theory and quantum mechanics

Advertisement

For much much more detail, see my recent book

available from Springer or at
http://www.math.columbia.edu/~woit/QM/qmbook.pdf
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The universal enveloping algebra and the orbit method

The universal enveloping algebra U(g)

Given a Lie algebra representation, we also can consider the action of
products of the π′(Xj). Can do this by defining, for any Lie algebra g with
basis Xj , the universal enveloping algebra U(g). This is the algebra with
basis (here j < k),

1,X
nj
j ,X

nj
j X nk

k , · · ·

and when one takes products one uses XjXk − XkXj = [Xj ,Xk ]1.
U(g) has a subalgebra Z (g) (the center) of elements that commute with
all Xj . These will act as scalars on irreducible representations.

Example: the Casimir operator of su(2)

X 2
1 + X 2

2 + X 2
3 ∈ Z (su(2)) and the Casimir operator

(π′(X1))2 + (π′(X2))2 + (π′(X3))2

acts as n(n + 1) on the spin n
2 representation.
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The universal enveloping algebra and the orbit method

Quantizing g∗

For any Lie algebra, the dual space g∗ can be thought of as a generalized
classical phase space, with Poisson bracket given by the Lie algebra
bracket. The Poisson bracket is determined by its values on linear
functions on the phase space, but a linear function on g∗ is just an
element X ∈ g, and one has

{X ,Y } = [X ,Y ]

Quantization of this classical system should give an algebra of operators,
the obvious choice is U(g).

Philosophy of quantization

Quantum systems should correspond to Lie algebras, with classical phase
space g∗, and algebra of operators U(g).

Problem: how does one construct representations of g (and thus H)?
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The universal enveloping algebra and the orbit method

The “orbit philosophy”

Constructing quantum systems corresponding to a Lie algebra g is thus
equivalent to the (well-known and hard) problem of constructing (unitary)
representations of g. One approach to this problem is

Orbit philosophy of Kirillov-Kostant-Souriau

For any µ ∈ g∗, consider the orbit Oµ ⊂ g∗ under the co-adjoint action of
G on g∗. This turns out to be a symplectic manifold. Take this as a
classical phase space and “quantize” it, with the state space of the
quantum system giving an irreducible representation. Co-adjoint orbits
should thus parametrize irreducible representations, and provide the
material for their construction.

To do this, in some cases one can consult physicists to find out how to
construct a quantum system given a classical system. In general,
“geometric quantization” is supposed to provide such a quantization.
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The universal enveloping algebra and the orbit method

Examples

The Heisenberg Lie algebra

Non-trivial co-adjoint orbits are copies of R2n ⊂ h2n+1, parametrized by a
constant c 6= 0. Physicists have many unitarily equivalent ways of
producing from this a representation of h2n+1, i.e. a state space H and
operators Qj ,Pj ,C . Here C = π′(1) is central and must act as a scalar.
Taking this to be −i~ gives the Heisenberg commutation relations

[−iQj ,−iPj ] = −i~1

su(2)

The non-trivial co-adjoint orbits are spheres in R3 of arbitrary radius. Only
if the radius satisfies an integrality condition does one get an irreducible
representation (one of the spin n

2 representations). Geometric
quantization: construct a holomorphic line bundle over the sphere, realize
the representation as holomorphic sections (Borel-Weil construction).
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Fermionic quantization and the Clifford algebra

Fermionic quantization

The version of quantization considered so far is “bosonic”, starting with
classical observables polynomial functions on g∗, or equivalently the
symmetric algebra S∗(g), with this commutative algebra quantized as
U(g).
“Fermionic” quantization starts by replacing the symmetric tensor algebra
S∗(g) by Λ∗(g), the anti-symmetric tensor algebra. One can think of this
as “polynomials in anti-commuting generators”.
Quantization then replaces commutators by anticommutators, and the
algebra U(g) by the Clifford algebra Cliff(g). This requires the choice of a
symmetric bilinear form (·, ·) on g. We will later need this to be invariant
and non-degenerate (Lie algebras that have this are called “quadratic”).
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Fermionic quantization and the Clifford algebra

Clifford algebras and spinors

Clifford algebra

For any vector space V with symmetric bilinear form (·, ·) , Cliff(V ) is the
algebra generated by v ∈ V , with relations

v1v2 + v2v1 = 2(v1, v2)

As a vector space Cliff(V ) = Λ∗(V ) (multiplication is different)

The structure of irreducible modules is much simpler for Cliff(g) than for
U(g). For V complex and dim V = 2n

Spinors

Cliff(V ) = End(S) = S ⊗ S∗

where S = C2n .
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The quantum Weil algebra and the Dirac operator

Quantum Weil algebra

One can combine the “bosonic” and “fermionic” quantizations into what
physicists would call a “supersymmetric” quantization

The quantum Weil algebra

Given a Lie algebra g with invariant non-degenerate bilinear form (·, ·), the
quantum Weil algebra is the algebra

