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Outline

Note: most of what I'm describing is an advertisement for results available
in Meinrenken, Clifford algebras and Lie theory and Huang-Pandzic, Dirac
operators in representation theory + work in progress, paper to appear
later this summer.
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Representation theory and quantum mechanics

Quantum mechanics

Quantum mechanics has two basic structures:

|: States

The state of a physical system is given by a vector |¢) in a Hilbert space
H.

[I: Observables

To each observable quantity @ of a physical system corresponds a
self-adjoint operator Og on H. If

Oqlv) = al¥)

(i.e. |¢) is an eigenvector of Og with eigenvalue gq) then the observed
value of Q in the state |¢) will be g.
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Representation theory and quantum mechanics

Symmetries give observables

Time translations

There is a distinguished observable corresponding to energy: the

Hamiltonian H. —iH gives the infinitesimal action of the group R of time

translations. This is the Schrodinger equation (for i = 1)

d .
2 ) = —iHily)

Note: —iH is skew-adjoint, so the action of time translation is unitary.

Other examples
@ Spatial translations, group R3, momentum operators P;
@ Rotations, group SO(3), angular momentum operators L;

@ Phase transformations, group U(1), charge operator Q
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Representation theory and quantum mechanics

Symmetry and quantum mechanics

General principle

>

If a Lie group G acts on a physical system, expect a unitary representatio
of G on H, i.e. for g € G have unitary operators 7(g) such that

m(g1)7(82) = 7(g182)

Differentiating, get a unitary representation of the Lie algebra g on H, i.e.
for X € g have skew-adjoint operators 7’'(X) such that

[7'(X1), 7' (X2)] = 7' ([X1, Xa])

The i7/(X) will give observables (self-adjoint operators). If
[=(X), Hl =0

these are “symmetries” and there will be “conservation laws": states that
are eigenvectors of in’(X) at one time will remain eigenvectors at all

times, with the same eigenvalue.
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Representation theory and quantum mechanics
Example: SU(2)

SU(2) and su(2)

The group G = SU(2) (2 by 2 unitary matrices with determinant 1) has
Lie algebra su(2) = R3, with Lie bracket the cross-product.

Representations of SU(2) and su(2)

Corresponding to elements of a basis X; € su(2) have “spin” observables
S;j = im'(X;j). These act on a state space H that is a representation of
SU(2). All such representations will be a sum of copies of irreducible
representations. The irreducible representations are labeled by
n=20,1,2,..., and called by physicists the representations of “spin n/2",
of dimension n + 1.
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Representation theory and quantum mechanics

Example: canonical quantization and the Heisenberg Lie
algebra

Main way to create quantum systems (Dirac). Start with phase space R?”,
coordinates g;, p; and Poisson bracket satisfying

{ag,pi} =1
The 1, gj, p; are a basis of a Lie algebra, the Heisenberg Lie algebra h2,11,
with Poisson bracket the Lie bracket. This is the Lie algebra of a group,
the Heisenberg Lie group.
“Canonical quantization” is given by operators Q;, P}, satisfying the
Heisenberg commutation relations (for h = 1).

[-iQ), ~iP}) = ~i1

Stone von-Neumann theorem

Up to unitary equivalence, there is only one non-trivial representation of

the Heisenberg group
Quantization and the Dirac operator May 2019 7/1



Representation theory and quantum mechanics

Advertisement

For much much more detail, see my recent book

Quantum Theory,
Groups and
Representations

©springer

available from Springer or at
http://www.math.columbia.edu/ woit/QM/qmbook.pdf
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The universal enveloping algebra U(g)

Given a Lie algebra representation, we also can consider the action of
products of the 7/(Xj). Can do this by defining, for any Lie algebra g with
basis Xj, the universal enveloping algebra U(g). This is the algebra with
basis (here j < k), o
CUnion

17)<jjﬂ)<jjxkk7”'
and when one takes products one uses X;Xi — Xy Xj = [Xj, Xi]1.
U(g) has a subalgebra Z(g) (the center) of elements that commute with
all X;. These will act as scalars on irreducible representations.