W(g) = U(g)⊗ Cliff(g)

with (super)commutation relations

[X⊗1,Y⊗1]W = [X ,Y ]⊗1, [X⊗1, 1⊗Y ]W = 0, [1⊗X , 1⊗Y ]W = 2(X ,Y )

Note that this is a Z2 graded algebra, with generators of U(g) even,
generators of Cliff(g) odd.
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The quantum Weil algebra and the Dirac operator

The Dirac operator

For quadratic Lie algebras one can identify g = g∗, and one has a
quadratic Casimir element of U(g) given by

Ω =
∑

e jej

where ej is an orthonormal basis of g, e j the dual basis. A wonderful
discovery of Dirac in 1928, was that the introduction of a Clifford algebra
and spinors allowed the construction of a square root of the Casimir
operator (which in his case was a Laplacian). Here one defines:

Kostant Dirac operator

Ω has (up to a constant), a square root given by

��Dg =
∑

(e j ⊗ ej) + 1⊗ q(φ)

where φ ∈ Λ3(g) and q is the quantization map.
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The quantum Weil algebra and the Dirac operator

The differential super Lie algebra ĝ

For another point of view on W(g), one can define a “super Lie algebra”

ĝ = g⊕ εg⊕ Rc

Where ε2 = 0 and the super Lie bracket relations are

[X ,Y ]ĝ = [X ,Y ], [X , εY ]ĝ = ε[X ,Y ], [εX , εY ]ĝ = (X ,Y )c

The operator ∂
∂ε provides a differential d on ĝ satisfying d2 = 0.

One then has
W(g) = U(ĝ)/(c − 1)

with replacing g by ĝ (with its differential) an alternate motivation for the
replacement of U(g) by W(g).
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Dirac cohomology

Dirac cohomology

Since the square of the Dirac operator ��Dg is a Casimir operator (up to a
constant) and thus is central, the operator

d(·) = [��Dg, ·]W

satisfies d2 = 0.
One can define

Dirac cohomology

The Dirac cohomology H�D(g) of a quadratic Lie algebra g is the
cohomology of d on W(g). The Dirac cohomology of a representation V
of g is given by

H�D(g,V ) = ker ��Dg|V⊗S

H�D(g) acts on H�D(g,V ).
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Dirac cohomology

Relative Dirac cohomology

It turns out the Dirac cohomology itself is trivial, with H�D(g) = R and
H�D(g,V ) zero. What is interesting is, for r ⊂ g (r a quadratic Lie
subalgebra), a relative version of the Dirac cohomology. The super Lie
algebra r̂ acts by the adjoint representation on W(g), with

W(g)̂r = (U(g)⊗ Cliff(s))r

where s is the orthogonal complement of r in g.
Since ��Dg/r = ��Dg −��Dr preserves (U(g)⊗ Cliff(s))r and has square an
element of the center, one can define

Relative Dirac cohomology

H�D(g, r) is the cohomology of d = [��Dg/r, ·]W on (U(g)⊗ Cliff(s))r. It acts
on

H�D(g, r,V ) = ker ��Dg|V⊗Ss
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Dirac cohomology

Examples

The relative Dirac cohomology H�D(g, r,V ) with its action by H�D(g, r)
provides an interesting invariant of V . Some examples:

g complex semi-simple, r = h the Cartan subalgebra and
g = n⊕ n⊕ h. Here H�D(g, h,V ) is the Lie algebra cohomology
H∗(n,V ) (up to ρ-twist).

For many other cases of g reductive, see Huang-Pandzic, Dirac
operators in representation theory

(Work in progress): g the Heisenberg Lie algebra. Not a quadratic Lie
algebra, but an extension (the oscillator Lie algebra) is.

(Work in progress): g the Poincaré Lie algebra. Not a quadratic Lie
algebra, but get the actual Dirac operator used in physics.

Peter Woit (Columbia University) Quantization and the Dirac operator May 2019 20 / 1



Dirac cohomology

Constructing representations using Dirac operators

Some known relations between constructions of representation and Dirac
operators:

Compact Lie groups: Borel-Weil-Bott construction of irreducible
representations as sheaf cohomology groups of holomorphic line
bundles on G/T can be reinterpreted as kernels of a Dirac operator.

Real semi-simple Lie groups: can construct discrete series
representations using Dirac operators.

Freed-Hopkins-Teleman: provide a construction using families of
Dirac operators that associates an orbit to an irreducible
representation (for compact Lie groups).
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Conclusions

Conclusions

Modern philosophy of quantization

Quantum systems should correspond to Lie algebras g, with classical phase
space g∗ and algebra of operators U(g). Ad hoc “geometric quantization”
techniques associate irreducible representations to orbits in g∗.

Post-modern philosophy of quantization

Quantum systems should correspond to Lie algebras, with classical phase
space a derived geometry based on ĝ and algebra of operators W(g) with
differential given by the Dirac operator ��Dg.

May give a Dirac operator-based geometric quantization.
Applications in physics:

New construction of elementary particle states using representations
of the Poincaré Lie algebra.

New version of BRST method for dealing with gauge symmetries.
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