Example: the Casimir operator of su(2)
X2 + X2 + X € Z(su(2)) and the Casimir operator
(7' (X0)? + (7'(X2))? + (7' (X3))?

acts as n(n+ 1) on the spin 5 representation.
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The universal enveloping algebra and the orbit method
o e
uantizing g

For any Lie algebra, the dual space g* can be thought of as a generalized
classical phase space, with Poisson bracket given by the Lie algebra
bracket. The Poisson bracket is determined by its values on linear
functions on the phase space, but a linear function on g* is just an
element X € g, and one has

{X, Y} =[X,Y]

Quantization of this classical system should give an algebra of operators,
the obvious choice is U(g).

Philosophy of quantization

Quantum systems should correspond to Lie algebras, with classical phase
space g*, and algebra of operators U(g).

Problem: how does one construct representations of g (and thus #)?
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The “orbit philosophy”

Constructing quantum systems corresponding to a Lie algebra g is thus
equivalent to the (well-known and hard) problem of constructing (unitary)
representations of g. One approach to this problem is

Orbit philosophy of Kirillov-Kostant-Souriau

For any 1 € g*, consider the orbit O,, C g* under the co-adjoint action of
G on g*. This turns out to be a symplectic manifold. Take this as a
classical phase space and “quantize” it, with the state space of the
quantum system giving an irreducible representation. Co-adjoint orbits
should thus parametrize irreducible representations, and provide the
material for their construction.

To do this, in some cases one can consult physicists to find out how to
construct a quantum system given a classical system. In general,
“geometric quantization” is supposed to provide such a quantization.
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The universal enveloping algebra and the orbit method

Examples

The Heisenberg Lie algebra

Non-trivial co-adjoint orbits are copies of R?" C h,41, parametrized by a
constant ¢ # 0. Physicists have many unitarily equivalent ways of
producing from this a representation of ho,41, i.e. a state space H and
operators Qj, Pj, C. Here C = 7(1) is central and must act as a scalar.
Taking this to be —ih gives the Heisenberg commutation relations

[—iQ;, —iPj] = —ih1

su(2)

The non-trivial co-adjoint orbits are spheres in R3 of arbitrary radius. Only
if the radius satisfies an integrality condition does one get an irreducible
representation (one of the spin 7 representations). Geometric
quantization: construct a holomorphic line bundle over the sphere, realize

the representation as holomorphic sections (Borel-Weil construction).
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Fermionic quantization and the Clifford algebra

Fermionic quantization

The version of quantization considered so far is “bosonic”, starting with
classical observables polynomial functions on g*, or equivalently the
symmetric algebra S*(g), with this commutative algebra quantized as
U(g).

“Fermionic” quantization starts by replacing the symmetric tensor algebra
5*(g) by A*(g), the anti-symmetric tensor algebra. One can think of this
as “polynomials in anti-commuting generators” .

Quantization then replaces commutators by anticommutators, and the
algebra U(g) by the Clifford algebra Cliff(g). This requires the choice of a
symmetric bilinear form (-,-) on g. We will later need this to be invariant
and non-degenerate (Lie algebras that have this are called “quadratic”).
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Fermionic quantization and the Clifford algebra

Clifford algebras and spinors

Clifford algebra

For any vector space V with symmetric bilinear form (-,-) , Cliff(V) is the
algebra generated by v € V/, with relations

vivo + vovy = 2(vq, )

As a vector space Cliff(V) = A*(V) (multiplication is different)

The structure of irreducible modules is much simpler for Cliff(g) than for
U(g). For V complex and dim V = 2n

Spinors
Cliff(V) =End(S) =S® S*
where S = C?".
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The quantum Weil algebra and the Dirac operator

Quantum Weil algebra

One can combine the "bosonic” and “fermionic” quantizations into what
physicists would call a “supersymmetric” quantization

The quantum Weil algebra

Given a Lie algebra g with invariant non-degenerate bilinear form (-,-), the
quantum Weil algebra is the algebra

W(g) = U(g) ® Cliff(g)

with (super)commutation relations

[X®1, YRl = [X, Y]®L, [X®1,10Y]w = 0, [1eX, 18 Y]w = 2(X, Y)

Note that this is a Z, graded algebra, with generators of U(g) even,
generators of Cliff(g) odd.
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The quantum Weil algebra and the Dirac operator

The Dirac operator

For quadratic Lie algebras one can identify g = g*, and one has a
quadratic Casimir element of U(g) given by

Q:Zejej

where ¢; is an orthonormal basis of g, e/ the dual basis. A wonderful
discovery of Dirac in 1928, was that the introduction of a Clifford algebra
and spinors allowed the construction of a square root of the Casimir
operator (which in his case was a Laplacian). Here one defines:

Kostant Dirac operator

Q has (up to a constant), a square root given by

Py=) (¢ @e)+11q(¢)

where ¢ € A3(g) and q is the quantization map.
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The quantum Weil algebra and the Dirac operator

The differential super Lie algebra g

For another point of view on W(g), one can define a “super Lie algebra”
g=goeg®Re
Where €2 = 0 and the super Lie bracket relations are
(X, Ylg=1[X,Y], [X,eY]g=¢€[X,Y], [eX,eY]z=(X,Y)c

The operator % provides a differential d on g satisfying d? = 0.
One then has

W(g) = U(g)/(c - 1)
with replacing g by g (with its differential) an alternate motivation for the
replacement of U(g) by W(g).
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Dirac cohomology

Dirac cohomology

Since the square of the Dirac operator ,D/g is a Casimir operator (up to a
constant) and thus is central, the operator

d(-) = &y, Iw
satisfies d? = 0.
One can define
Dirac cohomology

The Dirac cohomology Hp{g) of a quadratic Lie algebra g is the
cohomology of d on W(g). The Dirac cohomology of a representation V
of g is given by

Hﬂ(g, V) = ker ﬂg“/@s

Hp{g) acts on Hp(g, V).
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Dirac cohomology

Relative Dirac cohomology

It turns out the Dirac cohomology itself is trivial, with Hx{g) = R and
Hp{g, V) zero. What is interesting is, for v C g (v a quadratic Lie
subalgebra), a relative version of the Dirac cohomology. The super Lie
algebra T acts by the adjoint representation on W(g), with

W(g)" = (U(g) ® Cliff(s))*

where s is the orthogonal complement of ¢ in g.

Since By = By — P, preserves (U(g) ® Cliff(s))" and has square an
element of the center, one can define

Relative Dirac cohomology

Hp(g, t) is the cohomology of d = [, ]w on (U(g) ® Cliff(s))". It acts
on

HB«(g, t, V) = ker D/EIV®55
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Dirac cohomology

Examples

The relative Dirac cohomology Hp(g,t, V) with its action by Hp{g, t)
provides an interesting invariant of V. Some examples:

@ g complex semi-simple, v = h the Cartan subalgebra and
g=n®dndbh. Here Hy{g,h, V) is the Lie algebra cohomology
H*(n, V) (up to p-twist).

@ For many other cases of g reductive, see Huang-Pandzic, Dirac
operators in representation theory

o (Work in progress): g the Heisenberg Lie algebra. Not a quadratic Lie
algebra, but an extension (the oscillator Lie algebra) is.

o (Work in progress): g the Poincaré Lie algebra. Not a quadratic Lie
algebra, but get the actual Dirac operator used in physics.
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Dirac cohomology

Constructing representations using Dirac operators

Some known relations between constructions of representation and Dirac
operators:

@ Compact Lie groups: Borel-Weil-Bott construction of irreducible
representations as sheaf cohomology groups of holomorphic line
bundles on G/ T can be reinterpreted as kernels of a Dirac operator.

@ Real semi-simple Lie groups: can construct discrete series
representations using Dirac operators.

@ Freed-Hopkins-Teleman: provide a construction using families of
Dirac operators that associates an orbit to an irreducible
representation (for compact Lie groups).
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Conclusions

Conclusions

Modern philosophy of quantization

Quantum systems should correspond to Lie algebras g, with classical phase
space g* and algebra of operators U(g). Ad hoc "geometric quantization”
techniques associate irreducible representations to orbits in g*.

Post-modern philosophy of quantization

Quantum systems should correspond to Lie algebras, with classical phase
space a derived geometry based on g and algebra of operators W(g) with
differential given by the Dirac operator D/g.

May give a Dirac operator-based geometric quantization.
Applications in physics:
@ New construction of elementary particle states using representations
of the Poincaré Lie algebra.
@ New version of BRST method for dealing with gauge symmetries.
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